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ON SEMI-MARKOV AND SEMIREGENERATIVE PROCESSES II'

By DaviD McDONALD
University of Ottawa

An ergodic theorem is given for the age process (I(f), Z(?)) associated with
a (possibly transient) semi-Markov chain (Z,, X,)2.o whose sojourn times are
not exclusively integer valued. Asymptotically the Markov part (I(¢): the state
occupied at time f) and the renewal part (Z(¢): the age in I(¢) at time f) split
into independent parts. This yields the following ergodic result for a semiregen-
erative process ¥, with embedded semi-Markov chain (Z,, X,)3.¢:

4
lim,_,oo[Prob( ¥V, € 4) = § , 2% Prob{I(1) = dr}| = 0

where 7 is in the state space of I,,, p, is the mean sojourn time in # and 4, is the
mean time V; is in a set 4 during a sojourn in .

0. Introduction. This paper is a continuation of [6] dealing with semi-Markov
processes whose sojourn times are not exclusively integer valued, the so-called
continuous case. Most results in this paper have an analogue in [6]. Certain
measurability difficulties crop up, however, in the continuous case. Specifically,
strong mixing implies only almost sure (not everywhere) results on the space-time
harmonic functions of the age process (compare Lemma 1 here and Lemma 1 in
[6]). The same difficulty is manifest in [5]. ([5] would serve as an easy introduction
to this paper.) It is consequently impossible to apply Theorems 1 and 2 in [6]
directly and this leads to weak convergence analogues of the results in [6] (compare
Theorems 3 and 4 here with those in [6]). Proofs follow in Section 2.

Unless otherwise specified notation and definitions are carried over unchanged
from [6]; however, since we deal only with the continuous case henceforth R, (R.)
represents (— o0, 00), ([0, )). B, (B.) represents the Borel sets on R, (R,) and m
is Lebesgue measure.

As in Section 2 in [6], we consider a semi-Markov kernel II defined on
(E, &) = (I X R, § ® B) where (II, §) is a measurable space. That is,

(7, x; dn’, dx’) = I(w, 0, dn’, dx’) forall (m, x) € E;
that is, the transition is independent of x.

Given an initial probability measure 8, ,, on (E, &) we may construct a
probability space {A, &, II™*} on which a Markov chain (I,, X,)2-, (called a
semi-Markov chain) is defined having initial distribution §,, ,, and transition
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probability kernel IL If, moreover, S, = 2} _oX, then (1,)2., and (I,, S,)%, are
both Markov chains defined on {A, @, II»}. Let ® be the transition kernel of
(1) o Therefore
R(7; dn') = II(m, 0; dn’ X R).
Let
R{I, = dn’} = I~O{(I,, X,) € dn’ X R}

= 0™ {(1,, X,) € dn’ X R)}.

Hence we may consider (1,)52, to be defined on {A, @, R"}. Let Q be the
transition kernel of (Z,, S,).,. Hence

O(m, s; da’y s + dx') = I(m, s; dn’, dx').
Let F"(x) = I™9{X, < x}. .

It is useful to recall the strong mixing condition imposed in [6]. Let {T},}-, be
the coordinate functions defined on the probability space {R®, B®,T} (R® = R
XRX:++,B®=BXBX---)and suppose the {T,}7., are independent.
Below we define when this product probability measure I is strongly d-mixing
(strongly mixing). Following [6] let K,, be a partition of {0, 1, 2, - - - } of the form
K, = {ili, <i <i,, ). Given K, define Y, = 2, T;. Ford >0and e = 1/2r, r
an integer, set

Bi(e) = {x| — e <x — 2ke <&}
(e, d) = min[Prob{ Y, € B,(¢)}, Prob{Y, — d € By()}]
qn(e’ d) = Eﬁs-ooan(ea d)

DerINITION O.a. The sequence {7, }., is called strongly d-mixing if Ve there
exists a sequence K, such that

2 -odn(e, d) = 0.
Furthermore the sequence {7, }2_, is called strongly mixing if the closure of the
smallest subgroup containing
{dl{T,}r-, is strongly d-mixing}
is R. The measure I on {R*®, B>} is called strongly d-mixing (strongly mixing) if
the coordinate functions {7,}%., are strongly d-mixing (strongly mixing).
A sufficient condition for the sequence {7,}., to be strongly d-mixing is the

following: there exists a sequence of real numbers #, and for alle > 0a &§ = 8(¢e) >
0 such that

min (Prob{ 7, €[¢,, ¢, + €)}, Prob{T, €[t, + d, 1, + d +¢&)})> 8(e)
DEerINITION 0.b.  The semi-Markov kernel II is called strongly d-mixing (respec-
tively strongly mixing) if V(7, s) € E the probability I‘(’,,, 5 defined on cylinder sets
of {R®, B®} by
Tin{BoX By X -+« XB,XRXRX---}
= H("’s){Xo E Bo, Xl E Bl’ Tty Xn E Bnllo, Il’ e }
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for each trajectory (I, I, - + - ) is strongly d-mixing (respectively strongly mixing)
a.s.-R". This means the sojourn times (X,)>>., conditioned on knowing the trajec-
tory of the semi-Markov process (i.e., (I,);-,) are strongly d-mixing (respectively
strongly mixing). This is meaningful since (X,);>, are independent under the
measure I, ..

We remark that a semi-Markov kernel II is strongly mixing if, for instance, for
each 7 € II,

™ O(X, = dx, I, = dp) = f™ P (x)m(dx)II™ (1, = dp)

where f™ ) is a density bounded below on some fixed interval, uniformly in (7, p).

ASSUMPTION.  Positivity and no explosions. With initial measure &, o, construct
™o (A, @}, (1, X,)= and (I,, S,)=.o. We suppose henceforth that the chain is
positive, that is, X, > 0 Vn. We may therefore consider II to be.defined on
(E,,6,)=(IL X R,,8 ® B,). Moreover we demand that II-%{lim,_, S, =
oo} = 1. It is clear that this condition is automatically fulfilled if (Z,, X))o iS
strongly mixing.

As in [6] we may now construct the age process starting at (7, 0) by defining
(I(t)’ Z(t)) = (In—l’ r - Sn-l) Sn—l <t< Sn

where 1, and S, are defined on {A, @, II™ ®}. This is just the last state entered
before time ¢ coupled with the time elapsed while in this state up to time ¢. The age
process starting at (7, x) may be viewed as already being in progress for a time x so
in general we define the transition kernel H, of the age process by

H(m, x; dn’, dx’) = I O{(I(¢ + x), Z(¢t + x)) = (dn’, dx')| X, > x}.

As in [6] we may also define H,(w, x; dn’, dx’) when 1 — F7(x) = 0. Starting
from (m, x) at t =0, (I(¢), Z()) = (m, x + ) for 0 <t <[x]+ 1 — x. When ¢ =
[x]+ 1 = x, (I(¥), Z(¥)) = (m, 0) and the process can now be defined as usual. In
effect we have let the age process Z(¢) increase from x to the next highest integer.
It is clear that for ¢ > 1 the support of H,(w, x; dn’, dx’) is contained in {(7’, x’);
1 — F™(x") > 0} for all (7, x). From H, and any initial measure a on (E,, &,) we
may finally construct (see [6]) the Markov process

{Q, @', Ha’ (I'VI)IER,_’ (g—t)teRp (01)IER+}

where W, has right continuous paths a.s.-H* and W, defined on {2, ¥, H™?} has
the same distribution as ((f), Z(¢)) defined on {A, @, II™ 9},
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The logical plan of the paper is as follows:

Thm. 1 A Prop. 2
Def.2———Propl.(I) —» Thm.2 — Thm. 3
( strong mixing

Lemma 1
condition ) -

Thm. 1 in [6] —_Prop 1. (II)
Condition C

For a first reading of this paper, the following special case might be kept in
mind. Consider a semi-Markov chain (n + 1, X,);>., with state space II =
{1,2,3,- - -} which starts out in state 1 (J, = 1, X, = 0) and jumps successively
to state 2 (I, = 2), to state 3 (I, = 3), and so on with sojourn times X, X,, - - -,
having distributions F!, F2, - - - . A bounded function % defined on II X R,
which is harmonic for the Markov chain (n + 1, S,);%, satisfies:

(H) h(n, x) = [Fh(n + 1, x + y)F'(dy) x€R,, neIL

A bounded function 4 satisfying (H) may be viewed as a space-time harmonic
function for the Markov chain S,. If |X,| < L, Orey [9] has given necessary and
sufficient conditions ensuring that solutions of (H) which are continuous in x are
constant. Mineka [8] has given conditions on {F"}2_, sufficient for ensuring that
all bounded, continuous (in x) solutions of (H) are constant (|X,| < L is not
required). The general strong mixing condition for semi-Markov chains given in
Definition 0 becomes Mineka’s condition in our special case. That is, (n + 1,
X))o is strongly mixing if the sequence { X} is.

A regularization argument shows that if all bounded continuous solutions of (H)
are constant then all bounded solutions of (H) are constant a.s.-m. Hence the
strong mixing condition implies that if 4 is a bounded, harmonic function for the
chain (n + 1, S,)2°, then A(n, x) = ¢ (c a constant) for all n a.s.-m in x.

The age process associated with (n + 1, X,);>, becomes:

@), z(t) =(n,t = S,_;) if S,_,<t<S,

By the technique used in Lemma 1 in [6] the study of the space-time harmonic
functions for (I(¢), Z()) may be reduced to studying (H). This is the content of
Lemma 1 which proves that the strong mixing condition implies the bounded
space-time harmonic functions of (I(f), Z(¢)) are almost surely constant.

Some of the general results may be reinterpreted for our special case. Proposition
2 becomes: Let {X,}7_, be a strongly mixing sequence of independent random
variables having distributions { F”}%_,. Suppose that for all n, F"(0) = 0, and that
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there exists a distribution G with finite mean such that F*(x) > G(x) for x > 0 and
for all n. If, moreover, inf y, > 0 where p, is the mean of F”, then

lim, , 25 [Prob{s, €[t — b, t]} _Mi Prob{S,_, <t <S,}|=0.

This gives Blackwell’s renewal theorem for nonidentical random variables.
Theorem 4 applied to our special case enables us to do the following example:

EXAMPLE. The two-stage renewal process. Following the example in [2], page
380, we consider alternate sojourns in two states E, and E,. Denote the length of
the nth sojourn in E, (E, respectively) by U, (D,). Suppose U, (D,) has mean 'y,
(°w,)- Further suppose (U,, D,)>,, forms an independent sequence (U, and D, are
not necessarily independent). Next suppose (U, + D,)., is a strongly mixing
sequence whose distributions (F,);>, are bounded by a distribution G having finite
mean as follows: F"(x) > G(x) Vx € R,. If finally inf,('u, + %u,) > 0, then

"y

lim,_, |Prob{in state E, at time ¢} — ;,‘°=11——+—2——~ Prob{s,_, <t <S,}|=0
[ Bn

1—>00
n

where S, = 37_(U; + D).
Note that if ', ='y and %y, =% for all » then
1“ .
o+ 2
This is an example of a regenerative process whose stochastic mechanism changes

with time. The proof is at the end of Section 2. General conditions for the existence
of the limit

lim,_, , Prob{in state E, at time ¢} =

lim, _,, ;,‘°=,% Prob{S,_, <t <S,}

are given in [7].

1. Statement of results. We keep the definitions of Section 1 of [6]. The
following paragraph gives the general construction of the space-time process
associated with an arbitrary transition kernel P.

Let (P, ,+,), ser, be a probability transition semigroup defined on a measure
space (S, @) admitting for any initial probability a on (S, @) the construction of a
Markov process on S:

{9’ G‘f’ (Pa)’ (Xt)IER+a (G‘E)IERU (01)IER+}-

(X));er, is defined on {2, ¥, P*}. (6)),cr, is the shift operator. &, = o(X)),, (the
o-field generated by X,, s <1), ' = o(X));5,, F° = N2,F'. § is the (shift)
invariant o-field.
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Throughout we will denote by the same symbol both the probability measure
and the expectation operator derived from a probability transition kernel. Hence-
forth denote P% by P*. ,

Defining § = S X R,, B(S) = B(S) X B(R,) and

ﬁt(('x’ s)’ (B X {t + s})) = Pt,t+s(x’ B)

where x € S, 1, s € R, and B € @ gives the space-time transition semigroup,
which admits the construction of a Markov process

{Q, gf, (ﬁ(x’ '))(x, nes, (X;t)tek*’ (?—};)teRp (é):ek,,}-

A function A defined on (S, B(S~)2 is called space-time harmonic for P, if £ is
jointly measurable on § X R, and h = P,h.
Let a and B be two probability measures on (S, @). We have

THEOREM 1. If for any bounded, space-time harmonic function k (harmonic for ﬁ,)
there is a constant C;; such that

tim, o 252 ) o (¥l 1) % G} =0,

then
lim,, |laPq , — BPy || = O.

Henceforth we specialize to the stationary kernel H, defined on (E, &.). The
construction of ﬁ,, H*and E + 1s like that for the general space-time process (see
[6] for details).

In analogy with the condition imposed in Theorem 1(b) in [5] we define:

DEerFINITION 1. The semi-Markov chain (I, X,)>°, satisfies condition C if
V(m, s) € E the singular part w.r.t. m of the measure

™9(S, € dxllo, I,,- - -} on (R, B)

tends to 0 as n tends to oo a.s.-R”.

In practice condition C would hold if all the sojourn times had distributions
which were absolutely continuous w.r.t. Lebesgue measure or at least which
uniformly had an absolutely continuous part.

In analogy with Lemma 1 in [6]:

LEMMA 1.

() If the semi-Markov kernel T is strongly mixing and if k is a bounded,
space-time harmonic function on E + then there exists a measurable, bounded function
hon (E,, &) such that for w € Il and t € R, h(m, x, t) = h(m, x) a.s.-m (in x).
If, moreover, the only bounded, measurable solutions to k = Rk are constants, then
for all (m, 1), h(w, x, ) = C; a.s.-m (in x) for some constant C;.
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®) If ,, X,)=.0 also satisfies condition C then h(w, x, t) = h(=, x) for all r. If,
moreover, the only bounded, measurable solutions to k = Rk are constants then h is
constant.

In order to apply Theorem 1 or Theorem 1 in [6] we must show that the H,
measure of points where 4 is not well behaved tends to 0 as ¢ tends to oo. Imposing
condition C eliminates the problem. However, without this assumption we need:

DEFINITION 2. A measure a on (E ., &) is called absolutely continuous w.r.t.
m (a.c.-m) if for all 4 € &, such that m{x|(w, x) € A} = 0 V& we have a(4) = 0.

LEMMA 2. If a probability measure o on (E ., &) is a.c.<m then aH, is a.c.-m for
all t > 1.

The continuous analogue of Proposition 4 in [6] now follows easily:
PROPOSITION 1.
I(a). If the semi- Markov kernel 11 is strongly mixing then ¥s € R and for any
a.c.-m initial distribution «
lim, ,|laH, — aH,, | = 0.

I(b). If, moreover, the only bounded measurable solutions to k = Rk are con-
stants, then for any a.c.-m initial distributions a and B
limt—mo“aHt — BH,|| =0.
II(a). If the semi-Markov kernel I is strongly mixing and satisfies condition C
then ¥s € R, and for any initial distribution a on E ,
limt—»oo“aHt —aH, | = 0.

II(b). If, moreover, the only bounded measurable solutions to k = Rk are con-
stants, then for any initial distributions a and B

im, . |laH, — BH,|| = 0.

The proof of Theorem 3 in [6] does not work since aH,_ (dw, 0)m(dx) = 0; that
is, the measure aH, is diffuse. This may be remedied by defining the potential U of
(1> S,):

DEFINITION 3. For 4 € &, let A + sy = {(m, s + so)|(, s) € A}. Define
U(7g, 50 A) = e 0){2;?=0XA +so(1n’ SHIX, > SO}’

and in general for any probability distribution a on (E,, &,) define alU(4) =
JU(m, s; A)a(dn, ds). aU induces the measure aU(dn, ds) on (E,, &.). By con-
struction it is clear that aH,(dm, ds) = aU(dm, t — ds) - (1 — F7(s)).

Another difficulty arises from the fact that inf, p, may be O (in the lattice case
#, > 1 for all #). This results in the following weakened analogue of Theorem 3
in [6].
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THEOREM 2. If a satisfies lim,_, ||aH, — aH, || = 0 Vs and if Vr F7(s) > G(s)
and [sG(ds) < oo then

lim, || p, - aH,(dm, dx) — (1 — F"(x)) - m(dx) - aH,(dw)|| = 0.
CoRrOLLARY 1. Ifinf, p, > O and the hypotheses of Theorem 2 hold then
(1) hm, o er,llaf, —a| =0

where

a,(dm, dx) = —(I_TF(XD m(dx) - aH (dr).

Corollary 1 may be rephrased by saying that asymptotically the measure IT*{I(¢)
€ dn, Z(t) € dx) splits into a Markov part II*{I(¢) € dr} and the renewal part
(A = F7(x))/ p,ym(dx).

It seems unlikely that one may suppress the condition inf,y, > 0 in Corollary 1
but it would be more natural. If lim,_, ||aH, — BH,|| = 0 and if (1) holds then
clearly lim, || BH, — o, = 0. Hence Propositions 1.I(b) and LII(b) give
sufficient conditions for ignoring the initial distribution. We will not bother to
formulate theorems for different starting distributions. If the hypotheses of Pro-
position 1.II(a) are satisfied then Theorem 2 and Corollary 1 work for all starting
distributions . We may then proceed as in [6] to establish results analogous to
Theorem 4 in [6]. On the other hand if condition C does not hold we obtain weaker
results. Henceforth we consider only this latter situation.

If « is a probability measure on (E,, &,) a.c.-m, then if (I,, X, )y, is regular
(that is, IT is strongly mixing and for all # € II, F"(s) > G(s) where [sG(ds) < ),
and if inf_p_ > 0, then by Proposition 1.I(a) and Corollary 1, (1) holds. By using
the technique of starting with a smooth initial measure, such that (1) holds, and
shrinking it to a point (as in Corollary 2 in [5]) we have:

PRrROPOSITION 2 (Blackwell’s theorem). If the semi-Markov chain (I,, X)) is
regular, if inf_p, > 0 and if §° = 8, , then

Hm, . g, 16°U(dn, [t = b, t]) = -:—WSOH,(dvr)” = 0.

This may easily be generalized to

COROLLARY 2. Under the hypotheses of Proposition 2

lim,_m;,e&HaU(dvr, [t—h, t]) - —:—w aH/(dm)|| =0

for all starting measures «a.
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DEFINITION 4. Let z(7, 5) be a bounded, positive measurable function on E ..
Let

Z7 =SUP [k —1)h kn) 2(T, 5)

Z¢ = infselt—1)h, kn) 2(7, 5)

z(ms) =Z¢. x{[(k—l)h»kh)}(s) and

Z(m 8) = ZE-1 X {1k-1) hikm)}(S) -

We say z(7, s) is uniformly directly Riemann integrable (u.d.r.) if there exists an A
such that for 0 < h < h hZ_ sup,z < oo and

limy,_ohS ¢ Z7 = lim, ohZF-12{ = focs<wZ(m 5) - m(ds)
uniformly in 7.

THEOREM 3 (key renewal theorem). If the semi-Markov chain (I,, X,);-o is
regular, if inf,p, > 0 and if z is u.d.r. then

. 1
hmt—»oo”f0<s<ooz(w’ = S) : ClU(dW’, ds) - ;—f0<s<ooz(7r’ s)m(ds) . aHt(d'”)” =0

for all initial probability measures a. (Here || || is the total variation on {II, §}.)
Hence uniformly for G €

. 1
llmt—mo fGX[O, oo]z(w’ t— S) : aU(d'”’ dS) - fGaHt(dﬂ)_u—f0<s<ooz(7T’ S)"l(d?) =0.

Using the fact that aH,(dn, ds) = aU(dn, t — ds) - (1 — F"(s)) we have:

COROLLARY 3. If f(m,s) - (1 — F"(s)) is ud.r., if (I,, X,)i is regular and if

inf_p, > O then
limt—)eO”fO<s<oof(77’ S) ' aHt(dﬂ’ dy) - f0<s<oof(77" S) : at(d'”’ dy)“ = O‘

We now turn to applications to semiregenerative processes (see [1]). Let
(2, F, P, (V),er,} be a delayed, semiregenerative process with embedded semi-
Markov chain (I,, X,)°; that is, P*{I, = dn, X, = ds} = a(dn, ds). Let A be a
measurable set in the range of (V)), g, -

THEOREM 4. If (I, X)), is regular, if inf p, > 0 and if K(m, s; A) = P*™O(V,
€ 4, X, > s} is ud.r. then

lim,_ =0

A
P{V,€4,1(t) Edn} — T" aH (dn)

where A, = [o<;<oK(m, 55 A)m(ds). (Hence A, is the mean time V, is in A during a
sojourn in the state 7.)
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We include the following special result for future reference:

REMARK 1. If the semi-Markov chain (I, X,), is regular, if inf, g, > 0 and if
the only bounded measurable solutions k of k = Rk are constants then

im,,|laH,(dr) — BH,(dm)|| = 0

for all probability measures « and 8 on (E,, &,).

2. Proofs.

Theorem 1. [4] and [5] provide proofs; however, for completeness, a quick proof
is given.

By the technique used in Proposition 2 in [5] it is clear that the tail field of

(X)ier, is trivial w.r.t. PY where y = (a + B)/2. Now a < vy so set f = da/dy.
Thus

limt-—-»oo;tGR., SupFe@‘IPY{f(Xo)’ XF} — Pf(X,)- P'F| =0

that is,
lim, ., supg cglaPy (G) — yP, (G)| = 0.
Hence
lim,_, |laPy , — BP, || = O. 1]
Lemma 1.

(a) Following the proof of Lemma 1 in [5], {h(W), G +} is a bounded martingale.
Moreover, due to the path structure of (W), g, (from a point (7, x, f) W
advances linearly to (7, x + s, # + s) before jumping out of state =) it is clear that

lims_,OJ;(vr, x+s,t+s)= l;(rr, x, 1).
This follows since
h(m, x, t) = H™*Dh(W,)
= h(m x + 5, ¢ + AT O{X, > x + 5]X, > x}
+I™O{A(W,) - {X, < x + s}|X; > x).

Hence
— F(x +
|h('n-,x,t)—h(7r,x+s t + )] <h('n‘,x+s,t+s) }———-(f—l)- 1
F(x)
F"(x + 5) — F"(x)
+sup k- 1= F (%) .

That is, lim,_,o+h(m, x + s, ¢ + 5) = h(m, x, 1). T 1™ O X, > x} = 0, by definition
=(m x+s,t+s)as-II™=for 0 <s < [x + 1] — x. It again follows easily
that
lim_oh(m, x + s, t + 5) = h(m, x, 1).
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The above continuity and the path structure of (I;'Vs)sE R, also imply that h~()fs) has,
almost surely, right continuous trajectories. Thus, with  as defined in Lemma 1 in

[6], i B o
h(m, 0,t) = H™%Yh(W,)
= [h(’, 0, s)Q(m, t; dn’, ds’).

Again letting h*(m, s) = h(m, 0, s) we have h* = Qh*. By regularization there are
equi-uniformly (in ) continuous (in s) functions h°(w, s) such that A* = Qh*® and
lim,_, h®(7, s) = h*(m, s) a.s.-m for each w. By Proposition 3 in [6] A%(7,s) is
constant in s; hence letting € tend to 0, we see that A*(a, ) is constant in s a.s.-m,
equal to some k(7), a measurable function on {II, § }. Moreover,

h(m, %, 1) = [nfocs<oh(m, 0, t + I D{I(W,) € dn', 1 € ds}.
Let
h(m, x) = [pk(= )X I(W,) € dn'}.

We note that by construction lim,_+h(m, x + s) = h(w, x). This follows from the
path structure of W,. Let

A, = {tlh(m, x) > h(m, x, 1) }.
If mA, ., > 0 we have

S m (T, x)m(dt) > fA(“ﬁ(Tr, x, tym(dr).
However,

S ‘)};('n, x, )ym(dt)

= fA(".x)m(dt)fnfo<s<oo};(7r', 0, ¢ + s)II™ "){I(W,) € dn', 1 € ds}
= Irtfocscof anym(dR(r', 0, 1 + U™ I(W,) = dn’, 7 € ds)
= fnfo<s<°°f,4(,,,x)m(dt)k('n")l'[(”’ »{I( W,)=dr, r€ ds})

= [ gn o, P(7, x)m(dlt).

Thus mA, ,, = 0. By symmetry then m{tlhgvr, x) # h(m, x, £)} = 0. By Fubini’s
theorem for 7 fixed, m ® m{(x, 0)|h(w, x) # h(m, x, )} = 0. Now for = and ¢ fixed
let B, , = {x|A(m, x, t) # h(m, x)}. I m(B, ,) > 0 then by the fact that
lim,_o+h(m, x + 5, ¢t + 5) = h(w, x, t) and limg_ g.h(m, x + 5) = h(m, x) we see
m & m{(x, t)|h(m, x) # h(, x, £)} > 0, a contradiction. Therefore for all 7,

m{xll;(vr, x, t) 5= h(m, x)} =0.

If, moreover, the only bounded, measurable solutions to k = %k are constant,
then clearly ¢ defined above is a constant, say C;. Hence h*(w, s) = Cj; a.s.-m for
each 7 fixed. By the above argument then m{tlﬁ(n, x,t) # C;} = Ofor all 7, x. As
before this gives (for 7 and ¢ fixed) m{x|A(n, x, £) # C;} = 0.
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(b) Proceeding as in (a) we have for « fixed A*(w, s) = k(7) a.s.-m (in 5s). Now
h*(m, s) = {2 {h*(L,, S) o L5 - - + 1}
However, by condition C
lim,,_, o[ TE™ O {h*(L,, S,) = k(L) o I, - - - }| =0
since for any = h*(w, s) and k(=) differ only on a null set. Hence by dominated

convergence h*(w, s) = k() for all~s. Hence A(m, x, f) = h(w, x) everywhere.
Moreover, if k is constant then so is 4. []

Lemma 2. Let A € &, be such that m{x|(m, x) € A} = 0 for all 7. Now we
wish to prove aH,(4) = 0. It suffices to consider a of the form a{my X R, } = L.
Write a of this form as a™(dx). a™ is a measure on R . It is sufficient to study two
cases:

@) a™{x|l — F™o(x) =0} = 1, (ii) a™{x|l — F™(x) = 0} = 0. We start with
case (ii).

a™H,(A) = [ocrcaa™(@x)I™ X (I(t + x), Z(t + x)) € 4|X, > x}

< fo<x<w(—l‘i"—°ﬁ,"()7)5nw°>{(z(t + x), Z(t + %)) € 4)

= H("”O){fo<x<wz%' x«{(I(t + x), Z(t + x))}}

As x increases from 0 to oo, along any trajectory of (I(t + x), Z(¢ + x)) there are a
countable number of sojourns. Consider one of these sojourns in state 7. There is a
maximal interval [z + ¢, ¢ + ¢,] such that I(¢ + x) = « for ¢, < x < ¢,. During this
sojourn Z(¢ + x) increases linearly in x from O at x = ¢, to ¢, — ¢, at x = ¢
before there is a jump to a new state. During this sojourn

xa{(I(t + x), Z(t + x))} = 1
on {x|ty <x <t,x—ty€E A"} C A" + 1, where A” = {s|(m,s) € A} and A"
+ ty = {s + ty|s € A™}. By hypothesis m(4™) = 0. Hence m(4A" + t,) =0, and
for this sojourn m{x|(I(t + x), Z(t + x)) € A} = 0. As remarked, any trajectory
is composed of a countable number of sojourns. Hence
m{x|(I(t + x), Z(t + x)) €A} =0

for all trajectories. It follows that a™H(A) = 0 since a™ is absolutely continuous
w.r.t. Lebesgue measure.

For case (i) let ™{B} = a™{U.o{k + B}} for B a Borel set in [0, 1], where
{k + B} = {x|x — k € B}. ™ is absolutely continuous w.r.t. Lebesgue measure.
By the definition of H,

0‘"°H1(A) = f(l)n(""’ 0){(I(t—l+s)5 Z(t—l+s)) € A} ,B”°(ds)

for ¢ > 1. We conclude a™H,(4) = 0 by the same technique used in case (ii).
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Proposition 1.

I(a). Proceed as in Proposition 4 in [6]. Consider (I(?), Z(?)),cr, to be the
coordinate process defined on the canonical probability space of trajectories
{9, ¥, H*}. The shift operator 6, defined on w € € is such that

(1(1), Z(1))(b,w) = (I(t + 5), Z(1 + 5))(w)-
For any tail event T of (I(2), Z(#)iZ, there is a bounded space-time harmonic
function A such that

lim,_, A(W,) = lim,_, h(I(1), Z(t),t) = T as.-H"

(Note that h~(Vf/,) is right continuous by the argument given in Lemma 1(a)). By
Lemma 1(a) there exists a measurable bounded function 4 on E . such that for all
@, t h(x, m, ) = h(m, x) a.s.-m in x. However, by Lemma 2, aH, is a.c.-m so for
fixed s, ¢

R(I(2), Z(1), t — s) = h(I(2), Z(t)) as-H®
Let {1,}%-, be an increasing sequence tending to o. Then
T = {ww € Q, h(I(t,), Z(1), t)(w) > 1} as-H®

Now

fwlw € Q, A(I(1), Z(1,), t)(w) —>1}  as.—H®

lo € Q, A(I(t — 3), Z(t, — 5), t)(w) —> 1}

lw € Q h(I(t, — 3), Z(t;, — 5))(w)—>1}  as.—H®

wlw € Q, h(I(4, — 35), Z(t, — 5), 4, — s)(w) >1}  as.—H®
=T as—H"

8,T =

w
w

{
{
{
{

T is therefore invariant. The rest of the proof is as in Proposition 4 in [6].

I(b). By Lemma 2, ((« + B)/2)H, is a.c-m. By Lemma 1(a) any space-time
harmonic function l;(vr, x, t) is constant a.s.-m in x for all «, ¢. The result follows
from Theorem 1.

II(a) follows from Lemma 1(b) and Theorem 2 in [6].
II(b) follows from Lemma 1(b) and Theorem 1 in [6]. ]

Theorem 2.
2
I fo<x<oo®H,— (dm, ds)- (1 = F"(x))m(dx) — , - aH(dm, ds)|
= |lfo<x<oo(@H,_(dm, ds) — aH/(dm, ds))- (1 = F"(x))m(dx)|.
Now let 4 be the set on which the signed measure
Jocx<w(aH,_ (dn, ds) — aH,(dm, ds))- (1 = F"(x))m(dx)
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is positive. Then
| [ o<x<oolaH,_ (dm, ds) — aH,(dn, d5)) - (1 — F(x))m(dx)||
= [l focx<wl@H,_ (dn, A™) — aH (dm, A™) - (1 = F(x))m(dx)]
= Jocx<om(@x)[ [r(aH,_(dn, A7) — aH/(dr, A7) (1 — F(x))]

Now for x fixed,
SUp4es, [ Su(aH,_(dn, A)-aH(dm, A7) (1 — F"(x))]
< ||laH,_ (dw, ds) — aH,(dm, ds)|| - (1 — G(x)).
Hence, substituting the above bound into (2) gives:
Ifo<x<oo@H;— i (dm, ds) - (1 = F"(x))m(dx) = p, - aH,(dn, ds)|
< Jocx<wllaH,_(dn, ds) — aH,(dn, ds)|| - (1 = G(x))m(dx).
Therefore (2) tends to 0 as f — oo by hypothesis, and dominated convergence. Next
aU(dm, x + ds)m(dx) = aU(dm, s + dx)m(ds).
Thus
aH,_ (dn, ds)- (1 — F"(x))m(dx)
= aU(dn, t — x — ds)- (1 — F"(s))- (1 — F"(x))m(dx)
= aU(dn, t —s — dx)- (1 — F"(s))- (1 — F"(x))m(ds)
= aH,_/(dm, dx)- (1 = F"(s)) - m(ds).
Therefore
() ogx<ooaH,—(dm, ds)- (1 — F7(x))m(dx)
= (1 = F"(s))m(ds) - aH,(dm)||
= ||[aH,_(dr) — aH/(dn)]- (1 — F(s))- m(ds)|.

Let 4 € &, be the set on which the signed measure [aH,_/(dm) — aH/(dn)] - (1 —
F7(s))m(ds) is positive. Thus

I[aH,_(dr) — aH(dm)]- (1 = F"(s)) - m(ds)]
= Jocs<a™(ds)] [ aH,_,(dr) — aH(dr)]- (1 - F"(s))
where 4° = {7|(m, s) € A}. Now for s fixed
supgesfc| aH,_,(dr) — aH/(dm)]- (1 — F7(s))
< ||laH,_ (dr) — aH/(dn)| - (1 = G(s)).
Hence
Ifo<x<oaH,—x(dm, ds) - (1 = F"(x))m(dx) = (1 = F"(s))m(ds) - aH,(dnm)|
< Jocs<wllaH,_(dr) — aH/(dr)| - (1 — G(s)m(ds).
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By hypothesis, lim,_,, ||aH,_ (dr) — aH,(dr)|| = 0 so by dominated convergence
(3) tends to 0 as ¢ tends to co. The result follows. [J

Corollary 1. Divide by y,. [J

Proposition 2. Let n° be the uniform probability measure on Mo X [0, €] for any
e > 0. Since inf,pu, > 0 and F"(x) > G(x) ¥, x there exists an / > 0 such that
1~ F"(I) > a > 0 Va. Hence by Corollary 1 for 0 </ <7

[
<<= F)

since (1/(1 — F7(s)))xq, ;) is bounded. Using

n°U(dm, t — ds)- (1 = F7(s)) = n°H,(dn, ds)

lmt—»oo

[n°H,(dm, ds) — n¥(dn, ds)]“ -

we have

(4) lim,

n°U(dm, [t = 1,t]) - -i-n‘H,(dvr) =

Now
8OU(G X[t = 1,1]) = I™O(S2_ oy ovemra(l S,)}
= I OZ2_ X xti—t, nL SIXy > 5} - PRO(X, >5)
+I (5% X wii—t, (L S| X, <5} PTO{X, <5).
Clearly,
0052 xoie—1, q(T XN X1} < 1+ 2a +3(1 — a)a
co+n(l—a)" a4 as-IImO

and hence is uniformly bounded, by M say, for all # and all 0 < / < /. Pick ¢ > 0
sufficiently small that (1 + M) - P™9{ X, < &} <, where ¢, is arbitrarily small.
Then

[8°U(G X[t — 1, ¢]) = ™S ox6upi—t, a(L SHX; > s}| < 2¢
uniformly in G € §,¢,0</<7and 0 <s < e. Since
B,y U(G X [t=1-¢ t]) = H(ﬂo'O){E;t.o=0XGx[t+s—1—e,t+s](1n’ S)IX, > s}
and
8w, U(G X[t — Lt — €]) = IO EX_ X toas—1,145-e](Zns SIX; > 5}
we have for 0 < s <e¢
8%U(G X[t = 1,1]) < 8z U(G X[t = I — &, 1]) + 2¢,
8%U(G X[t = L,1]) > 8no g U(G X[t = Lt — €]) — 2¢,
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by an analysis of trajectories. Hence
nU(G X[t~ 1t —¢]) — 2

<8%U(G X[t — 1, t]) <nU(G X[t — I = &, t]) + 2,
So

8°U(dm, [ — 1, t]) — —é—-nEH,(dw)

< {In°U(dm, [t—1—¢ t]) - -’-L{— n°H,(dn)|| + 2¢,

+|n°U(dm, [t = 1,t —€]) — ML'nEH,(dw) + 2¢,.

Thus by (4)

lim sup,_, . ||6°U(dm, [t — 1, ¢]) — _Ml_ n°H(dm)

< lim sup,_,

“i . nEH,(dw)ll + 2¢,

e 2e
-l—;-'q H,(dw)" + 2¢, < nf_p

i

+1lim sup,_, + e,

uniformly in 0 < / < [ — &. A similar analysis of §°H,(d) gives
|80H,(G X R+) - a(m,,s)Ht(G X R+)|
< 8y, oy H,(IT X [o, e]) +2¢ VGEG, 0<s<e

Hence

lim sup, _,

I, I
- H () — - 8°H ()

k.

< lim sup,_,w-i;l-f!—P;[ﬂEH:(H x[0,e])] + 2

i
< inf, p,

lim supm[fnfsﬂ—‘—“{”—(sl)— m(ds)- an,(dw)] +2¢,

(see Corollary 1)

~

< ——¢&+2¢.
(inf, )

Gathering our results we have

lim sup, _, ,|[|8°U(dm, [t — 1, 1]) — —ML—B“H,(dw)
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is arbitrarily small for 0 < / < [ — e. Thus

lim, =0,

8°U(dnm, [t — 1, 1]) - MLB"H,(dvr)

for 0 < I <[ — . The desired result now follows by linearity. []

Corollary 2. We may discount the case where the support of a is not in
{(m,5) € E|1 — F"(s) > 0} by waiting a time 8§ > 1 and redefining a as aH,.
Next by the proof of Proposition 2 the case where a = § , follows. However

(7o, s

aU(dm, [t = h,1]) - HiaH,(dvr)

h

< fa(dﬂ'o, dfo) 8(,”0, 50) U(dﬂ', [t - h, t]) - ;_8(”0» So)Ht(d‘”)

.

The result follows by dominated convergence. []

Theorem 3. Let h be as in Definition 4. For 0 <h < h

f0<s<coz(7r’ = S)aU(dW’ dg) - le0<s<ooz_('”’ S) : m(ds) : (XH,(dﬂ’)

< zf_,[z“,g. (aU(d'n, [t — kh, t — (k = 1)h)) - % oH (dn) )”l

< =P_, sup,z7 - ||aU(dn, [t — kht— (k- 1)h)) — Hi aH (dn) |-

By Corollary 2

lim, aU(dﬂ, [t— kht — (k—1)h) - -‘-Lh— aH/(dn)|| =0

for all k. Moreover, by the proof of Proposition 1 it is clear that for 0 < h < [

aU(d'n, ([t — kh, t = (k= 1)h]) - 7?— aH,(dvr))

h
inf, p,

o

< aU(II X ([t—khyt — (k- l)h])) +
is uniformly bounded for all 7. Therefore by dominated convergence

(%) lim, _,, f0<s<aoz_(77a t —s)- aU(dm, ds) — Mif0<s<ooz_(7” 5) - m(ds) - aH (dn)

=0 if h is sufficiently small.
Similarly

facocaZ(m, = S)aU(dn, ds) = -~ fuc,cuoz(m, m(ds) - H (dr)

= 0.
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Now z(m, 5) < z(m, s) < Z(m, 5) s0O

1
Jocs<wZ(m, t = 5) - aU(dm, ds) ~ Ef0<5<°°z(7r’ s) - m(ds) - aH ,(dm)

(1) < |fococa?(m £ = ) aUldn, d) = - fogucut(r, ) m(ds) - oH ()

1
(®) +|focs<ooz(m t — 5)- aU(dm, ds) _';;_f0<s<ooz(77’ 5) - m(ds) - aH,(dn)||.
Now

= 1
f0<s<ooz(7r’ - S) : aU(dW’ dS) - F[O(s(ooz('”’ S) * m(dg) * aHl(dﬂ)

< focsenz(m, t = 5)- aU(dn, ds) — Mi focscwZ(m, ) m(ds) - aH,(dn)

1 - 1
| e et ) () b () = 2 oot S)m() - ()
w n

The first quantity is (5). The second may be made arbitrarily small since
Jogs<oZ(, 5) - m(ds) tends to [o ;oo 2(, 5) - m(ds) uniformly in « as h tends to 0.
Therefore lim,_,(7) is arbitrarily small as 4 tends to 0. Similarly lim, ., (8) is
arbitrarily small as 4 tends to 0. The result follows. []

Corollary 3. Apply Theorem 3.

Theorem 4.
Pleol{V, € A|X; >s5)- (1 — F"(s)) isudr.

By Corollary 3
lim,_,w||fo<s<wP8(”’ Y, € 4|X, > s} ‘[ aH/(dm, ds) — a,(dn, ds)]|| = 0.
However
P{V, € 4,1(t) € dn} = P*{V, € A|(I(¥), Z(t)) = (=, 5)} - aH/(dm, ds)
=PV € A|X, > s} aH,(dn, ds)
and

f0<s<°°P8(m 0){ V, € A|X, > s} - a,(dn, ds)
= JocscP" " OV, € 4; X, > 5} i - aH/(dr) - m(ds)

A
= T aH (dr).
s (dm)

Gathering up these results gives the theorem. []
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REMARK 1. First consider a = §° B = n* where 6° and n° are as in the proof
of Proposition 2. From the proof of Proposition 2 we have

18°H,(dr) — n°H(dm)|| < n°H/(T1 X [0, €]) + 2,
uniformly in ¢. Hence

. 1— F™
lim Sup,.,.o||8°H, (d) — nH(dm)| < frifocscetnO) . m(ds) - neH,(dm) + 2¢,

€

<
= inf,_p,

+ 2¢,.

Now if y is a.c.-m then by Proposition 1.1(b)
lim, , |[n°H/(dm) — yH(dr)| = 0.

Hence

. €

lim sup,_m||8°H,(d77) h ‘YHt(d‘ﬂ')” < m + 281.
Therefore lim,_, || §°H,(dr) — yH(dr)| = 0. Proceeding as in Corollary 2 we have
lim,_, || aH,(dm) — yH/(dn)|| = O for any probability measure « on (E ., &.). The
result now follows easily. []

ExaMPLE. Let IT = {1,2,- -}, § be the set of subsets of II. The {U,};.,,
{D,}7., are defined on some probability space {&, %', P'}. We remark that
I, X,) = (ng + 1, (U on—1 + Dyyin—1)) (= (ng, x) for n =0) defines a semi-
Markov chain with initial distribution &, .. (I,, X,)y-, is defined on {€', ¥, P’}
but if the initial distribution is 8, ,, denote P’ by E®> . Now on {€', 5, E">}
define

V,=1 ifS,_<t<S§,_1+ U, for some n

not+n

=0 otherwise (S, =3"_.X,).

V, is a regenerative process with embedded semi-Markov chain (Z,, X,)>., defined
on (@, ', EC 9}, Also setting 4 = {1},

E(no,O){V; € A’ X] >S} = P,{U"o >S}.

By monotonicity K(n, s; A) = P’{U, > s} is u.d.r. The hypotheses of Theorem 4
are satisfied hence

1
lim, | ECO{V, € 4} - 7<°=11—m2—’P'{Sk—1 <t <8}
P +

= 0, Since ]’J‘k = f0<s<00P,{Uk > S} ds.
Finally

Prob{in state E, at time t} = E&9{V, € 4}.
This gives the result. []
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