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BILLIARDS IN POLYGONS

By CARLO BOLDRIGHINI, MICHAEL KEANE AND FEDERICO MARCHETTI

Universita di Camerino, Université de Rennes
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Some questions concerning the orbits of a billiard ball in a polygon
are studied. It is shown that almost all such orbits come arbitrarily close
to a vertex of the polygon, implying that the entropy of the corresponding
geodesic flow is zero. For polygons with rational angles, we show by using
interval exchange transformations that almost all orbits are spatially dense.
Two applications are given.

The present paper answers some questions concerning a particular classical
dynamical system, namely, billiards with one ball in a plane polygon. In the
case where the region considered contains a convex obstruction, a certain number
of results have been obtained (see e.g., [5], [7]). These systems turn out to have
strong ergodic properties (i.e., Markov partitions can be constructed), due to
the exponential scattering which occurs at the obstruction. However, if the
boundary and/or obstructions have zero curvature, very little is known.

We consider in the following a point mass moving in a given non-self-
intersecting plane polygon, with the usual rules of reflection when the point
mass hits a side. It is shown first that, for each initial point and almost all in-
itial directions, the orbit comes arbitrarily close to at least one vertex of the
polygon. This yields in particular a coding procedure for the orbits, and im-
plies that the corresponding dynamical system has zero entropy. Next, we
concentrate on the simpler case where all angles of the polygon are rational
multiples of z. This case can be reformulated in the context of interval ex-
change transformations (see [2] and [3]). We show here that for almost all
starting conditions, the corresponding orbits are dense in the polygon. Finally,
we discuss two interesting physical interpretations of our results.

Many problems remain to be solved, even in the case of a triangle. In par-
ticular, we have not been able to prove in general that if the angles of the
polygon are irrational, the corresponding dynamical system is ergodic, or even
that there exists a dense orbit (either in the polygon or in the phase space).

Some of the results given here have been presented in a preliminary way by
one of us in [2]. Zemljakov and Katok have obtained analogous results by
quite different techniques (see [9]). Research was done during a visit by the
second author to Camerino, sponsored by the Italian C.N.R.

1. Definitions and notations. Let P denote the interior of a non-self-
intersecting polygon in the plane with vertices A,, sides a,, and angles aj,
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i=1, ..., n. We consider the geodesic flow on P with the usual reflection rule
on the boundary 9P.

A line element @ = (x, 6) of this flow is given by a point x ¢ P and an angle
6 € R]2rZ. We think of a line element as a small arrow issuing from the point
x and pointing in the direction §, measured from a fixed reference direction

which we shall take to be A, 4,.

On the boundary, we make the following identifications concerning line
elements:

1°. If x € P is not a vertex, then x lies on a unique side a, of P which makes

an angle, say 8;, with our reference direction :4?4;. We identify in this case
the line elements (x, 8, + 0) and (x, 8, — 0) for each 0 < 6§ < =.

2°. If x € 0P is a vertex, then we identify all line elements (x, #), 0 < 0 < 2.

The phase space Q of our geodesic flow is then given by the set of all line ele-
ments. Under the obvious topology, Q is compact and metrizable.

Consider now the one-parameter semigroup (S,),.z+ of transformations on Q
defined as follows: if (x,, 8,) € Q, then S,(x,, ;) = (x,, 8,) is obtained by starting
at x, and drawing a continuous path inside the polygon consisting of straight
line segments and of total length ¢, and ending at the point x, in the direction
6,. The straight line segments should (except for the first one, which begins at
x, in the direction #,) begin and end (except for the last one, which ends at x,
in the direction 6,) on the boundary 9P, and the direction change at the bound-
ary in passing from one segment to the next one is made in accordance with
the identification in 1°. If the path should hit a vertex S before attaining length
t, then we define x, = S. In particular, S,(x,, 8,) = (x,, 0,) if x, is a vertex, for
all t > 0. The reader will easily see that these requirements define S, uniquely

for each r > 0 and that (S,),. z+ is a semigroup of measurable transformations
on Q.

For ¢+ < 0, we define S, by setting S,(x,, 6,) = (x,, 8,) iff S_,(x,, 0, + 7) =
(x,» 8, + 7). Then on the set Q’ of line elements w for which S,® is not a vertex
for all r € R, each transformation S, is continuous and (S,),. , is a one-parameter
transformation group acting on Q’. Moreover, Q' is a dense G, in Q.

Denote by dx normalized Lebesgue measure on P and by df normalized Haar
measure on R/2zZ. Since dx(dP) = 0, there is a well-defined probability meas-
ure m on Q corresponding to the product measure dx x df on P x R2zZ. It
is easy to see that for each t, S,m = m, and that m(Q) = 1. The triple
(Q, (S.)icr» m) will be called billiards on P.

Note that Q is just the phase space of a mechanical system consisting of a
Newtonian particle moving inside the polygon P with constant speed. The time
evolution S, is the one corresponding to absence of forces inside P and elastic
reflection conditions at the boundary. We have defined S, in such a way that
vertices act as sinks, for simplicity. There is a more natural definition which
consists in doubling each vertex and defining reflection at the vertex as a limit
either from one side or from the other, but this involves a rather complicated
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description of the phase space. (The transformation in Section 4 acts on vertices
correctly if we use this more natural definition.)
We now set

Q ={0v=(x,0)ecQ: xc P}
and

Q' =Q,nQ.
It will be useful to define a transformation T': Q, — Q, induced by the semigroup

(St)te a+e 1 (x, 0) e Q,, then we set

T(x, 0) = S, 0 (%, 0),
where

t(x, 0) = inf{t > 0: Sy(x, 0) € Qp} .

Let m, be the probability measure on Q, corresponding to the product measure
dx,x(sin (8, — 0) d6/C), (x,€ a;), where C is a normalization constant. Then
Tmy, = my, m(Q/) = 1, and T is continuous and invertible on Q. Ergodic or

asymptotic properties of (S,), , are reflected in ergodic or asymptotic properties
of T.

Finally, for w € Q we define

Orb* (w) = {S,w: t € R*}

Orb~ (w) = {S,w: te R}
Orb (w) = {S,0: te R},

and if 0 = (x,, 6,) and S(») = (x,, 8,) (€ R),

Orb} () = {x,: t = 0}
Orb; (w) = {x,: t £ 0}
Orb, (w) = {x,: te R}.

These are called respectively the forward orbit, backward orbit, orbit, forward
spatial orbit, backward spatial orbit, and spatial orbit of w. The orbits of w € Q,
under T are defined similarly and will be denoted by the same symbols.

2. Statement of the problem and remarks. Let us begin by stating a few
natural questions which one is quickly led to ask concerning billiards in P.

PrROBLEM 1. Does there exist a line element w € Q whose orbit is dense in Q?

PrROBLEM 2. Does there exist a line element w € Q whose spatial orbit is dense
in P?

PROBLEM 3. Are almost all orbits dense in Q7
PROBLEM 4. Are almost all spatial orbits dense in P?
ProBLEM 5. Is the “billiards” dynamical system (Q, (S,),. z, m) ergodic?

ProBLEM 6. If an orbit is (spatially) dense in (P)Q, is it uniformly distributed?
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These are only a few examples of what one is really interested in, namely, the
description of asymptotic and ergodic properties of a ball bouncing around in
a polygon. We should begin at once by stating that, even in the case of a
triangle, except for a few obvious examples and the small contribution we shall
make below, nothing is known concerning the answers to any of the problems
stated.

We continue by making three obvious remarks concerning the problems.

REMARK 1. One might be led to conjecture that perhaps all orbits of we @’
would be dense, or spatially dense. In certain cases, at least, this is not true.

In particular, if P is an acute triangle, imagine a miniscule ring around each
side of the triangle, take a piece of string, and pull it through each of the three
loops. Now pull both ends until the string is taut and connect the ends. The
rings will slip on the sides until an equilibrium is reached, and this equilibrium
yields a periodic orbit under S,.

Equivalently, this orbit is the one obtained by joining the bases of the three
heights of the triangle.

There are even in this case uncountably many periodic orbits, which can be
obtained from the one above by a slight perturbation in one of the points of
the orbit, maintaining the same direction. All of these orbits have twice the
length of the original one.

This remark leads us to two more problems which we have not been able to
resolve.

ProBLEM 7. Does any polygon (and in particular, an obtuse triangle) have
periodic orbits?

PrROBLEM 8. Let us call two orbits equivalent if they have the same length.

In an acute triangle (or in any polygon), do there exist infinitely many pairwise
nonequivalent orbits?

For the examples discussed in Remark 3 below, the answer to Problem 8 can
be seen to be “yes.”

REMARK 2. A particular case of interest, which we shall go into more deeply
in a later paragraph, is the one in which all the angles a;, a,, - - of P are
rational multiples of z. Let us call such a polygon a rational polygon. In this
case, the answer to Problems 1, 2 and 5 is certainly “no.” To see this, consider
a point which arrives at side a; with an angle 6, leaves at an angle of —0, and
after bouncing off side a,_, returns to side g, at an angle § 4- 2a,. This situation
is general, i.e., if we start off with an angle 6, then the only angles which we
can obtain at later or earlier times are those of the form +6 + 3, +2¢;, where
¢,;, denotes the angle the side which is met at the jth reflection makes with our
reference direction. If P is rational, the angles which are attainable form a
finite subgroup of R/2rZ translated by 6, and hence no orbit can be dense in
Q. We shall see later that the answers to Problems 2 and 4 in this case are
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“yes,” whereas the answer to Problem 6 seems to be “no” in light of [4]. In
passing we note also that if a ball is shot in the direction of a corner and does
not hit the corner, then after a finite number of bounces it will come out of
the corner.

REMARK 3. In some special cases we can arrive at our goal of describing
the orbits with a good deal of accuracy and answer the problems posed. Consider
a point which is about to bounce off a side, and its orbit. Instead of stopping
at the side and reflecting, it is the same if we continue the orbit in a straight
line and reflect the polygon P around the side. If P is a polygon whose reflec-
tions pack the plane (e.g., an equilateral triangle, or a rectangle, or a 45° right
triangle, and a few others), then the corners of the reflections of P form a
regular grid in the plane and we leave it to the reader to see that the problems
can be solved. Note that all polygons having the property described are rational.

3. A general result. In this paragraph, we describe a result valid for all poly-
gons which, although it falls short of answering our problems, seems to be of
interest.

THEOREM. Let x € P. Then for almost all 6 € R|2nZ, the set
Orb, (v)
(where o = (x, 0)), contains at least one vertex of P.

Proor. Set &7(f) = Orb, (w). It suffices to show that for any fixed § > 0,
the set
N = {0: dist (&), {4;|i=1, ---, n}) = d}
has measure zero. By a well-known theorem (see, e.g., [6]), almost all points
of N are points of density of N. That is, for almost all §,¢ N,

IN 0 160, 86 + ell _
0 c - ’

lim, _,

where |.| denotes Haar measure on R/2zrZ. Thus if N contains no points of
density, then |[N| = 0.

Suppose that ¢, belongs to N. Let ¢ > 0 be fixed. Consider the line elements
(x, 65) and (x, 6, 4+ ¢). We may assume that both line elements belong to Q.
Thus there exist two increasing sequences s, 5,, - -+ and 1, t,, - - . of positive
numbers such that the orbit of (x, §,) meets the boundary of P at the successive
times s, 5,, - - - and the orbit of (x, §, + ¢) meets 9P at the successive times
1, ty, - --. Choose n = 1 minimal such that the side which contains S, (x, 6,)
is different from the side which contains S, (x, 6, 4+ ¢). That such an n does
exist follows by using the device of Remark 3: drawing straight lines from x in
the directions 6, and 6, 4 ¢, and assuming that S, (x, 6,) and S, (x, 0, + ¢) lie
on the same side of P, we may reflect P around that side. As we continue this
process, the lines grow farther and farther apart, until the first time where a
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reflection of this type places a vertex of P in the cone created by the two lines.
The following n will then have the desired property.

Now consider the set N n [6,, 6, + ¢]. If 6, < 6 < 6, + ¢, then the forward
orbit of (x, #) under S, can be thought of as a ray of the cone described alone.
If 6 ¢ N, then this ray cannot come within a distance of § from the vertex of
P which fell in the cone at the nth reflection. On the other hand, the distance
across the whole cone at the nth reflection is at most the diameter of P. Therefore

|Nﬂ[6’0,00+e]|<1_ 0 ,
€ diam (P)

and since the right-hand side does not depend on ¢, 6, cannot be a point of den-
sity for N. []

We now describe an application of the above theorem. If w e @', let us de-
note the sequence of sides of P which are visited by S,0, f€ R, by:

o(0) = (s kop ko ky, --)e(a;]i = 1., n)Z

Now if ¢ Q, and if 0 < 7 < 7(w), then ¢(w) = ¢(S,»). Denote further by
¢, the restriction of ¢ to the set Q, and by ¢,*: @, — {a;[i =1, - .-, n}" the
mapping obtained by only retaining the sequence (k, k;, ky, - - -).

COROLLARY. ¢,* is almost surely injective, i.e., there exists a subset Q, of Q,
with my(Q,) = 1 such that w, 7€ Q, and p,*(0) = ¢,* (1) imply © = 1.

Proor. If o = (x, 6)) and 5 = (y, 6,) and 6, + 0,, the reflection argument
shows easily that ¢,"(w) # ¢,*(y). For this case we do not need the theorem.
Suppose now that @ = (x, ) and p = (y, 6). A closer inspection of the reflec-
tion argument of the theorem shows that if # € N (for x) and 6 € N (for y), then
a vertex of P must fall into the strip between the straight lines (x, 6) and (y, 0),
so that also in this case ¢,"(®) # ¢,7 (). U

CoROLLARY. The entropy of polygonal billiards is zero.

Proor. This follows from the fact that w € Q, is almost surely determined
by its forward side sequence ¢,"(w), which implies A(T) = 0, and Abramov’s
formula [1]. [

We remark that the last result implies an essential difference between billiards
with one ball (which are “deterministic”’) and billiards with two balls (which
are “random”; see, e.g., Kubo [5], Sinai [7]).

4. Rational billiards and interval exchange transformations. We shall prove
that the study of asymptotic properties of rational billiards reduces to that of
certain interval exchange transformations, which have been introduced in [3]
(see also [2] and [4]). First we recall the basic definitions.

Let Y = [0, I[ and let n be an integer greater than one. Suppose that
P = (Pus P -+ +» Pa) is a probability vector with p; > 0 for 1 <i < n, and let 7
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be a permutation of the symbols {1, 2, - .., n}. We set

Pr=(ps s Pal) = (Pemiaws <005 Pemim)
9% =0, 9= 251 p;
9, =0, 97 = 252 Pi" = D P
and
Y, = (g1 gl
Yye =1[9-» 4T
Then the map T: Y — Y defined by

Ty =y — qies + 4iy yeY,l1si<n

is an order-preserving piecewise isometry of Y (on the “pieces” Y, ..., Y,).
It is called the (p, r)-interval exchange transformation.

Obviously, any interval exchange transformation is invertible and its inverse
is an interval exchange transformation. The map T is continuous except at the
points ¢y, - - -, g,_, (called separation points) where it is continuous from the
right.

We say that the interval exchange transformation T satisfies the minimality
condition if

(M1) T is aperiodic (i.e., for each y € Y, the orbit Orb (y) = {T*y: ne Z} is
infinite), and

(M2) If F is a finite union of right open intervals with endpoints belonging
to the countable set

D, = Ui Orb (¢,) v {1},

then TF = F implies F = Y or F = (3.
The result we shall need is the following one:

THEOREM ([3]). T satisfies the minimality condition if and only if
Orb (y) isdensein Y forall yeY.

To obtain an interval exchange transformation from rational billiards, we
consider first the dynamical system (Q,, T, y,) defined in Section 1. Choose a
side @, and an initial angle ,, and restrict T to the subset Q, of Q, consisting
of all pairs of sides and angles actually visited starting from a, with direction
6,. We denote by T, the restriction of T to Q,. Now Q, consists of a certain
number of sides a, (we shall see below that all sides are represented) together
with angles 6,7, j = 1, - -, k,, belonging to the side a,. If we draw side by side
k, copies of the side a; for each i, and then contract the jth copy of g, by a
factor sin 6,7, then by elementary physics 7, becomes a piecewise isometry of
this collection of intervals, and it is not hard to see that if they are correctly
arranged, then T, is order preserving. Normalizing to unit length, we obtain
an interval exchange transformation (whose separation points g, correspond to
vertices of the original polygon) which we shall also denote by T,.
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S. The density theorem. We first show that for almost all initial directions
the interval exchange transformation generated by the billiard flow is minimal
(in the sense of Section 3) and then show that this implies density of the orbits
on the whole polygon and not merely on its sides.

LeMMA. For all but a countable number of values of 0, the interval exchange
transformation generated by the billiard flow (according to Section 4) is minimal.

Proor. We exclude all directions connecting two or more vertices in the
rectified flow (see Remark 3, Section 2, and the proof of the theorem of Section
3). There is at most a countable number of such directions. We shall call such
directions exceptional. We shall show that if 6, is not exceptional, T, is minimal.

Indeed condition (M1) is satisfied, since no vertex or separation point can be
periodic and no other point can then be, as shown in [3]. Suppose now that F
is as in condition (M2). Take x e dF and suppose that x = Tj*g, for some
k = 0 and some j (the case k < 0 is treated analogously). Then either T,'x is
a boundary point of F or it is in D = {g,, ¢,, - -, ¢,_,}. Since F has only a
finite number of boundary points, there must be a positive integer s such that
T,*x = yeD. If y = g;, this would imply a periodic orbit for g;, so that to
avoid the orbits of two vertices overlap (we have excluded such directions) y
must be a separation point, s = 1 and x must be a vertex. Thus T, would
leave invariant a subset of Q, made up of a certain number of whole sides with
corresponding angles. But then this subset necessarily coincides with the whole
of Q, because of the way we defined the set from the start. []

We remark that 6, has been chosen, by avoiding a countable number of values,
in such a manner that the infinite distinct orbit condition of [3] is satisfied.
This yields an alternative proof of the lemma.

We are now able to prove the density theorem.

THEOREM. If @ = (x, 0,) and 6, is not exceptional,

Orb; (w) = Orb; () = P.

Proof. From the preceding lemma it follows that Orbg (0) = Q,. However
one easily sees that if §, is not exceptional, no side can stay all the time “in the
shade,” i.e., all sides of the polygon are represented in ;. Indeed, suppose
that side a,, lying between vertices 4, and A4,,,, is in the shade, while some copy
of side @;_, isin Qo. Then points in a,_, in a neighbourhood of 4, are visited by
the flow coming from some other side a; with some angle §,». If all points in
a, are in the shade then ;™ is a direction connecting 4, with a vertex of a,,
i.e., 0, is an exceptional direction. So, if ¢, is not exceptional some point of g,
is visited and therefore the spatial flow is dense on a;,. In a similar way one
can see that no internal region of the polygon can stay in the shade. Indeed
such a region would be, by definition, an open set of polygonal shape, whose

sides would consist of segments of trajectories connecting two vertices and the
conclusion follows as above. []
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di

in

This theorem has a simple physical interpretation: in a polygonal two-
mensional room with mirror walls and rational angles, a light ray travelling
a nonexceptional direction does not leave any part of the room in the shade.
As an application of this theorem note that the configuration space of two

pointlike particles of masses m, and m, moving freely on a segment and bouncing
elastically from each other and from the endpoints, is a right triangle, the angles
of which depend on the ratio of the square root of the masses and the flow is a

bi

lliard [8]. We can thus conclude that if arc tan (m,}/m,}) is rational with =,

for almost all initial velocities, the phase flow is spatially dense.

(1
(2]

(3]
(4]

(5]

(6]
(71

(8]
(9]
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