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LOWER BOUNDS FOR NONLINEAR PREDICTION ERROR IN
MOVING AVERAGE PROCESSES!

By MAREK KANTER
Sir George Williams Campus, Concordia University, Montreal

As yet no efficiently computable algorithm for one step nonlinear predic-
tion has been proposed for any general class of stationary processes which
performs strictly better than the optimal linear predictor. In this paper it is
shown that for the class of stationary moving average processes the improve-
ment obtained by optimal nonlinear prediction versus optimal linear prediction
is bounded by a constant which depends only on the distribution of the
independent and identically distributed random variables Y; used to form the
moving average process X, = 24;Y,_;.

1. Introduction. Let (a55=0, £1, £2,- - - ) be a two-sided sequence of real
numbers with 0 < Zf;‘gaf < oo and let (Y;;j =0, £1, £2,- - - ) be a two-sided
sequence of independent identically distributed random variables. We consider in
this paper moving average processes of the form

(L1) X,=3%aY, .

Subsidiary conditions are often needed for the sum in (1.1) to converge a.s., but the
condition that ¥ jaj2 < oo is always necessary if ¥; 2 0. Processes of the form (1.1)
have been often used as stochastic models and indeed the class of such processes
seems sufficiently general to give insight into the general behavior of all ergodic
stationary processes. (Processes of the above form are easily seen to be ergodic.) In
this paper we shall see that the special linear nature of the construction of moving
average processes makes possible a fairly painless derivation of some surprising
results regarding nonlinear prediction for such processes.

To state our main result we define ®(s) = |22 ,ae?|* and we set A> =
exp(1/27)[™ log ®(s)ds). It is well known that in the case when E(Y) =0 and
Var(Y)) = o> < oo, then A%? is the mean square error of one step linear prediction,

ie.,
(1.2) A% = inf E((X,., — 2/_obX,_,;)°)

where the inf is taken over all finite sequences by, - - - , b, of real numbers. This
result is the basic ingredient in the work of Wiener and Kolmogorov on linear
prediction theory. To describe our main result we let @ equal the set of all Borel
measurable functions f from R® into R. Then, letting X" =
(X" X,_1, X,) We prove

s Amd

(1.3) inf e gE((X, £, — A(X™)?) > Q(¥,)A?
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where the constant Q(Y,) is defined to be the variance of that Gaussian random
variable whose differential entropy equals the differential entropy of Y,. The
assumption on the common distribution p of the Y} is only that we can express p as
an infinite convolution u = % °_,u, where p, is assumed to have bounded density
and finite variance while for k > 1 we only assume that y, have finite variance.
(Note that this allows for p. itself to have infinite variance.) Our result is sharp since
Q(Y,) = o if Y, are Gaussian with variance o®. For sequences Y; with Q(Y) > 0
and 02 < oo we see that nonlinear prediction can improve mean square error by at
most a factor Q(Y,)/o% In particular if perfect nonlinear prediction is possible
then perfect linear prediction is possible for moving average processes with finite
variance and Q(Y;) > 0! In this connection it is interesting to point out that there
exists an example due to Moran (see [8], page 24) of a strictly stationary process
which is perfectly predictable in a nonlinear fashion but not perfectly predictable
by linear means (so our result is special to moving average processes).

Our main result raises many further questions. For instance, we do not yet have
any example of a moving average process for which Q(Y,) < 2 and equality holds
in (1.3).

A second basic question is to produce constructively a sequence of nonlinear
functions of the past which achieve the inf on the left-hand side of (1.3), assuming
it is strictly less than 0?A? (otherwise linear functions of the past would suffice).

A third basic question is to interpret (1.3) in the case when Y, have infinite
variance. The situation is very unclear to us. For example, if A = 0 then there is not
a single moving average process X, based on a sequence Y; with infinite variance
for which we can say if the left-hand side of (1.3) is 0, positive, or + oo!

Possibly it is more natural to study mean absolute error in the case when
Var(Y;) = c0. We can prove

1
(1.4) infycoB(1X,+1 = fX")) > A((2e)"'7Q(Yy))*.
We shall also indicate how to extend (1.4) so as to provide lower bounds for
E( X, — AX™)|*) for any « > 0. We remark that if A = 0 and Var(Y)) = co then
we do not know if the left-hand side of (1.4) is 0 or nonzero. We shall also show
that (1.4) is sharp (in that it becomes an equality if X, is an autoregressive process
based on symmetric two-sided exponential random variables Y)).

2. Definitions and preliminary lemmas. In this section we present some defini-
tions, notations, and some known lemmas relating to information theory. The
reader is referred to Berger [1] and Billingsley [2] for details.

Let X = (X;;j =0, 1, - - ) stand for any stochastic process. For m <n we
let X stand for the vector (X, X,, .1, * * » X,_1» X,)- Weset X" = X" .

DEFINITION 2.1. If X! assumes only finitely many or countably many values
(which we shall label as x;) then we define the entropy of X,; (denoted by H(X,,))
by setting H(X,) =X — p;logp,, where p, = P[X, = x]. If X is also sta-
tionary then it is known that (1/(n + 1))H(X{) is decreasing. We set H(X) =
lim, ,1/(n + 1)H(X}).

n—00
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DErFINITION 2.2. If X is stationary but X" assume uncountably many values
then the definition of H(X') is more complex (it is due to Kolmogorov). For any n
. we let 7, ° X be that process X’ such that X, = X, ., a.s. We let R* stand for the
set of all two-sided sequences of real numbers and we let @ be the set of all Borel
measurable functions from R *® into R which assume only finitely many values. We

can then define
H(X) =sup H(Z)

where the sup is taken over all processes Z of the form Z, = f(r, ° X) where

fE&.

DEeriNiTION 2.3, If X has a density function p(x) we define the differential
entropy h(X,,) by setting
(2.1) h(X,) = [gn-m+1 — p(x)log p(x)dx.
There are only three things that can go wrong in this definition. The right-hand
side may be +oo0, —oo, or undefined. To simplify things we shall work with
bounded densities. This forces the right-hand side of (2.1) to be well defined,
assuming either a finite value or + co. (If the right-hand side of (2.1) is well defined
and is finite, then, of course, the function — p(x)log p(x) is integrable in the sense
that f| p(x)log p(x)|dx < o). If X is stationary we define A(X) =lim,_,(1/(n + 1))
h(Xg). (We shall see later that 1/(n + 1)h(X{) is decreasing as n increases.)

DEerINITION 2.4. Let (Y, - - -, Y,) be a multivariate Gaussian random vector

with g; = E(Y,Y)) for m <i,j < n and E(Y;) = 0. It is well known that
1
(22) n—m+1
* where Q = (g;). Furthermore it is well known that if (X, - - - , X)) is a random
vector with g; = E(X;X)) then h(X;;) < h(Y,). We shall define Q(X,;) = o? if the
random vector (Z,,, - - - , Z,) of independent Gaussian random variables Z; with
E(Z)=0and E(ij) = o2 satisfies #(Z") = h(X"). Clearly we can write
O(X") = (2me) ™' @/ (= m+ AT,
If X is stationary we define Q(X) = lim,_,  Q(X{). Clearly we have
0(X) = (2me) '™,

DEFINITION 2.5. If X" =(X,,- - -,X,) and Y} =(Y,, - -,Y,) are jointly

distributed random vectors we define I(X;", Y}) = + oo if py y is not absolutely

continuous with respect to py X p, where py y, py and p, stand for the joint
distribution and marginal distributions of (X, Y*). ‘Otherwise we set A =

(dpy, y)/(duy X dpy) and define
- (X7, ¥}) = [ log My, -

The quantity I(X”, Y¥) is > 0 and is called the mutual information between X,

and Y. The following lemma is well known.

h(Y") = Log(2me(det @)/~ D)

LEMMA 2.1. Let X" and Y} be as above.
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(1) If H(X}) < oo then
I(Xr, YF) = H(Xp) — H(X}2 YF).

(2) If X, has density p(x,, - - -, x,) with [| p(x)log p(x)|dx < o then I(X", Y)
= h(X]) — h(X]|Y}).

(3) Letting W= (X, -+ ,X,, Y, ---,Y,) then (W) = h(X2) + h(Y¥|XP).

In the above lemma H(X?|YF) is defined as the average conditional entropy of
X, given Yf, ie, if Py = P[X; = x|Yf =y,] then H(X}|YF) =
2, (=D log )P, The average conditional differential entropy is similarly de-
fined.

ReMARK. The above lemma is true (with the same proof) if k = co. It follows
that

(2.3) I(X,11, X") = (X, 41) — h(Xn+1|X").

We denote the left-hand side of (2.3) by I(X).
If X is a stationary process then we can identify A(X,,,|X") with A(X) by the
following lemma.

LEMMA 2.2. Suppose X is stationary and that X, has density p(x,) such that
—p(xp)log p(x,) is integrable. Then
h(X) = h(X, 1| X") = h(X0|X_1)-
PrOOF. We can write
h(X§) = h(Xy) + 4o h(Xi| Xy -+ + » X)), by Lemma 2.1.
“ It is proved in Pinsker [7, page 11] that lim,_,  I(X,, X -)) = I(Xy X ~") hence by

stationarity we conclude that lim,_  A(X,|Xo, -+, Xp_ 1) = A(Xo|X ~1). It follows
that A(X) = A(Xo|X Y. [

LemMMA 2.3. Let p,(x) be a sequence of probability density functions on R such
that lim,_, | p(x) — p(x)|dx = O, where p(x) is also-a probability density function.
Assume that p,(x) are uniformly bounded a.e. and that p(x)log p(x) is integrable.
Then

(24) lim infy ./ — p(x)log p(x)dx > [ — p(x)log p(x)dx.
PrOOF. Let ¢ > 1 be chosen so that p,(x) < ¢ a.e. for all k. We then see that
—pi(x)og p(x) > — c log ¢ a.e., hence by Fatou’s lemma we get that

lim inf, /%, — p(x)log pi(x)dx > [%, — p(x)log p(x)dx
for all finite b. Furthermore for all € > 0, there exists a positive b such that
Pp(x)dx > 1 — ¢
for all £, and such that
f]x]>b|P(x)108P(x)|dx <e
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We conclude that
lim inf, ./ — pi(x)log p(x)dx
> [ — p(x)log p(x)dx — e(log ¢ + 1). a0
COROLLARY 2.1. Let X, be a random variable with bounded density py(x). Let Y,
be a sequence of independent random variables such that Z ., = 232, Y; converges a.s.
and set Z; = 2f=le. Assume that X, is independent of the sequence Y, and that
Xo+ Z, has density p(x) such that p(x) log p(x) is integrable. Then lim,_, .h(X,+Z,)
= h(X, + Z).
Proor. Let p, be the density of X, + Z,. By Lemma 4.1 we know that p, tends

to p in L' norm. Furthermore p, is uniformly bounded by a simple application of
Fubini’s theorem. We conclude from Lemma 2.3 that

(2.5) lim inf, _, A(X, + Z) > h(X, + Z,).
The opposite inequality
X, + Z,) > h(Xy + Z,).
(which is valid for all k), is well known and follows from Lemma 2.1. []

We now present some background material on the subject of “rate distortion,”
which turned out to play an essential role in our work. In fact, it is surprising that
the connection between rate distortion and nonlinear prediction has not been
brought out before. We shall need only the one-dimensional version of this theory.

DerFINITION 2.6. Let p(s) be any strictly increasing continuous mapping of
[0, ) onto itself. If X is a real valued random variable we define the rate
distortion function Ry(d) by setting

Ry(d) = i-n-f(X, Y)I(Xa Y)
where the inf is taken over all bivariate distributions (X, Y) with E(o(|X — Y|) <d

andd > 0.
We define the distortion rate function D, (r) by setting
Dy(r) = infx, Y)E(P(IX - Y|)
where the inf is taken over all bivariate distributions (X, Y) with I(X, Y) < r and
r>0.

The functions R, and Dy are decreasing wherever they are not zero and in fact
they are inverse functions, i.e., Ry(Dy(r)) = r and Dy(Ry(d)) = d. (The reader is
referred to Berger [1] as a general reference on this area.)’

If p(s) = s* we shall write Dy(r) = D{(r) and Ry(d) = R{(d). Shannon has
derived an interesting lower bound for R,(d) which specializes as follows:

(2.6) RP(d) > h(X) — 3log(2med)
2.7) RP(d) > h(X) — log(2ed).

(see Berger [1] for a derivation of these inequalities).
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We can rewrite (2.6) as

2RP@ 5 L oo
Qred) ¢

whence we conclude that
(2.8) DP(r) > Q(X)e™ 7.
Similarly we get from (2.7) that

(2.9) DP(r) > (7Q(X)/2e)?e".

The use of these lower bounds in nonlinear prediction theory follows from the
following simple lemma which is basic in our work.

LemMMmA 24. Let X =(X; k=0, x1,- ) be a stationary real valued
stochastic process. Let f be a Borel measurable function from R to R. We then have

E(p(|X,+1 — A(X™))) > Dy, (1(X))
where I(X) = I(Xo, X ™" = I(X,,,, X").

ProOOF. Note that I(X,,,, AX") < I(X,.,, X") by Pinsker [7, page 11] and
also that E(p(|X, ., — Z|)) > Dy (r) for any (X, ,, Z) with I(X, ., Z) <r

3. Main results.

LEMMA 3.1. Let (a;j =0, £1,- - - ) be a sequence of constants with a, = 0 for
. |71 > k, where k is a fixed positive integer. (Assume that not all the a; are 0). Let Y,
be a sequence of independent identically distributed random variables with — oo <
W(Y)) < oo. Let X, = 3a,_;Y; and let A? be defined as in the introduction. Assume
also that — oo < h(X]") < 0 for all n.

We then have Q(X) > A’Q(Y,).

Proor. For any m > 2k let G, stand for the group of integers with addition
mod 2m and let {—m + 1,- - -, —1,0,1,2,- - -, m} be a list of the elements of
G,.
Let X, =3 j€G, 00, Y; where n € G,,, n © j stands for subtraction mod 2m, and
Y, are as before. (X is a “circulant” process, i.e., X is a stationary process on the
group G,.) We let Y be a sequence of mdependent mean zero Gaussian random
variables with h(Y) = h(Y;) and we define X 2ieqG, er forn € G,.

It is clear that
(3.0 WX, 1) = h(X™,.0)

because both sides of (3.1) are equal to 2mh(Y,) + log (det(/fm)) where ffm is the
matrix whose (i, j)th entry is a,5;. We now note that

h(¥7) = h(X}r)
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for m > 2k, and that
I()?lm> f2m+l) = h()?lm) + h(X~gm+1) - h(/\’;'—nm+l)
I()?lm> X}o—m+l) = h()?lm) + h()?gm+l) - h()?’:‘m+l)

by Lemma 2.1.
We now write

WX = h(X7) + h(X) = h(XT)
= W(XP) + 2R, X ) = L(XT, X2 ,001))
> h(X7) = $1(Xp, X2 0i1)
= %h(fz’m+ V-
We conclude that
(32) W(XT) > $h(X™ i)-

We now let C,, bethematnanhC ) =2,a,_,a_, for 1 <i,j <2m. Let
C,, be the matrix with G, (i) = 3, e, %o, for 1 <i,j <2m, ie., C,, is the
circulant approximation to C,, as defined in Gray [4, , page 728] (remembering again
that m > 2k). We now note that the eigenvalues of C are simply {®(nj/m);j = 1,
2m) for m > 2k (by [4], page 728), and that

im,, .(2m) '3 log ®(nj/m) = (27) [T log B(s)ds.
We use (2.2) to write
@m) " h(E™,,.,) = (3)(@m) 'log((2meQ(Yo)) " det(C,))
= h(Y,) +3(2m)”'Z}2 log ®(7j/m).
We conclude that
im,, ., (2m)~ lh(X—m+1) = h(Y,) +log A2

The proof of the lemma is completed by applying (3.2). ]

THEOREM 3.1. Let a; be a sequence of constants with 0 < 2,a; 2 < 0. Let Y, Y, be a
sequence of mdependent random variables with a common bounded denszty and
= Var(Y)) < 0. Defining X, as before we conclude that

0(X) > 80(Yy).
Proor. For any k > 0 let X, (k) = k. _,q Y, ,_; and let A} =
exp((1/2m))/™ log D, (s)ds) where ®,(s) = |=X_ _iq; e'f‘|2 We claim that

(33) A? < lim inf,_ A2
To see this note that
Ao® = ianE((Xn+l(k) - V)z)
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where the inf is taken over the set of all V' = b + 2 _ob; X, _ (k). Clearly
iy, o E((X, i1 (K) = b = Z)_ob,X,_(K)))) = E((X,11 — b — Zj_obX,_))
and (3.3) follows. We now use Corollary 2.1 to get

(3-4) limk—woh(XO(k)) = h(Xo)-
Furthermore we have
(3.5) I(X) < lim inf,_,  I(X(k))

by [7, page 20]. We note that I(X) = h(X,) — A(X) and I(X(k)) = h(X(k)) —
h(X(k)) by Lemma 2.2, so we get

(3.6) h(X) > lim sup,_, h(X(k)).
We can rewrite (3.6) as

Q(X) > lim sup, A7 Q(Y,)
by using Lemma 3.1. We now apply (3.3) to finish the proof of the theorem. []

CoROLLARY 3.1. Let Y; and X, be as in Theorem 3.1. Let f : R® — R be Borel
measurable. Then for any n we have E((X,.; — (X™)?) > Q(Y A%

Proor. We have E((X,., — (X)) > DP(I(X)) by Lemma 2.4. Remember
now the relations I(X) = h(Xy) — A(X), Q(Xy) = 2me) 'e*™*9, and Q(X) =
(2me)~'e*"®; apply the Shannon lower bound (2.7) and get DP(I(X)) > Q(X).
Use Theorem 3.1 to complete the proof. []

We now extend Corollary 3.1 to processes with infinite variance.

THEOREM 3.2. Let (Y;j =0, 1, - - ) be a sequence of random variables such
that for some double array of independent random variables (Y,; k > 0,j =
0, £1,- - - ) we have Y, = 3¢_,Y,; a.s. Assume that for each fixed k the sequence
(Y37 =0, £1,- - - ) is identically distributed with finite variance of. Assume also
that the common distribution of (Yo7 =0, =1, - - ) has bounded density. Let
(a;/=0,%1,---) with X, =3,3,aY, ,_; as. convergent (and such that the
sum does not depend on the order of summation).

Then for any Borel measurable function f from R® to R we have

(3.7) E((X,+1 = f(XM)Y) > Q(Yp)A?
for all n.
PrROOF. Let X, (k) = 2%_(2,4,Y, ,_,. We see that
(3.8) E((X,11(K)) = A(X"(K))) > Q(Yo(K))A?

by Corollary 3.1, where Y(k)=Z3%_,Y,. Using Corollary 2.1 we see that
limy_, . Q(Yo(k)) = Q(Yo). Now let Z,(k) = 3=, ,a.X, ,_,. We have

(39 E((X,41 = AX™MY) = E((X,41(k) + Z,,1(k) — AX"(k) + Z"(K))?)
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where X"(k) = (- -+, X,_ (k). X,(k)) and Z"(k) = (- - -, Z,_,(k), Z,(K)). By
Corollary 3.1 we know that for any sequence (2, =0, £1,- - - ) of real numbers
we have

E((X,11(K) + 2,41 = (X (k) + 2"))°) > Q(Yo(K))A?
where z" = (- - -, z,_;, z,). If we now apply Fubini’s theorem to (3.9) we get

E((X,+1 — f(X™)Y) > Q(Yo(K))A?

valid for any k. Letting k — oo, the theorem follows. []

As an example of the applicability of Theorem 3.2 we can show that if ¥; have
the distribution of an infinitely divisible random variable with bounded density
then Y; can be expressed by a sum 272 ,Y,; as in Theorem 3.2. Indeed let u be the
common distribution of Y. Since p is infinitely divisible we have

: 2
1) 2zedn) = expl s - 1 = 2 [ L o
1+t t

where » is the Lévy-Khintchine measure for p, and where we are assuming for
simplicity that the centering constant in (3.10) is 0. Let », stand for the measure »
cut down to the set {k + 1 > |x| > k}. We can write » = Z7_o»,. Let , stand for
the infinitely divisible distribution with Lévy-Khintchine measure »,. We can write
p = % 2 om. Noting that the measure % >, u, has nonzero mass at the origin, we
conclude that y, has bounded density if p does. Finally it is easy to see that all the
i have finite variance.

We now turn our attention towards getting a lower bound for mean absolute

* error of one step prediction.

THEOREM 3.3. Let Yy, Y, X,, and X, (k) be as in Theorem 3.2. Then for any
Borel function f : R* — R we have

1
(3.11) E(|X, 41 — fXM)) > A((2e)™'7Q(Y,))*
Proor. We have E(|X, ., — A(X™)]) > Dg)(I(X)) by Lemma 2.4. Now use the
Shannon lower bound (2.8) and argue as in Corollary 3.1 to get that

D, (X)) > A((2e) ' 7Q(Yo(K)))*
for any k, and conclude that
E(|X,,\(k) = A(X"(K)]) > A((2e) ™' 7Q(Yo(K)))*-
Conclude the proof by arguing as in Theorem 3.2. []

VvV Vv

Using Shannon lower bounds for the distortion rate functions Dy (r), 0 < a <
oo (see Linkov [5] and Pinkston [6]) we get results analogous to Theorem 3.3,
establishing lower bounds for E(|X,,, — f(X™)|*). We do not go into further
details but turn our attention to showing (3.11) is sharp.
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To see that (3.11) is sharp we produce a class of examples for which (3.11) is an
equahty Let Y; be 1ndependent random variables with common density p(x)
~I, Let bo, -+, b, be constants with by =1 and Zghz/ having all its
complex roots outside the unit circle. Let X, be the unique stationary process which
satisfies the autoregressive equation
2iobiX,_; =Y,
for all integers n. (Assume b, # 0.) It is clear that E(X, . ,|X") =2/_, — bX,_;;
hence E(X,., — AX")) > E(X,,; — Cj=i — 5X,_)D) = E(Y,.1]) for any
Borel function f. We now note that E(|Y,,,|) = 1 A =1, and Q(Y,) = 2e¢/m;
hence equality is achieved in (3.11).

We end this section with a remark on the conjecture that A = 0 implies the
process X, = 2,a;Y,_; is perfectly nonlinearly predictable when Var(Y)) = co. (If
var(Y;) < co then X, are perfectly linearly predictable.)

We shall show, by generalizing a result of Pinsker, that H(X) > 0; hence the
above conjecture, if true, has a rather subtle proof. Recalling Definition 2.2 we see
that H(X) = 0 if for all f € @ we have H(X") = 0 where X, = f(7, ° X). Note
now that for any f € @ there exists g € @ such that f(r, o X)=g(r,° Y)as. We
shall prove the following theorem (due to Pinsker if Y; assume only finitely or
countably many values).

THEOREM 34. Let (Y;;j =0, =1, - ) be any stationary real valued process
with trivial remote past. Let g € € and X, = g(7, © Y). Then H(X") = 0 implies X,
are constant.

. PrOOF. Let i be any piecewise constant function from R to R which assumes

only finitely many rational values and has dlscontmultles at only finitely many
rational points. Let Y, = h(Y,). If H(X’ ") =0 then I(X . Y) =0, where I is
defined in [7], page 76. Also I(X LY = I( Y’, X) by [7], page 80. Finally Y’ has
trivial remote past so f(Y’, X’) =0 implies X’ is independent of the o-field B,
generated by Y’. We conclude H(X’) = 0 implies X’ is independent of \/,%B,,
hence X, is constant a.s. []

4. Appendix. In this section we present the measure theoretic result which was
used in the proof of Corollary 2.1. In the following we shall write y, — ¢ to stand
for weak convergence of measures as defined in Feller [3, page 248]. We shall write
I, — | to stand for the total variation norm of the signed measure y, — p. If p,
and p have density f, and f we shall use the fact that || u, — p|| = || f, — f||,» where
the latter expression stands for the L! norm of the difference f, — f.

LEMMA 4.1. Let p, be a sequence of probability measures on R such that p, — 41
where u is also a probability measure. Then for any probability measure n with
density, we have ||y, *m — p * 7| = 0.

Proor. For any ¢ > 0 it is well known that there exists a compact interval
[a,, b] such that p,(a,b,]) > 1 — ¢ for all n. This fact shows us that we can
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assume without loss of generality that the measures p, and p all have support in a
fixed compact set [a, b]. Letting dn = fdx we know that f can be approximated in
the L! norm by continuous functions with compact support so we can also assume
without loss of generality that f has support in [a, b]. It follows by Theorem 1 in [3,
page 255] that (p, * f)(x) = (g * f)(x) uniformly on R. Since all these functions
have support in a fixed compact set it then follows that || g, * f — p * f||; = 0. [
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