NOTE ON THE RAY-KNIGHT COMPACTIFICATION

By Joseph Glover

University of California, San Diego, and University of California, Berkeley

We give an example to show that, given a nonhomogeneous Markov process X on E, one cannot, in general, produce a right continuous strong Markov version of X on a compactification of E. In particular, the space-time regularization fails to produce one compact Hausdorff state space for the nonhomogeneous process.

Ray introduced in [5] a procedure for the regularization of time homogeneous Markov processes. Knight, building on Ray's work, produced the procedure now known as the Ray-Knight compactification [4]. Let X_t be a time homogeneous Markov process taking values in a Borel subset E of a compact metric space (\hat{E}, \hat{d}) and having a measurable transition function (these hypotheses may be weakened a bit). The Ray-Knight procedure produces a new compact metric space (\bar{E}, \bar{d}) in which E is densely embedded. The process $\bar{X}_t = \lim_{s\downarrow\downarrow t;\ s\in\mathbb{Q}} X_s$, where the limit is taken in the topology of \bar{E} , is a right continuous strong Markov process with resolvent carrying continuous functions on \bar{E} to continuous functions on \bar{E} . Moreover, \bar{X}_t and X_t agree with probability 1 for all t except for a countable number of times [4]. If the original process is right continuous and strong Markov on E, then \bar{X}_t and X_t are indistinguishable as processes on \bar{E} .

The importance of this procedure has begun to be realized fully in recent years, notably in its connection with Shih's theorem and the study of right processes [3, 7]. A procedure to modify a nonhomogeneous process on a metric completion of the state space producing a right continuous strong Markov version of the process would also be of great value. Unfortunately, the extension of the Ray-Knight technique to the regularization of nonhomogeneous Markov processes outlined in [4], page 551, is not, in general, correct, as the example below shows. Furthermore, the example shows that one cannot expect a right continuous strong Markov version on one state space, in general.

We construct a nonhomogeneous strong Markov process on a two point discrete state space $E = \{x, y\}$. Let A be a Borel set on \mathbb{R}^+ containing the point 0 with the property that for all 0 < t < s, $\lambda(A \cap (t, s)) > 0$ and $\lambda(A^c \cap (t, s)) > 0$, where

Received December 3, 1977; revised May 23, 1978.

AMS 1970 subject classifications. Primary 60J35; secondary 60J25.

Key words and phrases. Ray-Knight compactification, Markov process.

λ denotes Lebesgue measure. Define

$$P_{t',t'+t}(x,\cdot) = \varepsilon_x(\cdot) \quad \text{if } t' \in A \text{ and } t' + t \in A, \text{ or } \\ \text{if } t' \in A^c \text{ and } t' + t \in A^c.$$

$$= \varepsilon_y(\cdot) \quad \text{if } t' \in A \text{ and } t' + t \in A^c, \text{ or } \\ \text{if } t' \in A^c \text{ and } t' + t \in A.$$

$$P_{t',t'+t}(y,\cdot) = \varepsilon_y(\cdot) \quad \text{if } t' \in A \text{ and } t' + t \in A, \text{ or } \\ \text{if } t' \in A^c \text{ and } t' + t \in A^c.$$

$$= \varepsilon_x(\cdot) \quad \text{if } t' \in A \text{ and } t' + t \in A^c, \text{ or } \\ \text{if } t' \in A^c \text{ and } t' + t \in A.$$

If the process starts at x (resp. y), it will be at x (resp. y) for all times $t \in A$ and will be at y (resp. x) for all times $t \in A^c$.

Define the space-time transition semigroup on $Ex(0, \infty)$ as in [4] by setting

$$p_t((x, t'), B \times \{t' + t\}) = P_{t', t' + t}(x, B).$$

If f is a bounded measurable function on $Ex(0, \infty)$, the resolvent for p_t is the following $(\alpha > 0)$:

$$U^{\alpha}f(x, t') = \int_{(0, \infty)\cap(A-t')} e^{-\alpha t} f(x, t'+t) dt$$

$$+ \int_{(0, \infty)\cap(A^c-t')} e^{-\alpha t} f(y, t'+t) dt \quad \text{if } t' \in A$$

$$= \int_{(0, \infty)\cap(A-t')} e^{-\alpha t} f(y, t'+t) dt$$

$$+ \int_{(0, \infty)\cap(A^c-t')} e^{-\alpha t} f(x, t'+t) dt \quad \text{if } t' \in A^c.$$

$$U^{\alpha}f(y, t') = \int_{(0, \infty)\cap(A-t')} e^{-\alpha t} f(y, t'+t) dt$$

$$+ \int_{(0, \infty)\cap(A^c-t')} e^{-\alpha t} f(x, t'+t) dt \quad \text{if } t' \in A$$

$$= \int_{(0, \infty)\cap(A-t')} e^{-\alpha t} f(x, t'+t) dt \quad \text{if } t' \in A^c.$$

Let **R** be the smallest positive cone closed under $(U^{\alpha})_{\alpha>0}$ and pointwise minima, containing $U^{\alpha}f$ for f bounded and continuous on $Ex[0, \infty]$. This is known as the Ray cone, and by Knight's fundamental lemma, it is separable in the uniform topology on $Ex(0, \infty)$. It is easy to see that **R** induces a topology on $Ex(0, \infty)$ with the following property. Every open neighborhood of a point (x, t) contains a point (y, s), and every open neighborhood of a point (y, s) contains a point (x, t). Thus, the quotient space (by the projection map T) is $F = \{x, y\}$. But $T^{-1}(\{x\})$ and $T^{-1}(\{y\})$ are not open sets. Therefore F, together with the quotient topology, is not a Hausdorff space. If we then form the quotient of F to get a Hausdorff space, the points x and y combine, and the process sits at one point. This process bears no interesting relation to the original process. Thus, the Ray-Knight procedure applied to the space-time version of the process on $Ex(0, \infty)$ does not yield a compact Hausdorff space \overline{E} in general.

This process intertwines space and time so that, after retopologizing $Ex(0, \infty)$, the space and time variable can no longer be separated. Notice that if E and F are identified in the obvious manner, then the original process on E and the "regularized" process are indistinguishable. Only the topology of E has been changed to produce F. Such difficulties can occasionally be overcome by adding a countable collection of functions which are supermedian for the space-time process to the Ray cone [6]. In this example, however, addition of such functions to the Ray cone will not separate points E and E in E, due to the choice of the Borel set E.

To separate points using the Ray cone, one would need to add positive supermedian functions k_n , uniformly bounded by 1, so that $T^{-1}(\{x\})$ or $T^{-1}(\{y\})$ is open in $Ex(0, \infty)$ together with the Ray metric. This is equivalent to finding a decreasing function K on $(0, \infty)$ such that if $\kappa(u, v) = |K(u) - K(v)|$ for positive u and v, then A or A^c is an open subset of $(0, \infty)$ together with the κ -metric. But given $t \in A$, for any $\varepsilon > 0$, there is an $s \in A^c$ with $|t - s| < \varepsilon$. If K is continuous at t, $\{s : \kappa(s, t) < \varepsilon\}$ contains a point of A^c . Therefore, K would have to be discontinuous at every $t \in A$, an uncountable number of points. This cannot be since K is decreasing. The argument for A^c is similar.

It is a simple matter to show that the nonhomogeneous process X_t admits no compactification on which X_t has a right continuous modification \overline{X}_t . For let \overline{E} be any compactification such that $P^x\{X_t=\overline{X}_t\}=1$ for all but countably many times. Choose $t_0\in A$ with X_{t_0} equal to \overline{X}_{t_0} a.s. P^x . Then $X_{t_0}=x$ a.s. P^x . There exists a sequence of times t_n contained in A^c such that the t_n decrease to t_0 and $X_{t_n}=\overline{X}_{t_n}$ a.s. P^x for each n. Therefore $\overline{X}_{t_n}=y$ a.s. P^x , and, by right continuity of \overline{X}_t , $\overline{X}_{t_0}=y$ a.s. P^x .

Note that the original nonhomogeneous process has only constant homogeneous 1-supermedian functions which demonstrates that the theorem of Walsh [6] asserting the existence of 1-supermedian functions separating points in E for time homogeneous strong Markov processes will not extend to the nonhomogeneous case.

REMARK. It is perhaps unreasonable to expect to produce a topology on E in which a nonhomogeneous Markov process has a right continuous strong Markov version. Indeed, the strong Markov process above cannot be made right continuous on E without radically altering the nature of the process. The space-time regularization may suffice in many instances, as suggested by Dynkin [1, 2]. We may interpret the regularization in the following manner. Fix a countable sequence (g_n) dense in \mathbb{R} . Each g_n is a nonhomogeneous α -supermedian function. Let $||g_n|| = \sup \{g_n(t, x) : t \in (0, \infty), x \in E\}$. Define the map

$$\Gamma_t: E \to \Pi[0, ||g_n||]$$

by setting $\Gamma_t(x) = (g_n(t, x))_{n \ge 1}$. If X_t is the nonhomogeneous Markov process on E, $\Gamma_t(X_t)$ has a right continuous version $\overline{X_t}$, defined by setting

$$\overline{X}_t = \lim_{s \in \mathbb{R}} \Gamma_s(X_s).$$

This is, of course, the space-time regularization, and \overline{X}_t is now a homogeneous process. We may interpret the addition of the time coordinate in the space-time process as a mechanism for moving the state space E in Π [0, $\|g_n\|$] to produce a homogeneous process. The process \overline{X}_t has state space \overline{E}_t at time t, where

$$\overline{E}_t = \bigcap_{n \geq 1} \overline{\bigcup_{0 < u < 1/n; u \in \mathbb{Q}} \Gamma_{t+u}(E)}.$$

Acknowledgments. I would like to thank M. J. Sharpe for several helpful conversations and J. B. Walsh for several suggestions.

REFERENCES

- [1] DYNKIN, E. B. (1973). Regular Markov processes. Russian Math. Surveys 28 33-64.
- [2] DYNKIN, E. B. (1975). Markov representations of stochastic systems. Russian Math. Surveys 30 65-105.
- [3] GETOOR, R. K. (1975). Markov processes: Ray processes and right processes. Lecture Notes in Math. 440. Springer-Verlag, Heidelberg.
- [4] KNIGHT, F. (1965). Note on regularization of Markov processes. Illinois J. Math. 9 548-552.
- [5] RAY, D. (1959). Resolvents, transition functions, and strongly Markovian processes. Ann. of Math. 70 43-72.
- [6] WALSH, J. B. (1972). Transition functions of Markov processes. Lecture Notes in Math. 258 215-232. Springer-Verlag, Heidelberg.
- [7] WALSH, J. B. and MEYER, P. A. (1971). Quelques applications des resolvantes de Ray. Invent. Math. 14 143-166.

DEPARTMENT OF STATISTICS UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720