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Multiple Wiener integrals and stochastic integrals are defined for
Gaussian processes, extending the related notions for the Wiener process.
It is shown that every L,-functional of a Gaussian process admits an
adapted stochastic integral representation and an orthogonal series ex-
pansion in terms of multiple Wiener integrals. Also some results of

Wiener’s theory of nonlinear noise are generalized to noises other than
white.

0. Introduction. Let us first fix our basic notation and terminology. We
will consider throughout a Gaussian process X = (X,, t ¢ T) defined on a prob-
ability space (Q, &7, P), with zero mean (for simplicity) and covariance function
R(t, s). T will be an interval of the real line, even though more general index
sets could clearly be used. There are two important Hilbert spaces associated
to a Gaussian process. The nonlinear space of X, LX) = Ly(Q, ZZ(X), P),
consists of all & (X)-measurable random variables with finite second moment
which are called (nonlinear) L,-functionals of X; <Z(X) is the o-field generated
by the process X. The linear space of X, H(X), is the closed subspace of L,(X)
spanned by X,, t e T, and its elements are called linear L,-functionals of X.

The first useful notion in the study of the nonlinear space of a Wiener process
is the multiple Wiener integral. This notion was first introduced by Wiener
(1938), who termed it “polynomial chaos,” and was redefined in a somewhat
deeper way by Ité (1951). It6 showed that his multiple integrals of different
degree are mutually orthogonal and also presented their connection with the
celebrated Fourier-Hermite expansion of L,-functionals of Cameron and Martin
(1947). In his work on nonlinear problems Wiener (1958) reinterpreted the
multiple Wiener integrals for a Wiener process in an extremely simple and
intuitive way and made some interesting applications. Finally Kakutani (1961),
Neveu (1968) and Kallianpur (1970) studied the connection between the non-
linear space of a Gaussian process and the tensor products of its linear space,
which sheds new light and gives more insight on the structure of the nonlinear
space.

The first objective of this work is to define multiple Wiener integrals for
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general Gaussian processes and to use them in extending Wiener’s theory of
nonlinear noise. The groundwork is in Section 1 where the Hilbert spaces of
appropriate integrands for the multiple Wiener integrals are introduced and
studied. The multiple Wiener integrals are then defined in Section 2. Section
5 includes the extension of some basic results of Wiener’s nonlinear noise theory
from noises generated by the Wiener process to noises generated similarly by
processes with stationary Gaussian increments (Theorems 5.1 and 5.2), as well
as a simple but interesting result on processes with stationary increments which
we could not find in the literature (Lemma 5.5).

The second useful notion in the study of the nonlinear space of a Wiener
process is the stochastic integral. The stochastic integral was first introduced
by It6 (1944) for the Wiener process. Every L,-functional of a Wiener process
has a representation as a stochastic integral, where the integrand is adapted to
the Wiener process. That Wiener process is a Gaussian martingale suggests
possible extensions of It6’s integral to martingales and to Gaussian processes.
The stochastic integral for martingales was successfully defined by Meyer (1962)
and thoroughly studied by Kunita and Watanabe (1967). The idea involved
remains the same. But in order to extend Itd’s integral to general Gaussian
processes one should take a rather different approach using the tensor product
structure of nonlinear Gaussian spaces.

The second objective of this work is to define a stochastic integral for general
Gaussian processes, and this is done in Section 3. The general properties of the
stochastic integral are stated in Theorem 3.2 and some specific stochastic inte-
grals are calculated (Theorems 3.5 and 3.7). The differential rule of the sto-
chastic integral will be developed elsewhere. The stochastic integral is defined
for general integrands, not necessarily adapted. In Section 4 it is shown that
each L,-functional of a general Gaussian process has a representation as a sto-
chastic integral where the integrand is adapted to the Gaussian process (Theorem
4.2). The stochastic integral of integrands independent of future increments of
the Gaussian process is also considered (Theorem 4.3), but the L,-functionals
which have stochastic integral representations with such integrands have not
been characterized yet.

It should be noted that the two representations of L,-functionals of a (general)
Gaussian process presented here (the first as a series of multiple Wiener integrals
and the second as a stochastic integral) open the way to the study of nonlinear
devices with (general) Gaussian inputs.

Notation. Integrals over T? are denoted by the integral sign with no subscript.
1 denotes the characteristic function of the set E. (X) denotes tensor product
and ) symmetric tensor product.

The two types of multiple Wiener integrals (MWI) are denoted by 7, and J, (/
and J for p = 1), and the two types of stochastic integrals by _# and _Z; attention
is focused on 7, and _”. There is also a tensor product integral denoted by /.
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< and & with superscripts indicating dimensionality and subscripts indi-
cating the MWI considered, denote classes of Lebesgue integrable functions (&)
and of step or Riemann integrable functions (5*). These classes of functions
are dense in the domains Ay(®? R) and 4(®?* R) of the MWI’s I, and J, re-
spectively. The domain of the stochastic integral _# is denoted by Af L, xo(R),
with additional superscripts to indicate adapted (ad) or future increments inde-
pendent (fii).

Finally ® and ¥ denote certain maps used in the definition of the stochastic
integral.

1. The Hilbert spaces A,(R) and 1,(R). In this section X need not be Gaussian
but merely a second order process with mean zero and covariance R. It is shown
in Loéve (1955, page 472) that the following two integrals

I(f) = 2 f(t) dX, and J(f) = 2§ f(H)X, dt

can be defined as the mean square limits of the corresponding sequences of
approximating Riemann sums if and only if the following double Riemann
integrals exist,

R SOf(5) R, 5)  and RSO fORE, 5) drds,
and then I(f) and J(f) are random variables with means zero and variances the
corresponding double Riemann integrals.

1.1. The Hilbert spaces A,(R) and A,(R). Consider the set & of all step

functions on T, f(t) = ¥ fulw,.s,1(f); (au b,] C T, and define
Sf(t) dx, = Z{an(Xb“ - X“n) .
; is clearly a linear space and for all f, g € &}, we have
& f(t)dX, = 0
Z(1f(1) dX, - § g(1) dX,) = §§ f()9(s) AR, 5)

where the double integral is defined in the obvious way. Two step functions
f, g will be considered identical if

1§ (S(0) — 9(0)(f(s) — 9(s)) d"R(t, 5) = 0.
If we define for f, g € &7,
{fr 9> = §§()9(s) R(1, 3)

then (&7, {+, +») is an inner product space. Indeed (f, g)> has the ordinary
bilinear and symmetric properties, {f,f> = &({fdX)* =0, and {(f,f> =0
only when f is the zero element of .5, according to the convention introduced
above. Now let A,(R) be the completion of &7, so that it is a Hilbert space
with inner product denoted again by (., «). A typical element in A,(R) is a
Cauchy sequence of step functions. However, we will find it convenient to treat
elements in A,(R) as “formal” functions in ¢ € T and to write {§ f(f)g(s) €* R(t, )
for the inner product ¢ f, g) (see Theorem 1.1 for a partial justification).
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Notice that for fe .5/, the integral { f(¢) dX, depends on X only through its
increments. Thus we may suppose without loss of generality that there is a
point f,€ T such that X, = 0 a.s. Under this assumption we can establish an
isomorphism between H(X) and A,(R) as follows. The map

S — H(X): o § fdX

preserves inner products and hence it can be extended to an isomorphism on
A,(R) to a closed subspace of H(X). But the set X, = § 1,(«)dX,, te T, where
1, =1, for t =t and = —1,,, for t < 1, generates H(X) and 1,¢ &7. It
follows that the isomorphism is onto H(X), i.e., A,(R) = H(X). We denote this
isomorphism by 7/ and we define the integral of fe A,(R) with respect to X
(which we write as { f(¢) dX, following our convention to view elements of
A,(R) as formal functions) by

§ (1) dX, = I(f) .

The properties of this integral follow from those of / and are the analogues of
the properties of the integral when X has orthogonal increments (see, e.g.,
Doob (1953)). The integral is defined for “functions” in A,(R) and thus it is of
interest to identify usual functions in A,(R) besides the step functions. Two
such classes of functions are identified in the following.

Under the additional assumption that R(t, s) is of bounded variation on every
bounded domain of T x T, Cramér (1951) defined A,(R) as the completion (with
respect to the same inner product) of the set &7* of all functions f whose double
Riemann integral .22 {{ f(¢) f(s) d*R(t, 5) exists. However, Cramér’s definition
is not appropriate for the general case (where R is not necessarily of bounded
variation on bounded domains) since then 1, may not be in A,(R) and thus
A,(R) may not be isomorphic to H(X). It can be shown that when R is of
bounded variation on bounded domains then the two definitions of A,(R)
coincide.

Suppose that R is of bounded variation on every finite domain of 7 X T.
Then it determines uniquely, in the usual way, a o-finite signed measure on the
Borel subsets of T x T, denoted again by R. Let ., be the set of all measurable
functions f on T such that the following Lebesgue integrals

S IAAS IR, 5) < 0oy §§ A La,m(s) IRI(E, 5) < o0

are finite for all (a, 6] T, where |R| is the total variation measure of R. We
say that the function f in .7, represents an element in A,(R) if there is an
f' € Ay(R) such that for all g e &7,

19> = §1/(Ng(s) °R(t, 5) -

Notice that if such an f’ exists it is unique since &7 is dense in A, (R). We
will then denote f” by f and we will write f e A,(R). With this convention we
have the following
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THEOREM 1.1. Let R(t, s) be of bounded variation on every finite domain of
T XT. Then & is a dense subset of MA,(R). Also iff,, f,e-¥, and

§§ 1/2(0) f(9)] @*|R|(t, 5) < oo then

ol = S8AO fils) E°R(t, 5) .
ProoF. Let E be a bounded Borel subset of 7. Then 1, € %, and we will
prove that 1, € Ay(R), i.e., there is an f ¢ A,(R) such that for all g ¢ .5,

(fr 90 = §§ 1a(n)g(s) A°R(¢, 5) -
Let I be a finite interval containing E (so that |R|(/ X /) < o). We can always
find I, c 1, n=1,2, ..., with each I, a finite union of half open intervals
such that
|R|((I,AE) x 1) — 0 as n—oo.
Since

IR(I, X 1) — R(E X E)| < [RI(I,AE) X E) + |[RI((I,AE) X E)—0,
it follows that <1, , 1, » — R(E X E) and thus {1;,}7-1 is a Cauchy sequence

in Ay(R). Define fe Ay(R) by f=1im 1, . Similarly for all ge & we have
1y, 99 — §§ 1x(1)g(s) d*R(z, 5) and thus

<fr 9> = §§ 1e(n)9(s) d°R(t, 3) .
It follows from the remark preceding the theorem that f is thus uniquely deter-
mined by E, independently of the choice of approximating sequence {/,} and of
the interval / containing E.
Thus we have shown that 1, e A,(R) for each bounded Borel subset E of T.
The rest of the proof is standard (using approximation by simple functions and
bounded convergence) and is thus omitted. []

Consider now the set ./, of all functions f on T such that the Riemann inte-
gral =2 {§ f(¢) f(s)R(t, s) dt ds exists and is finite. &7 is a linear space. Two
functions f and g in &, will be considered identical if

Z (1) — 9(O)(A5) — 9())R(t, 5)dtds = 0.
For f, g € &, we define § f(1)X, dt = 2§ f(1)X, dt and then we have
()X, di - § g(X, dr) = 2§ f(D)g(s)R(1, 5) dt ds .
Define for f, g € -/,

(fr gy = 28 f(H)g(S)R(L, s) dt ds .

Then (&4, (., +)) becomes an inner product space. ,(R) is defined to be the
completion of the inner product space &, and so it is a Hilbert space. Again
a typical element in A,(R) is a sequence of functions convergent in norm.
However formally we shall treat elements in 4, (R) as functions and write
§§ f(£)g9(s)R(t, s) dt ds as the inner product {f, g).

In order to establish an isomorphism between H(X) and 2,(R) we shall



590 STEEL T. HUANG AND STAMATIS CAMBANIS

assume that X is mean square continuous which is equivalent to the conti-
nuity of the covariance function R(t, s). Consider the sequence of functions
nl._qm () Where 7 is an interior point of T. It is easy to show that this
sequence is a Cauchy sequence in 2,(R), whose limit is denoted by 4., and that
X, = Lim. § nl_qm (0)X, dt .
Then the map
S — HX): f— § f(1)X, dt

preserves inner products and its range includes X, for all interior z of 7 (which
is linearly dense in H(X) by mean square continuity). Hence it can be extended

to an isomorphism on 4,(R) onto H(X). Thus 2,(R) = H(X), the isomorphism
is denoted by J and for f € 1,(R) we define

§ f(nX, dr = J(f) -
A useful connection between the integrals / and J and the spaces A, and 4,

can be established as follows. Let Z, = {} X, du = J(1, ) where f, is an arbi-
trary but fixed point in 7. (1, , € 4(R) since R is continuous.) Then

L(t,5) =&2Z,Z, = §; {{ R(u,v)dudv,
and we have the following result whose straightforward proof is omitted.

THEOREM 1.2. If X is mean square continuous then A,(R) = A,(T') and for all
fe 4(R) = A(T),

VAnX. dt = { (1) dZ, .
Hence H(X) = H(Z).

2,(R) may contain interesting classes of functions larger than &7,. Let &,
be the set of all measurable functions f on T such that the following Lebesgue
integrals

LA fOR(E ) dids < 0oy §§ O Lun(IR(E 5)] dr ds < oo
are finite for all (a, 6] ¢ T. We will follow the same convention (as for A,) in
treating functions f in ., as elements of 2,(R) if there is a f” € 2,(R) such that
for all g in a dense subset of 4,(R),
S 9> = SADIE)R(1, 5) deds .
With this convention the following is a corollary of Theorems 1.1 and 1.2.

CoROLLARY 1.3. Let R(t, s) be continuous on T X T. Then £, is a dense
subset of A(R). Also if f,, fye £, and §§ | fy(t) fo(S)R(t, 5)| dt ds < co, then

{fo fo = SS L) fLS)R(t, 5) dt ds .

The spaces A,(R) and 2,(R) are generalizations of L, spaces, and in general
they are larger than L, spaces. As an example, consider R(z, 5) a continuous
covariance function on [a, 5] X [a, b] and let I'(¢, 5) be defined as before. Every
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function f in L,([a, b], dr) belongs to 2,(R) = A,(T") by Corollary 1.3 since
W ISDf)R(1, s) dids < max [R(1, 5)| - [b — a] § f3(1) dt < o0

and similarly §§ | f(¢)|1,.,1(5)|R(z, 5)| dt ds < co. However, 9, € 2,(R) = Ay(I) is
not in Ly([a, b], dt) since X, = J(d,) for all interior points ¢ of T implies R(¢, §) =
§§ 0,(u)0,(v)R(u, v) du dv.

Nevertheless, there is a special case where A,(R) reduces to an L, space. Let
X be a zero mean process with orthogonal increments. Assume X, = 0 a.s. for
some fixed t,e T. Then, R(t, s) = F(t, vV (t A 5)) + F(t, A (¢ Vv 5)) where F(1) =
EX2ift = tyand = —&'X,? if r < ¢,. F is nondecreasing and thus R(z, s) is of
bounded variation on every finite domain of T x T, and the associated measure
concentrates on the diagonal r = s of 7 x T. In this case Ay(R) = Ly(T, dF(z)).
In particular, if X is the Wiener process A,(R) = Ly(T, dt). A slightly weaker
result is easily seen to be valid when R(r, s) = {¢ 3 k(u, v)dudv + t A 5, with
ke L(T x T); in this case the two sets (rather than spaces) are equal, A,(R) =
Ly(T, dt), and their norms are equivalent. In fact it may be shown that if R
and S are two equivalent covariance functions (i.e., if the associated zero mean
Gaussian measures are equivalent) then the following sets are equal, A (R) =
A,(S) and 2,(R) = 2,(S), and their norms are equivalent.

1.2. Tensor products of A,(R) and A,(R). We now study the tensor product

spaces X? A,(R) and ®? A(R), p=2,3, --.. Consider the set &* of all
step functions f(t) on T?, t = (1, ---, t,). Define the following function on
XS

fr 9> = §5/(1)g(s) a7 R(t, 5) ,

where we write d*?R(t, s) for d’R(t,, 5,) - - - d*R(t,, 5,), and identify f with g if
{f—9,.f—g)=0. Let lllx,‘,x, R lJlx,,_xJpe%P (i-e., I;, J; are bounded half
open intervals in T'). Then

<111x~~x1p’ 1J1x~--xJp> = <111’ 1J1>A2(R) T <11,,’ 1Jp>A2(R)
=1, Q- ®1,, 1, ® - ®1, dapaym -
This implies that (547, (-, +)) is an inner product space and we shall denote
by A(®? R) the completion of 7. Since {1, ® --- ® 1, } is a complete set
in ®? A,(R), we have A,(®? R) = ®? Ay(R).
2(®? R) can be defined in a similar manner. Let 5? be the set of functions
of the form f{(t,, ---, t,) = 2i_, 6,%(t) - - - ¢,(¢,) where the ¢’s belong to
. P is a linear space. Define on &7? X &,* the function
fr 9> = ZTAI)RA(L, 5) dt ds
where R?(t, s) = R(t,, 5,) - - - R(t,, $,), and identify fwith g if (f — g, f — ¢) =
0. With the observation that for ¢,, ¢, € .57,
Py v By by oo ) =Py ¢1>22(R) RERC* ¢p>22(}2)
= <¢1® c ®¢p’ ¢'1® e ®¢’p>®“2(m s

P
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and with the fact that {$, ® - - - ® ¢,} is a complete set in R)? ,(R), we conclude
that (57, (+, +)) is an inner product space and that its completion, which is
denoted by 2,(®* R), is isomorphic to ®)? A,(R).

As in the case of the spaces A,(R) and 2,(R) we will treat elements of A,(®?” R)
and 2,(®? R) as “formal” functions and we will write the inner products in a
formal integral form. As before, under some conditions, elements of A,(®?” R)
and 2,(®?” R) will be representable by functions on 77 in the corresponding sense
and in this case we will identify the elements of A, and 2, with the functions
(see Theorem 1.4 and Corollary 1.6). The important point here is that we have
identified the abstract tensor product spaces ®? Ay(R) and ®)? 4,(R) with the
(nearly) function spaces A,(®? R) and 2,(®? R). From now on we will make
no distinction between )? A,(R) and A,(®? R), and between ®* 2,(R) and
2,(®?* R).

Let R be of bounded variation on every finite domain of T x T and let %,
be the set of all measurable functions f on T? such that the following Lebesgue
integrals

§§ 1/(t) f(s)] 4*#|R|(t, 5) < o0, §§ [A(D]1(s) d#|R|(t, 5) < oo
are finite forall/ = I, X ... X I, with I, ..., I, C T bounded half open inter-

vals. The following theorem can be proven like Theorem 1.1 and thus its proof
is omitted.

THEOREM 1.4. Let R(t, s) be of bounded variation on every finite domain of
T X T. Then 7 is a dense subset of A(®? R). Also if f,,f,e £ and
V1) fu(s) 4 [R|(t, 5) < oo, then

oty = SEAOL(5) d7R(t, 5) ©
THEOREM 1.5. If R(t, s) is continuous on T X T, then 2,(®? R) = Ay(®* ).
ProoF. This follows immediately from the facts that the set {¢, ® --- ® by

¢, €.} is complete in both 2,(®? R) and A(®? '), and that the two inner
products are identical on this set. []

Let ~2;% be the set of all measurable functions f on T? such that the follow-
ing Lebesgue integrals

WIADASR(t, s) dtds < oo, [T |f(t)]1,(s)|Ro(t, )| dt ds < oo

are finite for all / = I, X - - . x I, with bounded half open intervals/, ¢ T. With
the usual corresponding convention the following is a corollary of Theorems
1.4 and 1.5.

CoROLLARY 1.6. Let R(t, s) be continuous on T x T. Then £, is a dense
subset of 2,(®? R). Also if f,, f,e 2,7 and (§ | fi(t) fu(S)RP(t, s)| dt ds < oo, then

ol = SO LR (L, 5) dt ds .
Finally let us consider the symmetric tensor products () Ay(R) and & 2(R).
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For fe Ay(®? R) define f(1,, ---,1,) = (p1)™ D f(t - - -» t.,) Where the sum
is over all permutations 7 = (7, ---, z,) of (1, - .-, p), andfis called the sym-
metric version of f. fis well defined since f is a “function.” Indeed, f is first
defined for fe 77, and then, using the easily verified fact that ||f|},grr <

PN, es n)» the definition is extended by continuity to A,(®?R). If f = f then
[ is said to be a symmetric “function.” Let A,(®? R) be the subspace of all
symmetric “functions” in A,(®? R). Then it is easy to show that A2(®P R) is a
Hilbert space and X)? AyR) = A,(®* R) under the correspondence f, @ - - - ®
fo = (fu(t) - - - fo(2,))". Similarly, let 22(®" R) be the subspace of all symmetrlc
“functions” in 2,(&?* R). Then we can show that @? 2,(R) = 4,(X?* R) (under
the natural correspondence). As before, we shall hereon identify ®? A,(R) with

Ay(®* R), and ®? 4,(R) with 2,(R? R).

1.3. Fourier transform on A,(®? R) and 2,(®* R). Consider the covariance
function R(¢, s) of a zero mean, mean square continuous process X = (X, ¢
R = (— o0, o)) with (wide sense) stationary increments. For convenience such
R is said to have stationary increments. Let

(1.1) R(ty, 535 1y $) = E(X,, — X, )(X,, — X,,) -
Then it is well known (Doob (1953), page 552) that

2
(1.2) R(tp 51; t2’ Sz) — Sfoo'(eitll _ eisll)(e._itzl _ e_i’21) 1 _:22 dF(l)
(1.3) X, — X, ==, (eitl _ eisz) Ll__—l:x]_z)i_ av,
1l

where dF(2) is a finite measure on “Z(R) and V = {V;, —0 < 1 < o} is a
process with orthogonal increments, &’|dV;|* = dF(), and H(AX) = H(AV),
where AX denotes the set of increments of the process X.

Define the Fourier transform of fe &/* by

F@) = {=. ety dt.

The program is to define the Fourier transform f of every fin A,(®? R). (For
this reason, it is convenient to extend A,(®? R) from a real Hilbert space to a
complex Hilbert space.) From (1.2) it follows easily that f € Ly(R?, p»), for
fe.~*, where the measure p is defined by dpu(2) = (1 + 2*)dF(2), and
o Drgorny = <f’ g>L2(RP,yP)' Since the map .5 : .7 — Ly(R?, p?): f'_’f is
linear and preserves inner products, it can be extended to an isomorphism on

2(@” R). We now show that & is onto L,(R?, x#?). It is sufficient to show
that 1(. p(A) = 112, A(a »2(4) form a complete set in L,(R?, x*); or equivalently
that 1, ,5(2)=(e®*— e“”)/(zl) form a complete set in L,(IR, #). Since Ly(R, dF)=
H(AV) under the correspondence & — § k dV, it follows from (1.3) and H(AX) =
H(AV) that {(e®** — e™?)(1 4 2%)}/(i2), s < t} is complete in L,(R, dF), and hence
{i(a,,,], a < b} is complete in L,(R, ¢). We thus have the following
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THEOREM 1.7. The map 5 : /? — Ly(R?, p*): f— f has a unique extension
to an isomorphism from A,(R?* R) onto L(R?, p?).

The extended map is again denoted by % and is called the Fourier transform
on A,(®? R). We also write f for Z(f)- If we let X be the Wiener process,
i.e., R(t, s) = t A s, then Ay(®?” R) = Ly(R?, dr?), dp(2) = (1/2x) dA. Therefore
-7 reduces to the ordinary Fourier transform on L,(R?, dr?).

Suppose now that R(t, s) is stationary (which implies that R has stationary
increments). Then by Bochner’s theorem we have

(1.4) R(1, 5) = § =97 dy(2)

with v a finite measure on ZZ(R). It is plain to deduce from (1.2) and (1.4)
that du(2) = 2*dp(2). Thus A(®?” R) = L(R?, d?(A%(1))). Now we define
the Fourier transform on 4,(®” R). Let I'(¢, s) = {§ s R(u, v) du dv. Then the
covariance I has stationary increments and A (®? I') = 2,(®? R). The Fourier
transform on 4,(®? R) is defined to be the Fourier transform % on A (®? I).
It is a simple matter to verify that the spectral measure of I' is (1 + %)~ dy(2)
and thus 2,(®? R) = . L,(R?, v?).

THEOREM 1.8. If R(t, s) is a continuous stationary covariance function, then

L,(R?) is a dense subspace of 2,(®?* R), and . restricted to L,(R®) is the ordinary
Fourier transform.

Proor. Let fe L,(R?). Then
WIS SR (¢, 5)| dtds < v(R)?||f]2, e < 0

since |R(#, 5s)] < v(R). Similarly, the second condition in the definition of &#,?
is verified. Thus fe 2,(®” R) by Corollary 1.6. Since .&;» < L(IR?) is dense
in Ay(®? I') = 4(®* R), it follows that L,(R?) is dense in A,(R)* R).

To prove the second assertion it is sufficient to prove that for fe L,(IR?) the
ordmary Fourier transformfbelongs to Ly(R?, v*) and ||f|2gp.o = = Ifllzy@» 2)-
But |f] < lf1lz,zp) implies fe L(R?, v*). We have from Corollary 1.6 that
/1B, erm = §§ f(t) f(S)R?(t, s) dt ds. Substituting R and mterchaggmg the order
of integration by Fubini’s theorem, we obtain W 13,eem = I fIZ,gp,ue- The
proof is now complete. []

Let R be again a covariance function having stationary increments and let
fe Ay (®? R). We define the translation f< of f by z ¢ R® as follows. Pick a
sequence of step functions ¢, such that lim ¢, = f in A,(®? R) and let ¢,°(t) =
$a(t + 7). Clearly |6, 13,002 = |#all3,@e ry-  This implies that {¢,7} is a Cauchy
sequence in A,(®? R), and [~ is defined to be lim ¢,". A simple argument shows
that the definition of f* does not depend on the choice of the approximating
sequence {¢,} and f becomes the usual translation if f is indeed a function.
When R is stationary, the translation fof f'e 1,(®? R) can be defined similarly
(or via the identity 4,(R*® R) = A,(®?I)).
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THEOREM 1.9. If R is a continuous covariance with stationary increments, then
A,(®?* R) is invariant under translations, and for f, g € A,(®?* R) we have

5 9 ageom = o Gemdagarm s [7(A) = e =f().
Proof. Since R has stationary increments, all these assertions hold for fe
7. Hence they hold for all fe A, (®?” R) by continuity (cf. Theorem 1.7). [

The corresponding theorem for translations on 2,(®?” R) also holds.

2. Multiple Wiener integrals. We shall define the multiple Wiener integrals
(MWT’s) of the following two types:

L(f)=19 - {fty -+ s 1) dX, - - dX, = {f(t)dX;?
L) =8 - ft - )X, - X dry o dt, = § f(HXP dt
where p = 1, 2, .... While dealing with integrals /,, resp. J,, we will assume

(1), resp. (J),
I): Xt0 =0 a.s. for some teT,

(J): X is mean square continuous.

For X a Wiener process f is taken to be a function in L,(7?, dt?) and (p!)~t1,
is an isomorphism on L,(T?, dt?) (the Hilbert space of all symmetric functions
in L,(T?, dt*)) into L,(X). The major step in generalizing the notion of the
MWI I, to a Gaussian process other than the Wiener process is to determine a
proper Hilbert space of functions on which 7, will be defined. Clearly /, should
be defined as the isomorphism 7 from A,(R) onto H(X). Now for p > 1, in
accordance with the Wiener process case, it is reasonable to expect that functions
f@t, -+, t,) of the form @,(t,) - - - ¢,(2,), #; € Ay(R), are admissible integrands,
and their integral 7,(f) is the iterated integral I(¢,) - - - I(¢,) when ¢, ---, ¢,
are orthogonal. This suggests that A,(®X? R) is the proper class of integrands
for the MWI /,; and similarly 2,(®)? R) is the proper class of integrands for
the MWI J,. In defining the MWI’s we will use the following result on the
structure of the nonlinear space of a Gaussian process X (see Kakutani (1961),
Neveu (1968), Kallianpur (1970)). Here H, ,, is the Hermite polynomial of
degree p = 0, 1, 2, . - . with parameter ¢ defined as follows: {H, ,,(X),p = 0,
1,2, ...}is obtained by applying the Gram-Schmidt procedure to orthogonalize
the sequence of rv’s {X?, p =0, 1, 2, ...} in L,(X) where X is a Gaussian vari-
able with mean 0 and variance ¢”.

There exists a unique isomorphism ® from @,., H®*(X) (where the space for
p = 0 is the set of all constant tv’s in L,(X)) onto L,(X) such that

D(eB¢) = ef~1¥¢
where e®¢ = ¥ (p))#®?, Ee H(X). If &, ---, & € H(X) are orthogonal then
DEPN R - @ EPPE) = (p1) T4y H, »2(§;)
where p = p, + - -+ + p,. If {§,, y € I'} (T linearly ordered) is a CONS in H(X)
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then the family
! H s = ~ .
(Fp—p—l> PEn® - ® &R = 115 (ij!)_&HPTj’gfij(éTi) ’
% Tk

on,k%lai’n""”‘i‘]’rk—[”h « < 71> is @ CONS in Ly(X).

We now define 7, p > 1. Since Az(R) is isomorphic to H(X) under the
isomorphism /: fl—> § fdX, A2(®P R) = ®* A, (R) is isomorphic to H®?(X).
Denote this isomorphism by /®?. For ¢,, - - -, ¢, orthogonal in A,(R) we have

(@ 19)($,8 -+ D ,) = O $,dX® - B | 6, dX)
=)t gdX .- § 4, dX,
which suggests the following definition of I,: A(R* R) — L,(X) (in fact onto
O(HE*(X))),
= (p)iD o I®7
Furthermore we define ,(f) = I,( f) for fe A,(®?” R), where f is the symmetric

tensor of f. The following results are then immediate consequences of the fact
that /97 is an isomorphism.

THEOREM 2.1. Let X be a zero mean Gaussian process satisfying (I). Then the
MWT’s I, p = 1, have the following properties (f, g € A,(®? R))

L(af + bg) = al,(f) + bl,(9), a,beR,
L(f) = L(f),
() LD g0 = P S Dnyoy s
() 1@ 1y = O if P#q,
L(#$" ® - ® gfre) = H, 5008 $;dX),
where {$,, - - -, .} is an orthogonal set in Az(R) and p, 4+ .-+ + p, = p. Also
every Ly-functional 6 of X, 0 € Ly(X), has an orthogonal development

0=200) + Zya1 L,(f;)» fre A(®” R),
and ifﬁ - %9(0) = szl Ip(fp) = p21 Ip(gp) thenf - gp’ ) = 1.

In exactly the same way we can define J,(f) for fe 2,(®" R), and (p!)- i,
restricted to 2,(®” R) is an isomorphism onto ®(H®?(X)). The correspondmg
Theorem 2.1 also holds for the MWTI’s Jp» p= 1. Both MWD’s [, and J, can
be evaluated from the sample paths of X, but we will not discuss this here.

3. Stochastic integrals. In this section we define integrals of the form
§ f(r) dX, with f(r) a stochastic process appropriately defined. We first generalize
the notion of A, spaces and define an integral denoted by § f(¢) ® dX,. The
details are omitted since the argument is analogous to that in Section 1.1.

Let H and K be Hilbert spaces. Let X, be an K-valued function on an interval
T, and let R(t, s) = {X,, X,>,. Then R is a nonnegative definite function (i.e.,
a covariance function). Consider the set &, of all H-valued step functions on
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T, f() = Z¥ fala,, @ns bl C T, fue H. &, equipped with the binary
function
<9 = NN f(), 9(5)u dR(2 9)
is an inner product space. The Hilbert space A, ,(R) is defined to be the com-
pletion of &7 ,. Note that A, ,(R) reduces to A,(R) when H = R.
For f = 2V fuli,.s,1€ S7.u> define

(3.1) () ®@dX, = 3V . ® (X, — X)) -
Then
(3.2) lg: > HRK: [ ( f®dX

is a norm-preserving linear map since

I8/ ®dX|yox = LI DY S fadukXs, — Koy Koy — X, D
= WS, f(5))u A'R(1; 9)
= Mg e -
Thus /g has a unique extension to an isomorphism on A, ,(R) into H® K. It
is clear that the range of Iy is H® H(AX), where H(AX) denotes the closed
subspace of K spanned by the increments of X.

We remark that Theorem 1.1 is valid for the present general case with the
proviso that one should read absolute values and usual products as norms and
inner products respectively. Also, if the K-valued function X has orthogonal
increments and dF(r) = ||dX || *, then A, ,(R) = L, ,(dF), the Hilbert space of
all dF-square integrable K-valued functions (for integration of K-valued func-
tions see, e.g., Lang (1969)). The following simple fact will be used in the
sequel.

LemMma 3.1. If G,, p = 0, are closed subspaces of H and H = @20 G, then
(3-3) HQK =@, (0,K),
(3'4) Az;H(R) = @pgo Az;GP(R) . .
Proor. (3.3) is clear, and (3.4) follows from the following facts Frie, C
"921;1'1’ ‘%;Gp L “%;Gq for P *+ 9, and '-%;H == Upao *%;Gp' D

Now let X = {X,, te T} be a zero mean Gaussian process with covariance R,
and assume as in Section 2 that X,, = 0 a.s. for some f,e T. Let H = Ly(X)
and K = H(X)(= H(AX)). Then for fe A, (R) the integral Iy(f) = § f(1) ®
dX, is defined and belongs to L,(X) ® H(X). The program is to identify as
many elements in L,(X) ® H(X) as possible with elements in L,(X) through
a suitable (unbounded) linear map ¥ and then define the stochastic integral of
S with respect to X by

(3.5 L) = () aX, = ¥(§ f(1) ® dX)) .

Note that fe A,,;, x,(R) may be viewed as a “second order stochastic process,”
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and each f(7) as an “L,-functional” of the entire process X; thus such f’s need
not be adapted functionals of X.
We first define for each p > 1 a bounded linear map

(3.6) ¥,: H9?(X) ® H(X) — H®»*+\(X)
as follows. Pick a CONS {¢,yel}, T linearly ordered, in H(X). Then
S = {(E®p1® ®€®pk) ®E k > 0 Pl -+ P = P, Ts Tv " s Tk € F’

n< - < rk} isa complete orthogonal set in H®P(X) ® H(X). Define ¥, on
S, by

B7) TN Qe =(p+ DEENR ... REERBE, .
Writing {, = £871 ® ... ® 27« and using the facts that [|f ® &lyex = [0]l]¢]lx
and “CPHf‘I@P(X) =(p!--- p-,,!)/p!, we obtain

1ol pt
1€, ® Elsdr @ = _lﬁ__p'i

1...p! i
”wp(cp ® é7)”%1@1&1(,&’) =0 P if r+ 7

_ple (g D p

lf )’ = Tj .
It follows that
18, @ &1l < I¥,(E, ® &Il = ¢HIE, ® &,

for some ge {2, ..., p 4+ 1}. Note that all elements on the right-hand side of
(3.7) form a complete orthogonal set in H¢»+1(X), and for each such element
there are k or k 4 1 (< p + 1) elements in S, corresponding to it depending on
whether y = 7, for some j or not. It is now clear that ¥, can be extended
uniquely to a bounded linear map with norm (p -+ 1)? from H®P(X) & H(X) onto
H®?+1(X), and that its definition is independent of the choice of a CONS in
H(X). Itisalso clear that given any {,,, € H®?*!(X) one can find 7, ¢ H®?(X) ®
H(X) such that ¥ (5,) = {,,, and

(3.8) (221 < M) (= (P + DIl -

Notice that, since ¥, is a many-to-one map, (3.8) need not be true for all 7, €
H®?(X) ® H(X).

Now let ¥, be the natural isomorphism between R ® H(X) and H(X) (@®
§ —af). We then define ¥* = @,,, ¥, to be the map from {P),, H®?(X)}®
H(X) onto @,,, H®?(X) whose restriction to each H®?(X) ® H(X) is ¥,. Since
[¥,|l = (p + 1)* is unbounded in p, ¥* is an unbounded densely deﬁned linear
map with domain

= € (Dyao HEP(X)} ® H(X) 1 Ty [[T,(8,)]F < o0}

where ¢ = 3,.,6,, ¢, being the projection of ¢ onto HE?(X) ® H(X). It is
easily seen that SZ7* is a dense subspace of {P,., H®?(X)} ® H(X). Also it
follows from (3.8) (left-hand side inequality) that the range of ¥* is @z HE?(X).
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Since @,z H®?(X) =, Ly(X), we have
{20 HE?(X)} ® H(X) =, Ly(X) ® H(X)
denoting this isomorphism by ®,. Finally we let -7 = Q7 *) C Ly(X)®
H(X) and we define ¥ on 57 to L,(X) by
(3.9) U ==0QoT*o@1.

Then the stochastic integral is defined by (3.5), i.e., §f(r)dX, = A(f) =
Y(§ (1) @ dX,) = W o Ig(f) for all fe A, 1,5 (R) such that Ig(f) = { f®dXe
. The set of all such f’s, denoted by A, (R), is a dense subspace of
Ay z,0(R). We should point out that the fact that the stochastic integral is not
defined for every f in A, Luo(R) is a consequence of the critical choice of the
constant in (3.7). We will see that the constant (p + 1)? is the logical one and
that Af, (R) is large enough to include most integrands of interest.

For this we need to introduce the following notation. Let &#be the set of
all polynomials in the elements of H(X). For each p > 0 let &/, be the set of
all polynomials in &’ with degree no greater than p (& is the set of constants).
For each p > 1 let &, be the set of polynomials in &, which are orthogonal
to &, ,, and let &, = .&. The closure &, of &, in LX) is called the
pth homogeneous chaos. The following are then clear or well known (e.g.,
Kallianpur (1970), Neveu (1968))

@, | &, for p+gq
(3.10) F = @14,
LX) = F = Drzo ép
HE?(X) =, &,
and the following is a CONS in each &, p = 1,
{pud - p)HHL (&) - H, (64
Pt Fp=pk=1,---,pir, -, €T}
where {§,, y € I'} is a CONS in H(X). Lemma 3.1 and (3.10) imply that
G- An(R) = @pzo Mg (B) s Ays(R) = @l Ane (R) -
The basic properties of the stochastic integral % = Wo [y = @ o U o 1o Iy

follow from the following structure:

(3.12)

NS,

(@20 HE?(X)) @ H(X)
< I @y HO(X) 2 LX) O &,

He»(X)® HX) — H®"(X) = &,,

Asszyn(R) 2 Ly(X) ® H(X)
Ag‘:iz(x)(R) = H
Ao (R) = &, ® H(X)

n

N
n

and are given in the following
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THEOREM 3.2. The stochastic integral _#: A\, Ly (R) — Ly(X) is an unbounded
densely defined closed linear map with domain A} Ly0(R) and range LX) =
Ly(X) © &, the set of all zero mean tv’s in L,(X). Hence every Ly-functional 6 of
X admits the representation

6 = #(0) + § (1) dX,

for some (nonunique) f ¢ AL, x(R). Foreachp =0, Ay (R) C Af x)(R), and
hence A, 5 (R) C AfL x\(R), and the restriction of the stochastic integral _# to
Ay, 5,(R) is a bounded linear map onto &Z,,, with norm (p + 1)}, If fe As,0(R)
andf = szofp’ fp € A2;ép(R)’ thenfe Agsz(X)(R) lfand only lf szo “"f(fp)”2 <
00, and if f& My, (R) then A(f) = Tpa A S,)-

Proor. It is clear from (3.12) and the fact that for each p > 0, H®*(X) ®
H(X) c 27* that A, (R) C Af, x(R). Since ¥, is a bounded linear map
withnorm (p + 1)}, so is the restriction of _# to A, &,(R) and clearly, again from
(3-12), ANy (R) = ,pre . .

Since ¥* is onto @,,, H®?(X), and O(D,,, H®*(X)) = L(X)O &, =
LX) © & = LX), it follows that _# maps its domain onto L,%(X).

We now prove the claim in the last sentence of the theorem. Let fe
Ayr,o(R) and write f = 3 .. f,, f, € A,z (R). Then fe A}, 4 (R) is equiva-
lent to Dy~ o Ig(f) € £7*, and since @y~ o Iy(f) = 3,50 Dy~ o Ig(f,) and each
@, o Iy(f,) belongs to H®?(X)® H(X), by the definition of 5*, this is in
turn equivalent to

szo ”Wp ° (I)O—1 ° ®(fp)”2 < 0.

But now |7, o @, o Ly(f,)]| = [[@ 0 W, o @, o Iy(f,)]| = |A(f,)]l- It follows
that fe Af, x(R) if and only if 3., [ A(f,)|F < co. Assuming now that fe
Ay, 0 (R) it follows from the definition of W* that
AL) = Qo T* oo o(f) = Zpao @o ¥, 0@ o Ie(f,) = Zpza L) -
In order to complete the proof of the theorem we need to show that _7 is
closed. Letf, e A, »(R) = Z(F), f, —fin Ay, n(R), and A(f,) — 0 in
L(X). We will show that fe Z(_#)and _#(f) = 6. Write

f = szofp ’ f'n = Zpgofn,p 5 fp’fn,p € Az;ép(R) ‘

Since f,e Z(*), by the last claim of the theorem (just shown) we have
Afa) = ZpzoF(fu,)- Also f, — f implies that for each fixed p > 0, f, , —
f»in Ay - (R), and since 7 restricted to A, - (R)is bounded we have _#(f, ) —
A(f,)- By Fatou’s lemma we have

oo (LI = Zpao lim, Ao, )P
= liminf, 3500 A fa I = lim inf, [|A(£,)] < oo

since _#(f,) — 0, showing (by the last claim of the theorem) that fe Z(_#).
Thus A(f) = 32,20 #(/f,) and writing § = 33 .,0,,,, 0, € &,, we have, again

n

n
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by Fatou’s lemma,

szollf(fp) - 0p+l”2 = szo llmn ”j(fn,p) - 0p+l||2
< lim infn szo“j(f»,p) - 0p+1||2
= liminf, |.A(f,) — 0] =0
showing that _#( f) = 6, which concludes the proof. []

The same argument can be applied to define spaces 4y, x)(R); 4%,x,(R) and
the stochastic integral _#(f) = { f(1)X, dt for fe A%, (R), where we assume
accordingly that X is a zero mean, mean square continuous Gaussian process.
It can also be shown that A}, (R) = A, ,(T) and § (X, dr = § f(1) dZ,
where I' and Z are related to R and X as in Section 1.1.

We now consider some of the properties of the stochastic integral. First we
show that Itd’s integral is a special case of the general stochastic integral de-

fined here. The proof is based on (i) of the following lemma which also will
be useful later.

LemMA 3.3. (i) If 0 € L(X) and e H(X) are independent then ¥ (6 ® ) = 67.
(ii) If 6, ne H(X) then W(6 ® 1) = 6y — &(07).
PRrOOF. (i) Assume without loss of generality that Z(»*) = 1, and let {y, £,

ye T}, I linearly ordered,.be a CONS in H(X). By the Cameron-Martin re-
presentation of § € L,(X) there is a countable subset I of I such that

J— PorP1>" P
0= szo Zpo+p1+~~+pk=p;k21 Zr1,~~-,rker’;r1<"'<rk an“w)’k

X Hy(n) Hy(§,) - -+ H, (&) -

Thus 6 is a function of the rv’s {7, &, r € I''}, and since 7 is independent of the
rv’s {6, &, r e I'} it follows by an elementary property of conditional expec-
tations that ¢ is a function of the rv’s {§, y € I} only and in fact § = &(0/¢,,
r € I). Tt then follows from the series expansion of § and &(H, (9)/¢,, r e ") =
&(H, (7)) =0, p, = 1, that

0 =320 Zﬂ1+_,_+pk=p;k21 Zn,...,,kepr;n@..qk a(;;?'l:::}}cpk
(3.13) X Hy (&) - Hy ()
= 2z 0,

and we have 0, e &, p = 0.

We first show that § ® » € &7 or equivalently that (0 ® ) = P ()R e
F£7*. Since @Y0) = 31,.,DY(0,), P(0,) € H®?(X), this is equivalent to

2oz [TH(P7H0,) @ I < o0
It follows from the expression of each #, given in (3.13) that
D(0,) = (P K g din @ - @ &5

and, by (3.7), that

(3.14) T @0,)RQ7) ={(p+ NPT apnedn® ... 9e8n@y.
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Thus we have
¥,(PX0,) @ ! = (p + D! I (agn;0)? H
= |@HG,)IF = 16,
and hence },.,||¥,(@*(0,) @I = 2,2 ll0,IF = ||0F < oo. It follows that
0 ®ne .
Now from the definitions of ¥, (3.9), and ¥* we have
FOR7) = B o W* o O HE® 7) = D o UH(D(6) ® 1)
= (20 ¥,[P7(0,) ® 7))
= Zpzo O, [D7(0,) ® 7]) -
For each p = 0, using (3.14) we obtain

O(Y,[P(0,) ® 7)) = T appupe Hy(§,) - -+ Hy (€, )Hi(7)
= 0,;’7

and thus ¥(0 ® ») = 3,5, 0,7 = 07 as desired.

(ii) Now let#, y € H(X), assume again that &(7*) = 1, and write § = &(0n)p+¢
where { = 6 — &(07n)n is independent of 5. Then § ® 7 = &(On)®* + LR 7
and by (i), T(6 ® 7) = SO E(®) + G But U7 = B o W o O(7® ) =
DoV, (n®n) =2!V(n®7) = Hyy) = » — 1. Hence

V(O R@7) = SO — 1) + {0 — Z(On)nly = 0y — E(67) - 0

THEOREM 3.4. [t6’s integral for the Wiener process is a special case of the
stochastic integral _7.

Proor. Let X be the Wiener process, i.e., R(t, s) = t A 's. Then Itd’s inte-
gral, denoted by _#*, defines an isomorphism from M, onto LX), where M,
is the Hilbert subspace of L,(Q X R, ZZ(X) x Z(R), dP X dt) = L(dP X dt)
consisting of all elements adapted to X. Note that M, C L(dP X dt) =
Ly r,0(dt) = My, n(R). Let M be the set of all elements of the form
27 falia, b, Where f, € L(X)and f, is &£(X,, u < a,)-measurable. M is a dense
subspace of M,. ‘

We first show that M C Ly, ,\(dt) = Af,, x(R) and that # = .7* on M.
Letf = 2 ful@,s,1€ M. Then

j*(f) = Zf,fn(Xb,, - Xa,,,) :
Since each f, is ZZ(X,, u < a,)-measurable, it is independent of X, — X, , and
by Lemma 3.3(i) £, ® (X,, — X, )€ Zand ¥(f, ® (X, — X, ))) = fu(X,, — Xa,)-
It follows that § f ® dX = X7 f, ® (X, ,— X, ) € 57, and thus f'e L, »,(dr), and
AN =T f®dX) = T ful XK, — Xo,) -
Hence _#(f) = Z*(f).

Finally we show that M, C L}, ,(df)and that # = _#* on M,. Let fe M,.

Then for some f, e M C L}, 4(dt), f, —f. It follows from the properties of
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It6’s integral that _#*(f,) — _#*(f) and since, as it was just shown, _#*(f,) =
Afa), we have A(f,) —» _#*(f). Since .7 is closed it follows that fe
L., x(df) and A(f) = #*(f). Clearly M, is a smaller class than L¥ Lo(d) =
AL, 0(R) and thus _7 provides an extension of _#*. []

We now consider the problem of calculating the stochastic integral for
specific integrands, starting with the simplest possible case where f(r) = 04(r)
with @ € Ly(X) and ¢ € A(R).

THEOREM 3.5. (i) If 6 € Ly(X), ¢ € Ay(R), and 6 and § ¢(r) dX, are independent
then

§ 06(1) dX, = 0 § (1) dX, .
(ii) If 0 € H(X) and ¢ € Ay(R) then
§ 06(1) dX, = 0§ §(1) dX, — #(0 § p(1) dX,) .

(iii) If for some ue T, F(x)e LR, exp(—x*/2R(u, u)) dx) and if F(x) has an
Ly(R, exp(—x*/2R(u, u)) dx)-derivative denoted by F'(x), then

§ F(X)¢(1) dX, = F(X,) § §(1) dX, — F'(X,)E(X, | 4(1) dX,) .
ProOF. We first show that if § € L,(X) and ¢ € A,(R) then
I5(09) = § (04(1)) ® dX, = 0 ® § §(1) dX, .
Indeed, if ¢ is a simple function ¢ = Y ¥ ¢, L, We have
Ig(09) = Ig( X7 O0cali,p,0) = 21 (0c,) ® (X, — X,) = 0Q § g dX,

and since [y is an isomorphism the same is valid for all ¢ € A(R). It follows
that

F0g) = O o WH 0 Do Iy(0g) = @ o UX(DY0) ® | ¢ dX) .

(i) Letf(r) = 6¢(r). We willshow thatfe Af, ,(R) = Z(F)and #(f) =
0§ pdX. Write§ = 3,.,0,,0,e&,. Thenf =3 ,.,0,6 in A,, »(R) with
each f (1) = 0,4(¢) in L, ; (R). We first calculate _#(0,¢(7)). Note that it is
clear from the proof of Lemma 3.3(i) that the independence of § and § ¢ dX (=

n € H(X)) implies the independence of each ¢, and { ¢ dX. Thus by Lemma
3.3(i)

A0,8) =T oly0,6) = ¥(06,R§ $dX) =0, ¢dX.

Now the independence of 4, and { ¢ dX implies ||_#(0,¢)|| = ||6,/||§ ¢ 4X]|| and
thus
Zozo LI = Zoao [0, ) = Lz lI0IF11Y ¢ dXP
= [[0IPII§ ¢ dX|I* < oo .

It follows from Theorem 3.2 that fe Z(_#) and that _#(f) = },., A(f,) =
Ysz00, | ¢ dX, and again by independence we have _#(f) = 0 { ¢ dX.
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(ii) If 6 H(X) and ¢ € Ay(R) then § g € A, (R), and by Lemma 3.3(ii)
H(09) = Vo lg(0g) =V(OR§pdX) =0 pdX — &0 § ¢ dX).
(iii) Firstlet F(X,) = H, »(X,), p = 1, where0,* = &(X,?) = R(4, u). Then
letting { ¢ dX = » and noting that ®~X(H, ,2(X,)) = (p!)!XE> we have
§ H, 2 (X)9(1) dX, = @ o W¥((p)XE? ® 1) .
Write = ¢,7*&(X, )X, + { where { =  — 0,72&(X, )X, 1 X,. Then
Y (XE? @) = (p + Do, "X X2 + XE* ® (}
and thus
SHp,oi(Xu)gé(t) dXt = au—zg(Xun)Hp+l,oi(Xu) + Hp,o:(Xu)C
= Hp,af‘(Xu)’] + au_zg(Xu 7]){Hp+l,ai(Xu) - X, Hp,oi(Xu)}
== Hp,a:(Xu)ﬂ - Pg(Xu ”)Hp—l,oi(Xu) ’
which is the desired relationship since dH, ,(x)/dx = pH,_, a(x).
Now if F(X,) is as in the statement of the theorem we have
F(Xu) = szo apHp,oi(X’u) ’ F,(Xu) = ZpklpapHp—l,ai(Xu)
with both series converging in L,(X). Since for each p > 0, [ (H,,2(X)9)l| <
(P + DHIH, (X8l = (p + DHIH, 2(X)ll[¢ll, we have
szo Hj(ap Hp,of‘(Xu)¢)“2 é Zp;o (P + l)apanp,oi(Xu)”z ° ||¢”2
= (IF(X)IP + [IFX)PNSIF < oo
It follows by Theorem 3.2 that F(X,)¢ € Z(_#) and

V F(X)$(r) dX, = ;20§ @, H, 2(X,)9(1) dX,
= 2rz0{9 Hp,ai(Xu) {pdX — PapHp—l,af‘(Xu)g(Xu § ¢ dX)}
= F(X,)§ ¢ dX — F(X)E(X, § $ dX). 0

(iii) includes the cases of Hermite polynomials, H, :(X,), and exponentials,
exp(X, — %0,%), and it admits a natural generalization to F’s of the form
F(X,, ---, X, ). Asan illustration we write the following simple integral

§ X, X, 6(1)dX, = X, X, | ¢ dX — E(X, |  dX)X, — E(X, | $ dX)X, .

Before evaluating some less trivial stochastic integrals we consider the
following interesting result. Let T = [a, ] and a = tn < h oL oo <ty =
b,n=1,2, ..., be a sequence of partitions of 7 whose mesh goes to zero,
max; (t; , — t;i_,.) — 0. The mean square quadratic variation of X on T along
such a sequence of partitions is defined as the mean square limit of 37, (X,, —
X.,_, )} Whenever the latter exists.

THEOREM 3.6. Let X = {X,, t€[a, b]} be a zero mean Gaussian process with
continuous covariance R of bounded variation on [a, b] X [a, b] (the signed measure
on [a, b] X [a, b] corresponding to R is denoted again by R). Then the mean square
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quadratic variation V,* of X on [a, b] along any sequence of partitions whose mesh
goes to zero exists and is given by

V,b = R(D,%)
where D,’ is the diagonal of [a, b] X [a, b].

Proor. By the mean square continuity of X and the bounded variation of
R we have §§ [(X,, X5 d*|R|(1, 5) < oo and {§ [(X,, 01 ())] dR|(t, $) < oo
for all (a, 8] C [a, b] and 6 € L,(X). It then follows from the extended version
of Theorem 1.1 that X, e A, ;,,(R) C Z(-#) and thus the stochastic integral
{ X,dX, is defined.

Leta=1,,<t,< - - <t,,=>bbe any sequence of partitions with mesh
tends to zero. If X, is defined by X, = X,  on each (1,_,, #;], then X" —

ti
X in A, 4/(R) (by the mean square continuity of X and the bounded variation
of R) and hence § X, dX, — { X, dX, in Lz(X). Thus, by Theorem 3.5 (ii),
(3.15) X4, = lim, Do, 2 X, Lo, a(0) dX,
= lim, 317, {X,,_ (Xt,; — X)) — g[Xti_l(X:i - Xti—l)]} ’
and similarly, by defining X{™ = X, on (#,_,, t;], we have
(3.15")  §e X, dX, = lim, 352 {X,(X,, — X,,_) — X (X, — X, )]}
Subtracting (3.15) from (3.15') gives
0 = lim, {37, (Xt,; X, ) — X g[(X:i X, 1)2]}

and since the second term has limit R(D,?), the result follows. []

Notice that by adding (3.15) and (3.15") we obtain

fo XpdX, = 3(X* — X! — 0,* + 0,))

where 0> = &£(X,?) = R(t, t). A similar approach leads to the following result.

THEOREM 3.7. Let X be as in Theorem 3.6. Then
1
¥ Hp,o%(Xt) dx, = p—jl_—l {Hp+1,a§(Xb) - Hp+1,ai(Xa)} » P20

(¢ exp(X, — }0,%) dX, = exp(X, — 40,%) — exp(X, — }0,%).

Proor. It is shown as in the proof of Theorem 3.6 that H, ;(X,) € A, 5 (R).
Lettinga =1¢,, < t,,< --- < t,, = b be any refining sequence of partitions
with mesh going to zero, and using the (uniform) mean square continuity of
X and the bounded variation of R, we have (writing ¢, for ¢, , for simplicity)

Hp,of(Xz) dXt
=@o U* o @71 (fE Hp,af(X) ® dX,)
=0 W, 0 &5 {lim, T, H, 2 (X, ) ® (X, — X,_)}

= {(p + D}i@{lim, 3, X7, ® (X, — X, )}
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= {(p + DI {lim, B~ B2, X @ X" B (X, - X, )]

_ {(p+ D} O{lim, 3, Y2_ (X® ®X®p+1— XS?_"T‘@X{?”"”)}

P+l
1 g, 5, 1 — )
_{p+1 1)'}* Q(xEr1 — X+
P + 1
= o7 W t(X0) = Hya 20}
The second result follows from the first and

1
exp(Xt - %dtz) = ZpZOF Hp,og(Xt) . D

Theorem 3.7 shows that Hermite polynomials H, ,o(X,) play the role of cus-
tomary powers, X,?, and exp(X, — $¢,%) the role of the customary exponential,
exp(X,), in this stochastic calculus.

4. Iterated, adapted and future increments independent integrals. Throughout
this section we assume that X is as in Theorem 3.6. We first explore the con-
nection between the MWI’s and the stochastic integral. We want to establish
that each MWI can be written as an iterated integral, i.e., that for f,, e A(R’ R),

(41 $nf(0)dX? = §Cr (- (2 folty o5 1,)dX,) - dX,, ) dX,)

where of course the iterated integral remains to be defined.
Let H be a Hilbert space and &2, the set of all H-valued step functions f{t)
on 7?. Then &7, is an inner product space with inner product
9 = 15 AY), 9(5)) dR(t, s)
and its completion is denoted by A, ,(®? R). Itis easily seen that A, ,(®? R) =
Ay(®? R) ® Hunder the correspondence (¢, ® - - - ® $,)§ = ($,® --- R ¢,)RE.

Thus each element in A, 4(&®)? R) has an orthogonal development of the form
207 (6, ® - ® P, ),
where {¢_, y € I'} and {§,, @ € 4} are CONS’s in A,(R) and H respectively.
Consider the following chain of maps
Af®? R) > My s (RFR) > -+ = Ass (R) =, &,
defined first by
¢71 ® Tt @ ¢7p _)"1 (S ¢71 dX)¢12 ® Tt ® ¢Tp

_)"z 2“1)(8 ¢71 dX® S ¢Ta dX)?Ta ® ~ ’ ® ¢Tp -
Trp—y {(p — DIHO(S ¢T1 dX® --- ®§ ¢Tp—l dX)¢Tp
1 (P')“D(S ¢rl ax® .- ® S ¢Tde) .
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Then by the same argument used for defining ¥, each 7, can be extended to
a bounded linear onto (not one to one) map with norm g¢¢. It is important to
note that r,, is the stochastic integral, and that on &,_,-valued step functions
m, acts like the stochastic integral by fixing the “‘extra” variables. The iterated
integral in (4.1) is now defined to be 7, o - .. o 7,(f,) and the equation follows.

Letting T = [a, b] and noting that I,(f,) = I,(f,), we should expect to obtain
from (4.1)

ngp(t) ax» = P fa (S,ﬁp T (S:zf,,(tv o o tp) dle) T dXt,,_1
= (o h,(1,) dX,,

where %, is adapted to X. This will now be made precise (in the proof of
Theorem 4.2). The following definition will be used. A step function f =
28 [l i0 Ay, 5 (R) is called adapted if each f, is B(X,a <t < a,)-
measurable. The closed subspace of A, ;, x,(R) generated by the adapted simple
functions is denoted by A3l 4,(R) and its elements are called adapted. We
also let

)dX,,

A;?E((X)(R) = A%?LZ(X)(R) n A;LZ(X)(R) :

2
LemMA 4.1. Iffe A(®?* R)is a step function then g(t,) = (i (- -- (S f(t), - - -,
ty_p 1,)dX,) ---)dX, _ isan adapted step function and
(4.2) 8k ... Shaf(t)dX,?
= $a(Sar - (V2 f(ty -5ty 1) X)) - - dX, ) dX,,
where both integrals are defined in the usual way as the corresponding integrals over
the entire interval of f(t,, - -, 1), <..co -

Proor. For ease of exposition we only consider the case p = 2, the case of
p > 2 being similar. It is then sufficient to prove the assertions for f of the

form (i) 1, 51(8)1;,53(%)s (11) 1o, pa(2) L e, p1(%)> (110) 1, 53(81) 1 (a,p3(2s) Where a < 5 <
7 < 0. Then g(1,) equals (i) (X, — X,)1, 5(1,), (ii) (X;, — Xo)1(a,p1(22), (iii) 0 and
is thus an adapted step function. Using Theorems 3.5(ii) and 3.7 we find that
the right-hand side of (4.2) equals
(i) Sz (Xﬂ - Xa)l(r,a](ta) dXz2
= (Xﬁ - Xa)(X6 - r) - g[(X'ﬂ - Xa)(X6 - Xr)]
(i) e (X, — Xl m(n) dX,,
= {4 Xz2 dXz2 - Sg X, dXt2
= HX' — X' — 0 + 0.7} — {Xo(X, — Xo) — XX, — X))}
= (X, — X' — S1(X, — X))}
(iii) {60dXx, =0.
On the other hand the left-hand side of (4.2) equals
@) Il ()<
= 2§(D{(Xﬂ - Xa) ® (XJ - Xr)}
= (Xﬂ — X)(X; — Xr) - g[(X'ﬁ — X)(X; — Xr)]
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(i) 12(1(a,ﬂ](tl)l(a,ﬁ](tﬁ)l(t1<t2))

= 351, () Lia, (1))

= 270X, — X%} = H{(X, — X, — E[(X, — X))}
(iii) 12(1(r,J](tl)l(a,ﬂ](tz)l(t,<tz)) = Iz(o) =0
and the proof of the lemma is complete. []

THEOREM 4.2. F(A§ \(R)) = LX) and thus each L, functional 6 of X
admits the stochastic integral representation

0 — &(0) = § f(7) dX,
where (the not necessarily unique) f is adapted (fe A3% 4 \(R)).

Proor. It suffices to prove the second assertion of the theorem. Assume
first that 6e«, so that by Theorem 2.1, 6 = I(f,) = I(f,) for some

f>€ A(®” R).
If ¢ is a step function in A,(®?” R) it is easily checked that

55 = 2izen f’l(t,,l<~~~<t,,p)
Ir(é) =p! Ip(¢1(¢1<...<¢p))

where 7 = (7, ---, 7,) is a permutation of (1, ..., p) and II is the set of all
such permutations. Now let {¢,} be a sequence of step functions in A,(®? R)
with ¢, — f,. Then

, . 1 . ,
||¢n 1(t1<~~~<tp) — ¢m 1(t1<~~~<tp)” = F H¢n - ¢m|l

and

implies that {95,,1(,1<,,,<tp)} is Cauchy and we denote its limit by f, 1u1<.--<¢,,>-
Then

Ip(fp) = limn Ip(gf'n) = limn P! Ip(én 1(t1<~-»<tn)) = P! Ip(fp l(tl,"',tp)) .

If weletg, =m, ;0 ---om(p! @, 14 <..<e,p)> then g, is clearly a step function
in A, s, (R) adapted to X by Lemma 4.1, and by the continuity of z’s

In = Tpgo oo (P flccry) = By -
It follows that k, € A, _ (R) is adapted to X and satisfies
L(fo) = lim, 7,(9,) = 7,(h,) = A(h,).
For a general 6 € L,(X) we have by Theorem 2.1 and the above
0 —200) = Lraa )(fy) = Zoar Shy) = ALy by)

where h = 37 ,.,h, belongsto A, ,,(R)(by Theorem 3.2, since 3., (l2(h)IF =
221 IL(f5)IP < o) and is also adapted to X since each 4, is. []

It is clear from the definition of f,(¢,, - - -, 1)1 41<...<., in the proof of Theo-
rem 4.2 and from Lemma 4.1 that equality (4.2) is valid for all f, e £L,(®* R)
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where both integrals in (4. 2) are defined as the corresponding integrals of
f;(tv R tp)l(tl< ~<tp)*

We finally consider the stochastic integral of future increments independent
functions. A step function f = ¥ f, L, 010 Ay 5)(R) is called future incre-
ments independent if each f, is independent of the increments of X after a,. The
closed subspace of A, (R) which is generated by the future increments in-
dependent step functlons is denoted by A} ;) (R) and its elements are called
future increments independent (fii) functions.

THEOREM 4.3. A} 4)(R) C Af.,x(R) and the stochastic integral restricted to
A%, (R) is norm preserving.

ProoF. Letf = 3)'f,1,, ., beafiistep function in A, (R). Since for
each n, f, is independent of X, — X, , if follows from Theorem 3.5(i) that

AAf) =) dX, = Bl falX, — Xo,) -

NP = Zama E{fafn(Xe, — X )X, — X )}
PutA, X = X, — X, . Whenn = mwe have &{f,(4,X)?} = &(f,)&{(4A,X)}.
When a, < a, and £{(A, X)?} + 0 we can write
S E{@.X))
where 7 is independent of A,, X, and since &(f, f,,74,, X) = &(f,fu1)& (A, X) =
0 we have

E(S DX X) = # (1S SEaToa2) (00} = #2038, 5)

Then

nX + 7

n

It follows that

NI = Zamar E(fuf)E (K, — X )X, — X,)]
= 11 <A0, f9)) 4°R(1, 5) = |If?
and thus the stochastic integral is norm-preserving for step fii functions.

Now let fe A}y, x(R). We will show that fe A}, ; (R) and [|Z(f)|| = ||f]|-
By definition there is a sequence of step fii functions f, such that f, — f. Write
f=2Zfos  fo= ZozoSans Sofur€hs(R).

Then f, , —, f, and thus _#(f, ,) —, A(f,). It follows by Fatou’s lemma that

oo [P = Zpzo lim, [|A(fu )P < limiinf, 35,00 (S0,
= liminf, 33 .0/ ,IF = liminf, ||fJ? = |fI} < oo .
Hence by Theorem 3.2, fe Af,, x(R). Now ||LZ(f,) — A(fa)ll = °(fa —
f2)l = |Ifn — full implies that the sequence _#(f,) converges, and since .~ is
closed we have _#(f)=lim_#(f,) and thus [ _Z(f)|| = lim, | - Z(f)|=

lim, ||f.|l = ||f]l- Hence AQ;iLz(X)(R) C A;‘;Lzm(R) and _~ restricted to Ag‘,‘z(x,(R)
is a norm preserving map into L,%(X). []
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Note that A(ALL,x(R)) is a closed subspace of L%(X) and it would be of
interest to know how large it is in general, and under what conditions we have

AN, 0(R)) = LX) or equivalently that each L,-functional of X has a fii
stochastic integral representation

0 — &(0) = § f(r) dX,
where f is fii. We conjecture that this would be the case if the germ o-fields
of X are trivial.

The notions of “adapted” and of “future increments independent” introduced
above are of course identical when X is Wiener process.

S. Nonlinear noise. A (strictly) stationary process ¥ = (¥,, —oo < t < ©0)
with &Y, = 0 and &£Y,? < oo is called noise. Quoting from McKean (1973),
Wiener liked to think of such a noise as the output of a “black box” 6: you
put in a white noise W = (W,, —oo < t < o0) (formally the derivative of a
Wiener process W) and you get Y, = 0(Wt, —oo < t < oo0) out; the noise (Y,
—oo <t < o) is produced by shifting the input by the flow of the white noise
W(e) — W(e 4 f). In order for Y to be a noise we require that ¢ = 0 and
&0* < oo. Since 0 has the orthogonal development

(5-1) 0 = 2oz Srefo(t) AW,

where f, € L,(R?), the noise Y obtained by shifting the incoming white noise
through the nonlinear device @ can be expressed as

(5.2) Y, = 2a (e fp(u — 1) dW,P,
where t = (¢, - - -, 1), and the covariance function of Y is readily seen to be
(c=1—13)

&Y. Y, = 2ipz P! SRsz’(u)fp(u —7)du.

Wiener’s theory of nonlinear noise starts from this idea. He also proved a
profound theorem which was clarified by Nisio (1960) and which states that
every ergodic noise can be approximated in law by noises of the form (5.2).
Note that not every ergodic noise has the representation (5.2), and a necessary
condition is strong mixing (McKean (1973)).

Here generally, instead of sending white noise (or Wiener process) through
a nonlinear device #, we may send a Gaussian process with stationary incre-
ments X = (X,, —oo < t < co), with say X, = 0 a.s. and covariance R. Then
the noise Y obtained by shifting the incoming Gaussian noise X can be ex-
pressed as

(53) Y, = szl SRl’fp(u - t) dx,»

where f, € Ay(®?” R), and the covariance function of Y is again readily seen
to be

(5.4) EY, Y, = 3,z P! <fp( )s fp(° T)>A2(®1’R)
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where ¢ =t — s (cf. Theorem 2.1). Although (5.2) and (5.3) are intuitively
clear, they require proof. The proof of (5.3) follows from the following
property.

LEMMA 5.1. If X is a zero mean Gaussian process with stationary increments and
covariance R then, for fe Ay(R? R),

Vrof(u) dX2,, = (po f(u — 1) dX 7.
Proor. Both integrals are well defined since X has stationary increments.
Pick a CONS {¢,, 7€ T} in A(R). Since {¢37n® --- ® ¢&%: 1), ---, e T,
P+ oo+ pp=p, k = 0}is complete in Ay(®? R) and I(f) = L,(f), it suffices

to prove this assertion for f = ¢§P1 Q- .- ® ¢§k1’k. But for such £, the assertion
becomes

1%, Hp,;,llyiillz(s Pu(us) qui+t) = [T%. Hpi,u,ﬁ,«n?(s Pi(u; — 1) qu,.)
and thus we need only to show that
§ (u)dX,,, = | ¢(u — 1) dX, .
This is true for ¢ € & and hence for ¢ € A,(R). The proof is now complete. []

When Y has representation (5.3), we say that Y is X-presentable. Note that
X is always X-presentable since X, = {{dX,. As McKean (1973) showed, if Y
is not strongly mixing then Y is not Wiener process-presentable. The same
property is true for X-presentable processes.

THEOREM 5.2. Let X be a mean square continuous Gaussian process with stationary
increments, X, = 0 a.s., and with absolutely continuous spectral distribution. Then
every X-presentable noise Y is strongly mixing.

Having introduced the Fourier transform on A,(®? R) in Section 1.3, the
proof is identical to McKean’s proof for X Wiener process.

We now show the analogue of Wiener-Nisio’s theorem using Nisio’s approach
as simplified (for convergence in law) by McKean (1973). X will be a zero mean
sample continuous ergodic Gaussian process with stationary increments which
satisfies X, = 0 a.s. and the following condition

(S) Pr{dA,X>0,0<t<nA_X<0}>0 forall n>1
where A, X = X,,, — X,_,.

THEOREM 5.3. Every measurable ergodic noise Y (defined on any probability
space) is the limit in law of a sequence of X-presentable noises.

Proor. Examining McKean’s (1973) proof for X the Wiener process we see
that the argument remains valid for the present general case if it can be shown
that there exists a sequence of nonnegative functionals a, on the paths of X,
such that the probability distribution of each a, is absolutely continuous and
its density function is constant on [0, n] and decreasing on (n, co). We proceed
to construct such a,’s. For simplicity we suppose that X is a coordinate process,
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ie., (Q, 22, P) = (RR, Z#(R®), P) and X(0) = o(f). Define sets S(w), S,(w) and
a rv f(w) as in Nisio (1960), pages 210-211. It follows from the ergodicity of
X that S, (w) is nonempty a.s. if & > 0. But &f =Pr{A,X > 0,0 < ¢ <n
A_, X < 0} > 0 by assumption (S). Thus S,(w) is nonempty a.s. We now define
a,(w) = n 4 inf §,(0). Note that 0 < a, < co a.s. The same argument as on
page 211 of Nisio (1960) shows that a, has the desired probability distribution.
Thus the proof is complete. []

We now give a discussion of assumption (S). We believe that (S) always
holds when X is a zero mean sample continuous ergodic Gaussian process with
stationary increments, yet we are not able to prove it. Instead, we have the
following sufficient condition for (S), which indicates that (S) is a mild assump-
tion (if it is a restriction at all),

Foreach n>1 thereis an f,e.92(C), the reproducing
(S) kernel Hilbert space of the covariance C of X, such that
A f.>0 for te[0,n] and A_,f,<O.
LeEmMA 5.4. (8S,) implies (S).
ProOF. We owe this proof to Loren D. Pitt. Note that X is mean square
continuous, since it is a sample continuous Gaussian process. Then C is con-

tinuous and so is every f € Z2(C).” Assume (S,). Then, by the sample continuity
of X and the continuity of f,

{weQ: A(X + ¢f) >0,0=r<nmA (X+¢)<0}1Q
as ¢ 7 oo, and hence there exists ¢ > 0 such that
Pr{d(X +¢f)>0,0<1<nA_(X+cf)<0}>0.

(S) now follows from the equivalence of the Gaussian processes X and X + ¢f
(since ¢f e F2(C)). [

We next show that (8,) is satisfied by all processes with stationary increments
having rational spectral densities. This implies in particular that (S,) is satisfied
by the Wiener process, by stationary processes with rational spectral densities,
and by (indefinite) integrals of stationary processes with rational spectral
densities. The proof is based on the following result which is of independent
interest.

LEMMA 5.5. A4 mean square continuous process X = {X,, —oo < t < oo} with
zero mean and covariance C(t, s) has (wide sense) stationary increments (with spectral
measure dF) if and only if there is a mean square continuous measurable (wide sense)
stationary process Y = {Y,, —oo < t < oo} with zero mean and covariance r(t, s)
(with spectral measure dF) such that for each t and s

(5.5) X,— X, =Y, — Y, —({{Y,du a.s.
and HAX) = H(Y). Also if X, =0 a.s., then fe S2(C), the reproducing kernel
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Hilbert space of C, if and only for some g ¢ Z2(r) and all t
(5-6) f() = 9(1) — 9(0) — §§g(u) du.

Proor. The sufficiency of (5.5) being obvious, we only show its necessity.
Suppose that X has the spectral representation given by (1.2) and (1.3). Then
we have
et 1

i
and H(AX) = H(AV). Define the process with orthognal increments U — {U,,
—00 <2< oo} by (2 +i)dU, = i1 + )t dV,. Then &|dU,|* = &|dV,[* =
dF(4), and H(AU) = H(AV). Define the process ¥ = {Y,, —co < t < o} by
Y, = { e**dU,. Then Y is (wide sense) stationary and mean square continuous,
and hence it has a measurable modification, denoted again by Y. First we see
that H(Y) = H(AU) = H(AV) = H(AX). Also for each fixed ¢ and s we have
the following equalities in L, and thus also a.s.,

X, = (1 + 2t v,

itd isi 2 isd
Xt—X,=Se—t;—e-—(l+i)dU1=S {(eiu_eiu)_ eit ;e
i

=Y, — Y, — (= (e du)dU, = Y, — Y, — {* Y, du.

} du,

The last equality is justified by the following equality for all v,
&N (e du)dU; - ¥, = (2, L eV  dudF(2) = §: (>, e~ dF(2) du
=L&EY,Y,)du =&\t Y, du 7))

where Fubini’s theorem has been repeatedly applied, its justification being quite
clear. '

For the second claim notice that for all 7 € H(X) = H(Y) and ¢ we have by
(5.5)

(5.7) EX.7) = E(V.7) — E(Yop) — §§E(Yu7) du .

If fe Z(C) then f(r) = £(X,7) for some e H(X) and (5.6) follows from 5.7
with g(1) = &(Y,7) € S2(r). Conversely, if ge Z2(r) then g(f) = #(Y,7) for
some 7 € H(Y). Thus if f satisfies (5.6) it follows from (5.7) that f(r) = #(X,7)
and thus fe Z2(C). [

LEMMA 5.6. Let X be a zero mean mean square continuous process with (wide
sense) stationary increments having a rational spectral density, and with covariance C.
Then condition (8,)) is satisfied.

Proor. Thus X is as in Lemma 5.5, and dF has a rational density. Itisthen
well known that Z2(r) = W,", the set of all functions possessing on every finite
interval absolutely continuous derivatives up to order m — 1 and square in-
tegrable mth derivatives (with 2m = degree of denominator—degree of nume-
rator of the polynomials of the rational spectral density). Now it is clear that
for each fixed n = 1, by a suitable choice of ge W,m, f defined by (5.6) will
have the desired property stated in (S,). Indeed, for fixed n > 1 we may choose
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f in W, satisfying (S,) and f(0) = 0. Then a simple calculation shows that g
defined by g(r) = e* {; e*f'(u) du belongs to W,™ and satisfies (5.6). Hence, by
Lemma 5.5, fe Z2(C). Since f was chosen to satisfy (S,) the proof is complete. []
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