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ON THE SKOROKHOD REPRESENTATION APPROACH TO
MARTINGALE INVARIANCE PRINCIPLES

By PETER HALL!
University of Melbourne

The Skorokhod representation method of proving martingale invariance
principles has received only limited attention. This paper shows it to be a very
powerful tool. We use the representation to obtain sufficient conditions for a
sequence of random functions to be tight, and to give a direct proof of an
invariance principle.

1. Introduction and results. The central limit theorem for martingales has
attracted considerable attention since the first results were announced by Lévy in
1935. Interest has increased in recent years, and there are now several basic
techniques for handling the proofs. One of these involves the Skorokhod repre-
sentation for martingales, given by Strassen in 1964. Scott (1973) used the repre-
sentation to extend Brown’s (1971) limit theorem. However, Scott’s work does not
take full advantage of the representation and his method follows the traditional
two-part pattern for proofs of invariance principles. Firstly he shows that the
finite-dimensional distributions of his sequence of sample processes converge to
those of Brownian motion, and then using this fact he establishes the tightness of
the sequence by employing a result from Loynes (1970).

In this paper we show that martingale invariance principles can be obtained
directly from the Skorokhod representation by exploiting the properties of
Brownian motion. It is shown that tightness holds under quite general conditions,
irrespective of whether or not the finite-dimensional distributions converge. We
give a nontrivial example in which tightness prevails but the finite-dimensional
distributions do not converge.

Let {(S,, 9,), n > 1} be a zero-mean, square-integrable martingale, where ¥, is
the o-field generated by S,, S,, - - - , S,. Define X, = S, — S,_,, U? = 37X and
52 = E(S?) = E(U?. Let ¢, be the random element of C[0, 1] (the space of
continuous functions on [0, 1]) defined by interpolating between the points
©,0), (U2UZ UT'S), (U72UZ U'S,), - - -, (1, UT1S,). Under certain condi-
tions,

(1) £, —aW,
where W, is standard Brownian motion on [0, 1]. (See Hall (1977). Convergence in

distribution will be denoted by —q and convergence in probability by —,. I(E)
will denote the indicator function of the event E.) In proving (1) it will always be
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necessary to impose a negligibility condition, such as:

2 U, *max;, X} —,0.

Suppose that the sequences {s, 2U?} and {U, %} are both tight; that is,
3) lim inf,  P(A <s;72U2<A)—>1 as A—0 and A—oo.
Then (2) is equivalent to the condition:

4) s, *max; ., X? —,0.

n—oo

We shall strengthen (4) to the Lindeberg condition:
(5) forall e > 0, 5, 2S7E[ X (| X)| > es,) ] >0.
If {s,72U?} is uniformly integrable then (4) and (5) are equivalent.

TueoreM 1. If (3) and (5) hold then the sequence {£,} is tight.

(All of the proofs are placed together in Section 2.)

To construct a martingale for which (3) and (5) hold but whose finite-dimen-
sional distributions do not converge, let Y,, n > 1 be independent N(0, 1) vari-
ables; n, be integers such that n, = 1 and n, ., = n + 2n};

= I(Z47Y, > 0); X, = Yy
X, =Y,

=17, if m+nE<n<mip

and S, = 2}X,. {S,} is martingale, (3) and (5) hold but ¢,(1) = S,/ U, does not
converge in dlstnbutlon If S,/c, converges for some sequence of constants c, then

_the limit is degenerate.
To see this observe that

1 1
-2 — 5 2 g +nf
ny +1S - nk+1( j=l zjl;nkk lY + Ikzjﬂnk+n,3+l¥j)

P+
~@2n))” (Ejkt,;‘a. A+ L v Y)
_6D2 Z(Zl + ZZI(ZI > 0))

where Z, and Z, are independent N(0, 1) variables. (Here ~ means “has asymptot-
ically the same distribution as.”) On the other hand,

if n <n<mn+nt

—1 +n}
(nk + nk) nk+nk nk 2_’;" nk,fl— "DZI

Similarly it can be shown that

UCLS,  ~Z(Z, < 0) +275(Z, + Z)I(Z,>0) and
nk+nZSnk+nk Zl’

Hall (1977) showed that if (4) holds in L' and if the tightness condition (3) is
replaced by the stronger condition

(6) 5, U2 —,T,  where0 < T < o0 a.s.,
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then (1) is true. If (5) is used instead of (4) then a shorter and more elegant proof is
available via the Skorokhod representation. In fact, it is very easy to prove a little
more.

THEOREM 2. Under (5) and (6) we have for any E € %,

(& U2/ sm I(E)) »a(W, T, I(E)),
where W, is independent of (T, I(E)). That is, the limit theorem is mixing.
(See Eagleson (1977).) The proof is via a limit theorem for Brownian motion, and
may have application to processes other than martingales which can be embedded
in the Skorokhod way:

THEOREM 3. Let W(¢),t > 0 be a standard Brownian motion and T,, n > 1 be
1
positive random variables. Define m,(t) = W(tT,)/(T,)%,t €[0, 11. If there exist
constants c, such that

@) T,/c,—,T,c,>0 and 0<T< ooas,
then for all events E in the probability space,
("'n’ Tn/cn’ I(E)) —)51)( Wl’ T’ I(E))’

where W, is independent of (T, I(E)).
(Theorem 3 is an extension of Billingsley’s (1968) result (17.9), page 145, and can
be proved using his techniques. We do not give a proof here.)

2. The proofs. Let T, n, and W be the stochastic processes defined in Theorem
3. First we establish the tightness of {7,, n > 1}:

Lemma 1. If
®) liminf, |, P(A<T,/c,<A)—>1 as A>0 and A—
for some sequence of constants c,, then for all ¢ > 0,
lim,_lim sup,_,., P(Supy, _ oj<sln,(4) — m,(0)| >¢) = 0.
Proor. The probability above is dominated by
P(SUpy,_ycns| W(u) — W(v)| > eAZ) + P(T,/c, < Aor > N).

Now let n — 00, § >0, A— 0 and A — o0, and use the tightness of { W(?), ¢ > 0}.

Let Z,, n > 1 be random variables satisfying 0 < Z, < Z, < - - - . Define
random elements n, of C[0, 1] by interpolating between the points
©,0), (27 'Z,, Z7iW(T)), - - - , (1, Z,TW(T,)). If the Z’s are close to the T’s
then ), is close to ;:

Lemma 2. If (8) holds, if T,/ Z, —,1,
max;,(Z — Z_,)/Z,~,0 and maxj<,,|T,,_'Tj -Z7'Z|->,0

then p(n,, n,) —,0, where p denotes the uniform metric.
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PrOOF. Since the norming variables T, and Z, are asymptotically the same, it
suffices to prove that 7, is uniformly close to the process n” obtained by interpolat-
ing between the points (0, 0), (Z, 'Z,, T,,‘EW(TI)) , (1, T,,‘EW(T,,)). If
max; ¢ (Z; — Z_y)/Z, <8 and max,,|T,”'T; — Z,'Z| < 8 then

sup, epo, lM(2) = M (2)] < SUP|, gy <251Ma () = Ma(0)]-
In view of the tightness of {n,}, p(n,, 1,) —,0, as required.

Now we introduce the martingale theory. We approximate to the martingale
{(S,, F,)} by a truncated martingale {(Sy, %,F)}, and show that the approximation
is uniformly close. Then we apply Strassen’s (1964) Skorokhod representation,
proving that S* = W(T,) as., n > 1, for an increasing sequence of positive
random variables {7,,}. If (6) holds then the T,’s satisfy 7, /52 = T; and so by
Theorem 3, 1, —qW,, where n, is defined by 7,(¢) = W(¢T,)/(T, )2 7, is uniformly
close to £, and so £ —qW,. Some of the techniques of our approximation are
drawn from Scott (1973), and we refer the reader to this paper for details.

The Lindeberg condition (5) is equivalent to the apparently stronger condition:

9 foralle > 0, 5_22"E[X-2I(|X.| > ssj)] - 0.

To see this, let 0 < § < ¢ and k, = max{; < nles; < 8s,}. If (5) holds then the left
side of (9) does not exceed

sTIEE[ XH(1X)| > 8s,) ] + 57 2SRE(X?) < o(1) + 8%/¢,
and (9) follows on letting n — co and then § — 0.
Fix ¢ > 0 and define X = 0 and X* = X, I(|X}| < ssj) E[XI(|X| &s)|F* 1),

1 < j <n, where §*, is the o-field generated by X7, X3, - -, X* . Let S =
‘Z”X *, Ur? = 31X, *2 and ¢* be the process obtained by mterpolatmg between the

pomts ©, 0), (U~ 2U,, SIS®), - - (L UTISH.

LEMMA 3. Under condition (9),

(10) sy ' SE[|X|1(1X)| > es;)] =0
(11) sTASIE[ XM X)| < es)] >0
and »

(12) 5, *max; | U2 U —,0.

Under (3) and (9),

(13) p(&,, &) —,0.

Proor. Let 8 and k, be as above. Then
(14) - s ' SE[IX(X)| > es)]
<s; 'Sl B[ X(X)| > es)]

< 8¢ % 'Sl E(XP) + 87\ 2 SIE[ XA(|X)| > es) |-
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The last term is o(1) and the first converges to 28e 2, since
57 'S5 E(XP) = 57 20 — 5o (1 + 57 s20) ~ 25,72y — 5-0) =2

(10) follows on letting n — oo and § — 0 in (14). Condition (11) is proved as in
Scott’s Lemma 3, while (12) follows from (9), (10) and the inequalities:

E[s;’max;,| U7 — UP|] < s7°ZiE|X? — X
<sTIE[ XA(X)| > es)) ]
+3es, 'SIE[|X|1(|1X)| > es))].

(13) is proved as in Scott’s proof of his condition (23).

Now we introduce the Skorokhod representation (Theorem 4.3 of Strassen).
Without loss of generality there exists a Brownian motion W and an increasing
sequence of nonnegative random variables 7,, such that S} = W(T,) as., n > 1.
Put ¢, = T,, - T,_,, n> 1, =0), let §, be the o-field generated by

¥ 8% -+ ,S8*and W(¢) for 0 <t < T,(n > 1) and let §, and % denote the
trivial o-fleld Strassen’s Theorem 4.3 tells us that the 7, can be chosen such that ¢,
is §,-measurable, E(2,|S,_,) = E(X *2|G* ) as. (n > 1), and for some constant
L >0, E(|8,_,) < LEX*|Fx ) as. (n > 1).

LeMMA 4. Under condition (9),

(15) Sn_2maxk<n|Tk - 2IICE‘(tjlgj—l)l '_)pO
and
(16) sn_zmaxk<n|2’1(E(tj|Qj—l) - Ultzl _)po'

Proor. Apply Kolmogorov’s inequality to the martingale with differences
— E(4)9;_,) and o-fields §;, proving that

P(s,,‘zmaxk<,,|Tk - Z'fE(tjlgj_,)I > 8) <6 _2s,,_42'.'E(tj2) < LS "zs,,_“z'{E()(f“)-

The proof of (15) is completed using (10) and (11), as in Scott’s proof of his Lemma
12. (16) is proved in the same way, applying Kolmogorov’s inequality to the
martingale with differences X** — E(X**|F* ))

We are now in a position to prove Theorems 1 and 2. Suppose that (3) and (5)
hold, and let n,(¥) = W(tT,)/ (T,,)%. (Here the T,’s are the Strassen stopping times.)
In view of (3), (12), (15) and (16) U- maxK,,]sz - T} —,0. For T, >0,
max; | T,”'T;, — U, 2U? < U, ’max;,|U* — T| + |1 - U T,|, and so
max; <,,|T lT - U 2U2| —,0. Since s*zmaij,X2 <&+ 5, °ZIX(X)| > es,)
—,¢* then maxj<,,Xj2 / U,,2 —>p0. It now follows from Lemma 2 that p(n,, ) —,0,
and so by (13), p(1,, §,) —,0. Theorem 1 now follows from Lemma 1. If (5) and (6)

“hold then T,/s? —,T, and so (7) holds with ¢, = s2. Theorem 2 follows from
Theorem 3 and the fact that p(,, §,) —,0.
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Note added in proof. Since the preparation of this work a paper by David
Aldous (Ann. Probability 6 335-340) has appeared, giving an alternative method of
establishing the tightness of stochastic processes related to martingales.
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