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A LOG LOG IMPROVEMENT TO THE RIEMANN
HYPOTHESIS FOR THE HAWKINS
RANDOM SIEVE

By C. C. HEYDE
CSIRO Division of Mathematics and Statistics, Canberra

This paper is concerned with the Hawkins random sieve which is a
probabilistic analogue of the sieve of Eratosthenes. Analogues of the prime
number theorem, Mertens’ theorem and the Riemann hypothesis have
previously been established for the Hawkins sieve. In the present paper
we give a more delicate analysis using iterated logarithm results for both
martingales and tail sums of martingale differences to deduce a consider-
ably improved log log replacement for the Riemann hypothesis result.

1. Introduction. The random sieve introduced by Hawkins [2] is analogous
to the sieve of Eratosthenes and produces a random sequence with asymptotic
properties similar in many ways to the primes. It is constructed as follows:
Let 4, = {2,3,4, ...}.

STAGE 1. Put X, = min 4,. From the set 4,\{X;} each number in turn is
(independently of the others) deleted with probability X,~* or not deleted with
probability 1 — X,~*. The set of elements of A4,\{X;} which remain is denoted
by A4,.

STAGE n. Put X, = min 4,. From the set 4,\{X,} each number in turn is
(independently of the others) deleted with probability X, ~* or not deleted with
probability 1 — X,~'. The set of elements of 4,\{X,} which remain is denoted
by 4,,,.

Define

Y, = Ilisksa (1 — X79)70
Wunderlich [8], [9] has obtained the results
lim,_, (nlogn)7'X, =1 a.s. and lim,_, (logn)™'Y, =1 as.,

which are analogues of the prime number theorem and Mertens’ theorem re-
spectively, while Neudecker and Williams [6] have obtained an analogue of the
Riemann hypothesis. Write

dz X

li (x) = limuo(s})_a + STM)@ ~ log x

as x— oo,
and recall that the “real” Riemann hypothesis about the zeros of the Riemann
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zeta function is equivalent to

li(p,) = n + O(ni*)

for any ¢ > 0 where p, denotes the nth prime. Neudecker and Williams showed
that

Lli(X,L™) = n + O(nt*) a.s.,
for any ¢ > 0 where L denotes the (random) limit

L =1lim,_, X, exp(—Y,),

n-—+00

which they show to exist and be nonzero a.s.
It is our object in this paper to sharpen this result to a log log form as given
in the following theorem.

THEOREM. For the Hawkins random sieve,
limsup, .. (2nloglogn) 3 L1li(X,L™') — n| <3 a.s.

The proof of this theorem rests heavily on the use of some recent results
([4], [5]) on the law of the iterated logarithm for martingales and for tail sums
of martingale differences. The result, of course, suggests a candidate for the
bound in the “real” Riemann hypothesis. It should be remarked that a similar
type of loglog error term also emerges for a structurally simpler diffusion
analogue of the Hawkins sieve (Williams [7]).

2. Proof of the theorem. The proof requires a sharpening of the analysis of
[6] whose notation we retain. The starting point is the fact that the process
{(X,, Y,), n = 1} is Markovian with

P(X"'H - X" = Jl F") = Y'n—l(l - Yn_l)j_l ’ ] g 1 )

F, being the o-field generated by (X;, Y;), j < n.
Set
Z,=X,— 1, Uy, =(Zy,— Z)Y,™", n=1.

In [6], Proposition 2, it is shown that if H, = log Z, — Y,, n = 1, then

H, =log L 4+ O(n~t**) a.s.
for any ¢ > 0, and we shall strengthen this to show that
(N H, = log L + é(n)(2n*log log n)t a.s.,
where limsup, ., d(n) = +1 a.s., liminf, _d(n) = —1a.s.

Writing «, = Y,Z,%, 8, = Y,Z;},, we have from [6] that a, = O(n") a.s.,
B, = O(n~') a.s. as n — oo and then
Hn+1 - H," = IOg(l + a'nUn+1) - ABn
= anU'n+1 - ABn + Rn

where
[Ru| £ a,’U;

2. a.s.
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Further,
|an - ABnI = |an18'n Un+ll § anlen+1|
so that
Hn+l - Hn = a’n(Un+l - 1) + Sn ’
where
(2) 1S, < a,(|Upsil + Ugy) = O(n~?logn)  as.,

since, from [6], |U,,,| = O(log n) a.s. Then
H, ., =2 (Hk+1 - k) -2
= Zﬁzl ak(UkH - 1) + ZZ=1 S, —2

and, since H, —, , log L (finite a.s.) as n — o0 and 7 |S,| < oo a.s. in view of

(2),

(3) H, —logL =3¢, Uy — 1) + 25, Sk
Now, from (2),
(4) [(2n~*log log n)~% 7., S,| = O(ni(loglogn)~t 3 7., k=% log k)
=o(1l) a.s.
Furthermore,

(5) Zien (Ui — 1) = D k7 (Upsy — 1) + Zia (e — k7Y ( Uiy — 1)
and it is easily seen that
EU,,,—1|F)=0 as.,
so that the {U,,, — 1, n = 1} are martingale differences. To prove that
(6) lim,_,, n{(loglogn)=t %, (a, — k™) U, — 1) =0 ass.,

it suffices, upon noting that the a, are F,-measurable so that the
{(a), — k)U,,; — 1), k = 1} are still martingale differences, to show that (e.g.
Lemma 1 of Heyde [4])

D k¥, — k) (Upyy — 1) converges a.s.
This holds if (e.g. Doob [1], page 320)
S k(a, — KYVE[(Upy, — 1) F] < o aus.,
and hence if
7 T k(e — kY < oo as.,
since E[(U,,, — 1?|F,] =1 — Y, a.s. But,
a, — k= Z (Y, — kX, + k™) = o((log log k)(k log k)™*) a.s.,

using the theorem of Heyde [3] and hence (7) and consequently (6) holds.
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We now apply the iterated logarithm result of Theorem 1(b) of Heyde [4] to
the tail sum Y5, k"%U,,, — 1) of martingale differences. We have
50 = Dpn K EE(Uprs — 11 FJ] = T k2 E(1 — Y, ) ~ 17 s,
as n — co and
(8) T n (U, — 1) — E{(U,,, — 1)}| F,}] converges a.s.,
again using [1], page 320, since E(U,,, — 1)* < 25 foralln = 1. This last result

follows from

EUpsy — 1)t = E[E{(Upyy — 1) F}]

- {2 )]

E[Z5 (Y7 = )Y, (1 = Y,y

E[X0s Y, (1 — Y, 7Y + Ziy (Y77 (1 = Y,
L+ EY,™ X5, (1 = Y7y

1+ 24EY,[1 — (1 — Y, )]0 < 25.

IA A IIA

The conditions required for the use of Theorem 1(b), Corollary 1 and Corollary
2 of [4] are then simply verified. In particular,
sn_2 Z?:n k_zE{(UIH»l - l)lek} a.s. 1 )
E[U; — 17U, — 1] > e5,)] < 25(ejs,)"", and
EWU; — 1(jU; — 1| > es,) < 25(¢js,) "
so that
T8 TEGTNU; = WG = 1] > esj)] < o, and

S Dien EL7(U; = WIG7IU; = 1] > e5,)] = 0
as n— oo. We then obtain that the Ilimsup as n—oo of
(2n~tloglogn)~t 35, k=(Uyy, — 1) is +1 a.s. while the liminf is —1 a.s.
The result (1) then follows via (3), (4), (5) and (6).

We now exponentiate (1) and rewrite it in the form

%) Z, = Le¥»{1 + »(n)(2n~* log log n)t}
where limsup,_, »(n) = +1 a.s., liminf,__ 5(n) = —1 a.s.
Next we have
ZonYoih—24,Y, 7 ' =U,,— Y, nz1l,

so that summation gives
(10) Z,Y, ' =Dka(Ue— 1) +n— 20, Y.
The martingale law of the iterated logarithm (e.g. Heyde and Scott [5], Corollary
1) applies to ) % 5 (U, — 1) to give
limsup,_, (2nloglogn)=t 37, (U, — 1) = +1 as.,
liminf,_ (2nloglogn)~t 3%, (U, — 1) = —1 as.,
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since
DR EWU, — 1Y =32, (1 —EY, ) ~n as n— oo

and E(U, — 1)* < 25 while (8) and E[(U,,, — 1)*|F,] =1 — Y, ! a.s. ensure
that n=* 32_, (U, — 1)) >, 1 as n — co. Then, from (10),
(11) limsup, .., (2nloglogn)%Z,Y,* —n+ >, Y, )= +1 as.,
liminf,_, (2nloglogn)%Z,Y,* —n+ X7, Y, )= —1 as.,
and using (9) and (11) we obtain
limsup, ... (2n log log n)~t|Le*»Y,™* — n + > 7 Y, 7Y
< limsup,_., (2nloglogn)~#Le*»Y, ' — Z,Y,7Y
+ limsup,_., (2nloglogn)~4Z, Y, —n + Y7, Y,
<2 as.

The remainder of the proof parallels that of [6]. We extend the random func-
tion Y from {1, 2, 3, .- -} to (1, o) by linear interpolation,

Y=Y, + (@t —n(Y,.,—Y,), n<t<n+1.
Then, it is easily checked that
LY = §(1 — Y, ") ds + f(1)
where f(t) = (21 log log (¢ V 3))}a(t) with lim sup,_, |a(?)] < 2 a.s. Furthermore,
[L1i (exp V)Lt = §1(1 — Y, ) d(LY, ")
=t— 14+ ()1 — Y, ) lds

=t — L4 flo)(1 = Yo = Y= ¥y
— LYY, = 1) s,

while

fS)Y/(Y, — 1)1 = O((log log s)is~¥(log s) %) as s — oo
so that

(ttlog log 1) 4 |f(8)Y/(Y, — 1)*|ds = o(1)  as -0
and hence
(12) lim sup,_,, (2t loglog )~} Lli(e":) — ¢| = 2 a.s.

The result of the theorem then follows from (9) and (12) since (9) gives

lim sup,,_,.. (2nloglog n)=}|L1i(Z, L") — Lli(e"»)] = 1 a.s.
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