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NOTE ON THE RAY-KNIGHT COMPACTIFICATION

By JosepH GLOVER
University of California, San Diego, and University of California, Berkeley

We give an example to show that, given a nonhomogeneous Markov
process X on E, one cannot, in general, produce a right continuous strong
Markov version of X on a compactification of E. In particular, the space-time
regularization fails to produce one compact Hausdorff state space for the
nonhomogeneous process.

Ray introduced in [5] a procedure for the regularization of time homogeneous
Markov processes. Knight, building on Ray’s work, produced the procedure now
known as the Ray-Knight compactification [4). Let X, be a time homogeneous
Markov process taking values in a Borel subset E of a compact metric space (£, d)
and having a measurable transition function (these hypotheses may be weakened a
bit). The Ray-Knight procedure produces a new compact metric space (E, d) in
which E is densely embedded. The process X, = lim, s se@ Xy Where the limit is
taken in the topology of E, is a right continuous strong Markov process with
resolvent carrying continuous functions on E to continuous functions on E.
Moreover, X, and X, agree with probability 1 for all ¢ except for a countable
number of times [4]. If the original process is right continuous and strong Markov
on E, then X, and X, are indistinguishable as processes on E.

The importance of this procedure has begun to be realized fully in recent years,
notably in its connection with Shih’s theorem and the study of right processes
[3, 7]. A procedure to modify a nonhomogeneous process on a metric completion
of the state space producing a right continuous strong Markov version of the
process would also be of great value. Unfortunately, the extension of the Ray-
Knight technique to the regularization of nonhomogeneous Markov processes
outlined in [4], page 551, is not, in general, correct, as the example below shows.
Furthermore, the example shows that one cannot expect a right continuous strong
Markov version on one state space, in general.

We construct a nonhomogeneous strong Markov process on a two point discrete
state space E.= {x, y}. Let A4 be a Borel set on R* containing the point 0 with the
property that for all 0 < ¢ <s, A(4 N (¢, 5)) > 0 and M(4° N (2, 5)) > 0, where
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A denotes Lebesgue measure. Define

Py orfx,))=¢() ift EAandt +t € 4,0r

iftr €eAdA°andt +t € A°.
=g() if? EAandt +t € A€ or

ift €EA°andt’ + ¢t € A.
Pyopy,')=¢() f €EAdand?t +t € A,or

ift €EAand?t +t € 4A°.
=g () ifr€edandt +t€ A or

if €A°and ' + ¢t € A.

If the process starts at x (resp. y), it will be at x (resp. y) for all times ¢t € 4 and
will be at y (resp. x) for all times t € A4°.
Define the space-time transition semigroup on Ex(0, o) as in [4] by setting
p((x,t), B X {t, + t}) =P, r+4(x; B).
If fis a bounded measurable function on Ex(0, ), the resolvent for p, is the
following (a > 0):

U(x, ') = [0, cyna-rye “f(x, t' + t)dt
+/0,wync—re “fy, ¢ +t)dt ift €4

= [0, yna-re “fy,t' + t)dt
+ /0, oyn(ac—re “flx, ¢’ + t)dt ift € A°.

Uf(, V) = [0, w)yna-rye “f(y, ¢ + t)dt
+ [0 cynac—rye “f(x, t' + t)dt ift €4
= [0, w)na-rye “f(x, t' + t)dt
+ [0, oynac—re f(y, t' + )dt ift € A4°.

Let R be the smallest positive cone closed under (U*®),~,o and pointwise minima,
containing U for f bounded and continuous on Ex[0, co]. This is known as the
Ray cone, and by Knight’s fundamental lemma, it is separable in the uniform
topology on Ex(0, o). It is easy to see that R induces a topology on Ex(0, c0) with
the following property. Every open neighborhood of a point (x, ¢) contains a point
(», 5), and every open neighborhood of a point (y, s) contains a point (x, ¢). Thus,
the quotient space (by the projection map T) is F = {x, y}. But T~'({x}) and
T~'({y}) are not open sets. Therefore F, together with.the quotient topology, is
not a Hausdorff space. If we then form the quotient of F to get a Hausdorff space,
the points x and y combine, and the process sits at one point. This process bears no
interesting relation to the original process. Thus, the Ray-Knight procedure applied
to the space-time version of the process on Ex(0, o) does not yield a compact
Hausdorff space E in general.
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This process intertwines space and time so that, after retopologizing Ex(0, ),
the space and time variable can no longer be separated. Notice that if £ and F are
identified in the obvious manner, then the original process on E and the “regu-
larized” process are indistinguishable. Only the topology of E has been changed to
produce F. Such difficulties can occasionally be overcome by adding a countable
collection of functions which are supermedian for the space-time process to the
Ray cone [6]. In this example, however, addition of such functions to the Ray cone
will not separate points x and y in F, due to the choice of the Borel set 4.

To separate points using the Ray cone, one would need to add positive super-
median functions k,, uniformly bounded by 1, so that 7~ '({x}) or T~'({y}) is
open in Ex(0, oo) together with the Ray metric. This is equivalent to finding a
decreasing function K on (0, o0) such that if «(u, v) = |K(«) — K(v)| for positive u
and v, then 4 or A€ is an open subset of (0, o0) together with the x-metric. But
given t € A, for any € > 0, there is an s € 4° with |t — 5| < e. If K is continuous
at ¢, {s : k(s, ©) <&} contains a point of 4°. Therefore, K would have to be
discontinuous at every ¢ € A, an uncountable number of points. This cannot be
since K is decreasing. The argument for 4 ¢ is similar.

It is a simple matter to show that the nonhomogeneous process X, admits
no compactification on which X, has a right continuous modification X,. For let
E be any compactification such that P*{X, = X,} = 1 for all but countably many
times. Choose #, € A with X, equal to )—(-,o a.s. P*. Then X, = x as. P*. There
exists a sequence of times #, contained in 4 ¢ such that the ¢, decrease to ¢, and
X, = )7, a.s. P* for each n. Therefore )—(—, =y a.s. P*, and, by right continuity of
X, X, =y as. P~.

Note that the original nonhomogeneous process has only constant homogeneous
I-supermedian functions which demonstrates that the theorem of Walsh [6] assert-
ing the existence of l-supermedian functions separating points in E for time
homogeneous strong Markov processes will not extend to the nonhomogeneous
case.

REMARK. It is perhaps unreasonable to expect to produce a topology on E in
which a nonhomogeneous Markov process has a right continuous strong Markov
version. Indeed, the strong Markov process above cannot be made right continuous
on E without radically altering the nature of the process. The space-time regulari-
zation may suffice in many instances, as suggested by Dynkin [1, 2]. We may
interpret the regularization in the following manner. Fix a countable sequence ( g,)
dense in R. Each g, is a nonhomogeneous a-supermedian function. Let || g,|| =
sup { g,(t, x) : t € (0, ), x € E}. Define the map

T, : ESTI[O, | g,ll]

by Setting (%) = (8,(t; X))p>- If X, is t_he nonhomogeneous Markov process on
E, T, (X)) has a right continuous version X,, defined by setting

z = limsu,t; SEQ rs(Xs)'
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This is, of course, the space-time regularization, and X, is now a homogeneous
process. We may interpret the addition of the time coordinate in the space-time
process as a mechanism for moving the state space E in II [0, || g,/|] to produce a
homogeneous process. The process X has state space E at time ¢, where

m U 0<u<l/n;ueQrt+u(E) .

n>1
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