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STOCHASTIC PARTIAL ORDERING

By T. KAMAE AND U. KRENGEL

Universitdt Gottingen

A probability measure P on a partially ordered Polish space E is called
stochastically smaller than Q (notation: P < Q) if {fdP < ffdQ holds for
all bounded increasing measurable f. We investigate the question when for a
stochastically increasing family {P,, r € R} there exists an increasing process
{X,, t € R} with 1-dimensional marginal distributions P,. A sufficient condi-
tion, satisfied, e.g., for E = RV, for compact E and for spaces E of Lipschitz-
functions, is the compactness of all intervals {z € E : x <z < y}; but for
general countable E such an increasing E-valued process {X,} need not exist.

Let E be a complete, separable metric space and “< ” a closed partial order
relation on E. Such a space shall be called a p.o. Polish space. We shall use some
terminology and notation from [2]. A probability measure P on a partially ordered
Polish space E is called stochastically smaller than Q (notation:. P < Q) if
[fdP < [fdQ holds for all bounded increasing measurable f. In addition we put

B'={x€E:y

< x for somey € B}
Bl={x€E:y>xforsomey € B}.

LEMMA 1. Let @ be a tight family of probability measures on the o-algebra ¥ of
Borel sets in E. Then there exists a countable family C of increasing closed sets in E
such that, for P, Q € P, P = Q if P(C) = Q(C) for all C € C.

PrOOF. Let @ be a countable open base in E. Let K, (n=1,2,--:) be
compact sets with inf(P(K,): P € P} >1—-n"", and let D = (UNn K)': U
€QU,n=1,2,- -}, where U is the closure of U. %) consists of closed increasing
sets. Let C be the minimal family which contains ¢ and is closed under finite
unions and finite intersections. Let £, = UK, then P(Ey) =1 for all P € .
Take any two different points x,y € E,, then either x < y or y < x is false.
Assume that y < x is false. Since the partial order relation in E is closed, there
exists a neighbourhood ¥ of y such that z < x is false forany z € V. Let U € U
be such thaty € Uand U c V. If, for some n,y € K, then (U N K,)" contains y
but does not contain x. Therefore © separates points in E,. For P and Q in ¥,
P(C) = Q(C) for all C € € implies P(B) = Q(B) for all B € %, where % is the
o-algebra generated by C, since € is closed under intersections. As % has a
countable basis separating points in E, B restricted to E, coincides with the
restriction of ¥ to E,. Now P(Ey) = Q(E,) = 1 implies P = Q. []
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The next result is implicit in the standard terminology “stochastic partial
ordering,” but does not seem to appear in print anywhere:

THEOREM 2. The relation “< ” on the space of probability measures on (E, F)
with the topology of weak convergence is a closed partial order relation.

Proor. Clearly, the relation “< ” satisfies the transitivity. Assume P. < Q and
Q < P. Let C be the family of increasing closed sets constructed in the proof of
Lemma 1 for the family ® = {P, Q} which is clearly tight. Then P = Q follows
from Lemma 1. Thus “< ” is a partial order relation. It has been shown in [2] that
“< ” is a closed relation. [

LeMMA 3. If Y is a topological space with countable base and a closed partial
order and @ is an increasing function from R into Y, then @ has only countably many
discontinuity points.

ProOOF. The traces of the topology and the order of Y on @R make ¢R a totally
ordered topological space with a countable base. If y € pR is a value at a
discontinuity point of ¢, then there is an open neighbourhood U of y. in ¢R such
that U N {y}*={»} or Un {»}' = {»}. For all open U in ¢R such that
Un{y}={»} we can select a ¥, from the induced base on @R such that
V, 0 {y}* = {»} and these ¥, must be different for different y. So there are only
countably many y that have such a U. The case U N {y}' = {y} is treated
similarly. []

LemMma 4. If D C R is countable, and {P, t € D} is a stochastically increasing
Sfamily of probability measures on (E, %), then there exists an E-valued process
{X,, t € D} such that

() X, is distributed according to P, for any t € D, and
(i) for all w, X(w) is an increasing function of t.

ProOF. By a theorem of Nachbin-Strassen (Theorem 1 in [2]) there exists for
any pair s and ¢ in D with s < ¢ an “upward kernel” k, , such that P, = P%.. If
k, k" are two kernels, denote by k - k’ the kernel defined by

(k : k,)(x’ S) = fEk(x’ ajz)k’(y, S)

Let D, ¢ D, C - - - be an increasing family of finite sets such that D = U>_,D,.
For any pair s and ¢ in D withs <t and forn = 1,2, - - define a kernel k, ,(n)
by
ks, r(n) = ks, n° kr,, Lttt kt,,,_,,~r,,, ' kt,,,, t

where {t, <1, < -+ <t,} = D, N (s, ©). It is clear that P, = P ", Also, note
that if s <t <u are in D and t € D, then k, [(n) - k, (n) = k, ,(n). By the
diagonal argument we can find a sequence #, < h, < - - - of positive integers such
that

Pt. * kt,, tz(hn) * ktz, t,(hn) ¥ oo ¥ kt,,,_,, t,,,(hn)
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converges weakly as n — oo for any finite sequence #, <, < - - - <, in D. This
follows from the fact that the 1-dimensional marginal distributions of these
measures with 4, replaced by n and n large enough are independent of », so that
this family is tight. Let the above limit be O, ---, 1, it is a probability measure on
E, X E, X - XE,_,where E, = E for any ¢ € D. Since P, = P/ and k, (n)
-k, (n) = k, ,(n) for sufficiently large n, where s < ¢ < u are in D, it is easy to see
that the family of measures

{Q(r,,---,;,,,)im=1,2"';t1<t2<--- <t,areinD}

is a consistent family. Therefore there exists a probability measure p on E? =
I, pE, which is an extension of the measures in this family. For s € D, let X, be
the projection E? — E,. For any s the random variable X, on the probability space
(@ = E®, p) is distributed according to P,. Let s <t be in D. Since the joint
distribution of (X, X,) is the weak limit of P, * k, (n) and each k, (n) is an
upward kernel, X; < X, holds with probability 1. Since D is countable we can
complete the proof by eliminating a nullset. []

REMARK. Let {P, ¢t € R} be a stochastically increasing family of probability
measures on E. Using the above results it is not hard to see that there always exists
an E-valued process {X,, t € R} with 1-dimensional marginals such that for fixed
s <t, X, < X, almost surely. Later on Example B shall show that this does not
imply the existence of a process with increasing paths. Now we turn to a sufficient
condition: We say that E has compact intervals if all intervals {x}' N {y}} =
[x,y] are compact. Examples of such spaces are compact p.o. Polish spaces,
E = RN and the space of Lipschitz-functions on [a, b] with a fixed Lipschitz-con-
stant. We shall need:

LeMMA 5. If E has compact intervals, then any increasing sequence in E which is
bounded above converges.

PrROOF. Letx; < x, < - - - be asequence bounded by x. As [x,, x] is compact
a subsequence converges to some y € [x,, x]. If z is another limit point, then we
have z < y and y < z, since “< ” is a closed relation. [J

Now it shall be easy to derive our main result:

THEOREM 6. If E is a p.o. Polish space with compact intervals and {P,, t € R} a
stochastically increasing family of probability measures on (E, %), then there exists an
E-valued stochastic process {X,, t € R} on a probability space (2, jr) such that

(1) P, is the distribution of X, for any t € R, and
(1) X,(w) < X,(w) for all w € Q, and all s < 1.

PrOOF. By Theorem 2 and results in [1, Appendix III] we can apply Lemma 3
to the map ¢ : t - P,. Thus, the set D, of discontinuity points of ¢ is at most
countable. Let D be a dense countable set in R containing D,. Let {X,,t € D} be
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the process constructed in Lemma 4, and (R, p) the corresponding probability
space. For s € R\ D define X, by

Xs(w) = limt—»s; teD,t<:Xt(w)'
The limit exists by Lemma 5. It is clear that (i) holds. By the definition of X,
(s € R\ D), X, converges in law to X, as t —» s (f < s, ¢ € D). As the distribution
of X, is P, and s is a point of continuity of ¢ the distribution of X, must be P,. []
We finish by giving some examples. The first example is an application of
Theorem 6.

ExaMPLE A (Gibbsian random fields with negative pairwise potentials on Z2).
Let E = {0, 1}% with x < x" iff x(i) < x’(i) for all i € 7% Let ¢ : Z>>R be a
function such that for any i € 72

@) o@) > 0;
(i) @(i) = @(—i); and
(i) ¢ =27'3,9(i) < 0.

A probability measure P on E is called an equilibrium state at 1 € R if for any
finite set ¥ C Z* and w € {0, 1}” and o’ € {0, 1}”" the conditional probability has
the form

P(olo’) = K~ exp{27'Z, ;@i — Ne(i)o()) + 2y, jev (i = o)’ (j)
+tzi€Vw(i)}a

where K = K(') is the normalizing constant. Let §, denote the set of equilibrium
states at ¢. It is well known [3] that |§,| = 1 fort# — c. Let §, = {P,} (t # — ©)
and let P__ be any element in §__. It is known [3] that {P,, t € R} is stochasti-
cally increasing. Theorem 6 yields the existence of an increasing process with
marginals P,.

The next example shows that the compactness-condition in Theorem 6 cannot be
dropped.

ExampLE B. E = ([0, 1] X [0, 1]) \ {(x, x) : x € [0, 1]} with the induced topol-
ogy from R?, and the partial order restricted to horizontal lines: (x,, x,) < (¥}, ¥2)
iff x, =y, and x; < y,. Let P, be Lebesgue-measure on {¢} X ([0, 1]\ {¢}).
Assume there exists an E-valued increasing process {X,(w), ¢ € [0, 1], w € Q} with
marginals P, defined on a space (£, ). We may write X, () = (X"(@), X,2(w))
with X,(w) € [0, 1]. Almost surely for all 5, ¢ € [0, 1] N Q XP(w) = ¢ and XP(w)
= X®(w). Eliminate the exceptional nullset. For the remaining points & X,((w) =
t holds for all ¢ € [0, 1], since X, is increasing. Thus X, also takes values in the
diagonal {(x, x) : x € [0, 1]}, a contradiction.

A much more sophisticated example is necessary to show that the compactness
condition cannot even be eliminated if E is countable:

ExampLE C. Let a, B be distinct, E = {(a, by, - - - , h,) : b
n)} (n > 1)’ E* = {a} U U:ﬁ-lE:’ Enﬁ = {(B’ hh te ’hn) :
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n}(n>1),Ef={B}YU U ,EF, E=E* U EP. Further let E* = E U {0, 1}™.
A partial ordering is defined in E* by requiring that for all (A, hy, - - - ) € {0, 1}V
and foralln € N

a<(a,h|,"',hn)<(a,h1,'",h,,,h,,+1)<(h1,h2,"',h,,,"')

< (B’hl" v ’hmhn+l) < (B’hl" T ,h,,) < B.
All elements for which an order relation is not obtained by iterated applications of
these inequalities shall be incomparable.

We define a family of probabilities P, on E by defining a process { U,, ¢ € R} on
the probability space (2, P) where € = {0, 1}V and P = p,N with py({0}) =
po({1}) =1. The process will take values in E*, but for eacht € RP{U, € E} = 1
so that P, = P o U,~! is a family of distributions in E.

For x = (x;, X5 - - ) €EQ define ¢(x) =47'(1 + 2x,), 7,,(x) — 7,(x) =
4_(n+l)(1 + 2%,41), 'roo(x) = limn—mo'rn(x)’ Ci(x) =1-x, c(x)=(00-x,1-
Xyt o) EQ.

It follows that 7,(x) + 7,(c(x)) = ¥ > 0 is independent of x. The process is
now given by :

Ufx) = « (o0 <1 <my(x))

Uix) = (& x1,* + + 5 %) (1,(x) <1 <7 44(x))

Ufx) = x (1 = 75(x)

Ux) = (B, x1 -+, %) (¥ = Tpi(e(x)) <1 <y = 7,(c(x)))
Ulx)= B (v = mi(e(x)) <t < 0).

As 1., has a continuous distribution and U,(x) € E*\ E only for t = 7_(x) each
P, has support in E. The family {P,, ¢t € R} is increasing.

It remains to show that there cannot exist an increasing E-valued process
{X,, t € R} with distributions P,. This is done by showing that such a process must
essentially look like {U,, t € R}. For convenience we write 7,(x,, X5, * * * , X,) for
7,(x) when x = (x;, x,, - - - ). Let {X,, ¢t € R} be defined on a probability space
(2, 8, Q). Eliminating a nullset we may assume X, = a and X, = B. P, ) has mass
3 in (a, 0). P, (1) has mass 3 in (a, 1) and the rest of the mass somewhere above
(a, 0). As no path can go from (a, 0) to (a, 1) there must be a set A, € § with
0(A,) =3 such that—except for a nullset—the paths X,(0), ¢ > 0 for 6 € A, start
in « and after time 7,(0) go to (a, 0), and the remaining ones go to (a, 1), remain in
a for t < 7/(1) and go to (a, 1) at time 7,(1). The same argument can be repeated
on A, and on 4, = A§ (after eliminating the disturbing nullset) starting with time
7,(0) resp. 7,(1). The elements in A, cannot contribute for any of the mass in
(a, 0, 1) or (a, 0, 0) and higher up except later for mass in B, since the paths are
increasing. Thus A, splits into two sets Ay, 4o, €ach of probability § so that the
paths for 0 € Ay, go to (a, 0, 0) and those of 4, go to (a, 0, 1) at just the same
time when the U,-process makes the jumps. Similarly 4, splits into 4,, and A4,
both of measure ;.

This way we can work our way up as long as the process stays in E®. Similarly,
using the marginals P, with 7 close to y and ¢ < y we can work backwards and find
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that there exist sets By, B, of probability 3, By, By, By By, of probability 3, ete.
For ¢ € B,,,

X(o)=8 (00 >t >y~ 7(0)
=B, (r—-7m0@>t>y-701)
=(B’ 1, O) (t=v- 72(0’ 1))'

(Note that here the zeros and ones have to be interchanged in the jump-times
Y = Tw)

Since X, is increasing with probability 1, both 4, N B, and A, N B, have
measure 0. Thus we have 4, = By, A, = B, modulo nullsets. Argue similarly with
Agys By and with A, By to get Ay = By, Ag; = By, etc. modulo nullsets. Then
show Ay = By etc. Eliminate the at most countably many nullsets.

Since there remains at least one point ¢ € = not eliminated, there exists a
sequence (i}, iy i3, -+ ) € {0, 1} for which 6 € Ny 14, ..., = Na=i
B; i, ..., Look at the path X,(o). The interval {1 :0<t<y:X/(0) E E*} is
open on the right side and contains O as a left endpoint, the interval {7 :0 <7 <
y : X(a) € EP} is open on the left side and contains y as a right endpoint.
Therefore there exists some ¢ € [0, y] for which X,(o) is not in E = E* U E B a
contradiction to the assumption that the process is E-valued.
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