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A CENTRAL LIMIT THEOREM FOR PIECEWISE MONOTONIC
MAPPINGS OF THE UNIT INTERVAL

BY SHERMAN WONG
Temple University

It is shown that if, for a piecewise C2 mapping of the unit interval into
itself where the absolute value of the derivative is greater than 1, an invariant
measure is weak-mixing, then a central limit theorem holds for a class of real
Holder functions.

0. Introduction. It has been proven by Lasota and Yorke [5] that if 7 : [0, 1]+
[0, 1] is a piecewise C* mapping (see Definition 1 below) where inf, ¢ y|7'| > 1,
then there exists an invariant measure which is absolutely continuous with respect
to Lebesgue measure and has a density of bounded variation. Also Li and Yorke
[7] proved the existence of ergodic measures for such mappings. Finally Bowen [2]
has proven that if an invariant measure for the mapping is weak-mixing, then the
“natural” extension (see [10]) of the mapping is measure isomorphic to a Bernoulli
shift. With this last result, it will be shown that a central limit theorem is true for a
class of real Holder functions. The argument used is an adaptation of Bunimo-
vitch’s paper on the central limit theorem for the billiard dynamical system [3].

1. Preliminaries and lemmas.

DEFINITION 1. A transformation 7 : [0, 1] R will be called piecewise C? if
there is a partition of [0, 1], ? = {(0, a)), (@}, ay), - - -, (a,_,, 1)} where (a;, a;,,)
is an open interval, so that, for eachi = 1, - - - , r, 7, = 7|(a;_,, 4;) can be extended
to the closed interval [a;_,, ;] as a C? function.

From here on, 7 : [0, 1] [0, 1] is to be a piecewise C? function with s = inf|r’|
> 1 and 9 is as in Definition 1. As mentioned before, 7 possesses invariant
measures each of which has a density of bounded variation. Let p be such an
invariant measure and p be the associated density function of bounded variation.

DEeFINITION 2. If @ and 2 are two partitions of [0, 1], define new partitions
PVL2={ANB:4€P,BE}, 7P ={1rT"4: A€ P}, and P¥ =
VM TT"P =77mP /- - - \/7 MP In the case where m =0, let P,, = P,
The sets which belong to a given partition are to be called atoms of the partition.

Suppose that there are B € ?,,.,, and B’ € ?,,,,, for which 7”B = "B’ €
Prs- Then /3 : B> 7B is one-to-one and so is 3. : B’ +> 7"B’. Define n : B>
B byn= ('r|'[;,)‘l ° (1) where ('rl';,)‘l is the inverse function of /3. Thus, for
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X € B, gx = y € B’ such that 7™x = ™. 1 is one-to-one, onto and C2. (The idea
for n comes from [9].)

LEMMA 1. Given B > 0, there is an M = M( B) so that for each m > 0, one can
find a collection of atoms By, C Ppgim With
(1) 7™B €@, for BE B,s..n;

2 ift"B= 'r"'B’for B,B’' € B,y s then
”(":()g’:)(")l i’((;)) € [e™5, eP] where p(A) = [ p(x) dx;
@) MUBysm) > 1- B

Proor. Parts (1) and (3) follow from Lemma 1 of Bowen’s paper.

Since 7 is piecewise C? and s > 1, one can find a constant d for which
|7"(u)/7'(v)| € [e~ 9™, e®™~*) for u, v € [a;_,, ;). Then foru, v € B € P,
|7%u — %] < s~ M*+m=k) and

(V@) | - mat| 7T [ e
N (™Y (o) =0 (%) [ R ] where
dxs™M=dZ; ™M = ltfs—_:il :
2
mjg =[G () [~ e (ron] |

(r(3) (w) (r3) ° [(”'fg')—‘(’ﬁ';(f))]
(71'5')' ° [(”'fz"r)_l ° (”'1’3(“))] (”|’§)'(0)

E[e 2", 2] for u,0 E BE By, byusing (1)

By Lemma 2 of Bowen’s paper, for M large, p(x) and p(nx) will each vary by at
most a multiplicative factor in [e #/¢, ¢#/¢]. From (2) and this last comment,

p(x) € Ky[e™F/5, eP/%), p(nx) € Kple /%, eP/¢), and |n/(x)| € K [e #/S, eF/S]
where K., Kz, and K, 6 are constants. Thus p(nx)|n'(x)|/p(x) €
B B n
(K5 K,/ Kp)le #/%, ¢P/?]. Using a change of variable,
w(B’) = [pp(y) &y = [pp(nx)|n'(x)| dx

= fB[p(n;)(I;r;(x)l } p(x) dx

Eu(B)(%)[e—Bﬂ, eﬁ/z],

or ﬂﬁle Ks [e—B/Z’eB/2]_
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Consequently,
p(nx)|n’(x)] / p(x) -
)/ we) Elee]

LEMMA 2. Suppose f is a bounded measurable real function defined on [0, 1]. Given
B > 0, suppose M = M(B) and B, .,,, are as in Lemma 1. If B, B’ € B,,, . with

"B = t™B’, then

| gy /s @[ AZE ()] )

- mfs exp[ IAZE! f(rx) ] du(x)
< (eP — 1) for any integers L > 1 > m,
< 2| flloAlm + (e? — 1) otherwise.

PROOF. Let n: B — B’ be defined as before. Denote exp[iAZ/f(r/x)] by

F,(x, [, L).

A= |”—(IB—)fBFA(x, I, L) du(x) - ( . 7y B L L) du()

1
< ';‘_(F)IBFA()C’ I, L) dl‘(x) - (B) fBF,\(nx, I, L) dp,(x)
1
’ﬁf #FA(1%, b L) di(x) =~ Py, 1, L) d()

< —(IT)IBIFA(x, I, L) — Fy(px, I, )] du(x) ’
{5 Fx(nx, 1, L)[ ——dg;g;;//gg)') } du(x)

qro) =z
——= (5|1 — exp{iAZF [ f(+'x) — f(nx)]}| din(x)

(B)
0 poe ol 2OO /2 ],
+' (B)stx(n A L)[l w(B") W(B) } du( )‘

gy JaMIZE [ (%) = i) )| du) + (e = 1)
by Lemma 1.1 and by the fact that, for all a € R, e — 1| < |a.

=571 [f(x) = f(rnx) ]| < S5 A(#x) = f(vnx)| < 2|l fl, max(m — I, 0)
since for all j > m, vx = 1/(nx) by the definition of n. Therefore if L > > m,
A < (e — 1) and otherwise A < 2||f||JA|m + (e® — 1).
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DeriNtTION 3 ([8]). For @ and 2 two partitions of [0, 1], ¥ and 2 are

e-independent, written & 19, if
24e92peo (4 N B) — p(4)pn(B)| <e.

A partition ? is called weak-Bernoulli if for each ¢ > 0, there is an m such that
forallJ >0, K >0, @, L3¥PI+K+m(g])

In his paper, Bowen proves the Bernoulliness of the “natural” extension by
proving that the partition & is weak-Bernoulli. It is this property of & that is
needed to prove the central limit theorem.

2. Statement and proof of the theorem.

DEerINITION 4 ([3]). A measurable, essentially bounded, real function f, defined
on [0, 1] with the Lebesgue o-algebra of [0, 1] and a measure p which is 7-invariant,
i.e., invariant relative to 7, obeys a central limit theorem if, for some positive
constant o, for any fixed z € R,

. 1 L—1 i r3 1 z - u2
lim, | p{x: - [20 f(r'x) — Lf] <z} = T /% o €XP > du
oL> (27)2

where f = [} f du and du is Lebesgue measure.

THEOREM. Let 7, 9P, and p be as above. Suppose u is an ergodic measure for
which T is weak-mixing. Also suppose that f is a Hélder continuous real function
defined on [0, 1] with exponent § € (0, 1] such that

(1) D,(f) ~ cL as L — oo where D,(f) = [Z&~f('x) — Lf}? dy and ¢ > 0;

(2) for any € > 0, there exist N(¢) and L(e) for which for each L > L(¢),

mfnl[zo’““f(r’x) — LfP du < ¢ where Q, = {x: |25~ Yf(r'x) — Lf| >
NEXDL()?).

1
Then f obeys a central limit theorem and the constant o can be taken to be cz.

PrROOF. (Without loss of generality, one can assume f = 0.) It is shown in
Bowen’s paper that, if p makes 7 weak-mixing, then @ =
{0, ay), (@}, @), - - * ,(a,_;, 1)} where (g, a;,,) is an open interval is a weak-
Bernoulli generator. If 2 < @, ie., the partition 2 is no finer than ¥,, then
SocoZpeqyiren| (P N Q) — W(P)w(Q)| < 3¢% In particular, this is true for P/
<P, for0<I<J.

Given 8 > 0, choose M = M(B?/3) according to Lemma 1, i.e., there is a
collection of atoms B C Py, s for which, if I — M >0, r'"MB € @,, for
B e ®; if r7'"MB = 7'-MB’ for B, B’ € %, then
(p(nx)|m (/B /(p(x)/ W(B)) € [exp(— B>/3), exp(B>/3)], and p(UB) > 1
— B?/3. (The choice of / will 'be made later.) For D € ?,,, let A, = {B €
B :7'"MB = D). Let A, A, - -, A, be the nonempty A4, and A, =
[0, 11/ Uk ,4,. By the choice of 4, j=1,---,k, u(dy) < B?/3. Notice that
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Ap € 77!*MD and that each 4, L, j=1,- , k, is contained in a union of atoms of
@, Mo SaY, A CP_u- Moreover A \(A N Ay = =1,---,k. Choose m

now so that @_M_L”/?"?P’ZZM__,,,, ie., EAE@;_MZBE@;:%-PMM(A N B) —
wA)WB)| < B2forl > 3M + m.

Ef-OZBe@fig’J!'ml .U‘(Aj N B) - M(Aj)M(B)|

< o Zpeayn | M4 0 B) — p(4)p(B)|+2u(4,)

< ZjaiZseortgn | 1(4\ (4, 0 40)) N B)
~ A\ (4, 0 4B + 3 B

=Sk Spcorun|u(d, N B)— (4,n 4,n B)
—w(4)u(B) + (4, N 4o)u(B)| +3 5

< 2,=|zae@, Mo m|#(A N B)
—u(4;)u(B)| + 2u(4,) +3B2

< 24co_,Zpeai-yym| M4 N B)
—u(A)p(B)| +3B% < B> +3B% < 3B>

Hence {AO, Al, e Ay LEPIZMTm | Consequently there is a collection of atoms

S c @M m for which W(US) > 1 — B and for B € §, Z_o| w(4;|B) — w(4))|

< B (8D-

Let o,(A\) = /o exp[z}\E o f(1/x)] du(x), the characteristic function of 2%, =0 1forq/
with respect to u and F,(x, /, L) be as in Lemma 2. To prove the theorem, it

1

suffices to show that ¢, (A/(D.(f))?) — exp(—A?/2) as L — oo uniformly for A in
each finite interval. The argument is based on making an estimate of |¢,(A) —
o NN

6. — b NSN)| < [6,A) = S ep-n-ngy-gzm () cFa(x, 0, 1) du(x|C)

X [eFy(%, 1, L) dp(x|C)| + |E & - w-mgp-sn (C) [ &Fr(x, 0, 1) du(x|C)

1-2M—-m

J&Fa(x, 1, L) du(x|C) — ¢ (Ne V)] = &, + A,

We will begin by estimating A,. One observes that, since p is invariant with
respect to 7, if 0 < / < L, then

o) = Jg exp[l}\ZL lf(”Jx)] du(x)
= /3 exp[ IS f(m/x) ] dp(x)
= [oFx(x, I, L) dp(x).
If A= {C ErM-—mepi=M-m c(UB|C) > 1 —,8}
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then
2 ~ ~ ~ ~
=5 <m(UB) = Zcqm(COIUB[C)+Zsequ(C)p(UuB|C)
< Zéeqm(C)

+(1 = B)Segqn(C)
= p(U) + (1= B)[1 - (U]

->p-E < puoa 1- £ cuua
= 3 (U W) or 3<‘u,(U ).

Now considering = ~"§ where § ¢ PI=¥-" s defined above, r~M-"$ A
has p-measure at least 1 — 8. For € € r~M-m§

62—/ = feFa(x, 1, L) du(x| )|

<op- /N = JeF(x, 1+ M+ m, L + M + m) du(x|C)|
+H/¢F(x, I+ M+ m, L+ M + m) du(x|C)
— J&B(x, I, L) du(x| C)|

< foFn(x, I, L) du(x) = [eFy(x, 1 + M + m, L + M + m) du(x|C)|
+elF(x I+ M+ m, L+ M+ m)
= Fy(x, I, L)| du(x|C)

< 12,1;1 p'(Aj)fA_,F)\(x’ I, L) dﬂ(xlAj)
—JeF\(x, I+ M + m, L + M + m) du(x|C)|

2 ~
+ 3+ NSZEET f(x) = 25 Y(vx)| - du(x| €)
<2 ”(Aj)fA,FA(x, I, L) du(x|4,)
—JeF\(x, 1+ M+ m, L + M + m) du(x|C)|

BZ
+ 5+ 20 (M + m)

ForC € 17M-m§ A q, let ¢/ = ¢n (UB).

T=|f¢F\(x, 1+ M+ m, L+ M+ m)dux|C)
= JomencFr(x, 1, L) du(x|rM*mC))|
<|feF(x, 1+ M+ m L+ M+ m)du(x|E)
= JomengFy(x, 1, L) dp(x|7*C) +[1 - y(UB|C)]
= feF(r™*"x, I, L) du(x|C)
~ [rwencFx(x, 1, L) dp(x|r™*mC)| + B.
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S Fa(r™*mx, 1, L) du(x|C)
= Zsecac AT ™, 1, L) du(x|C)

PAE) | g Fo(x, I, L) du(r~¥~"x| B)

= ZBGEB,
¢ u(C)
du(tr~M~"x|B)

_ w(B)
= ZBE‘?Blc (C)f emp (X, 1 L)

2 2
€3pcae &y Mglé; emg F\(x, 1, L) dﬂ(x|‘fM+”‘B){exp( f ) exp(%)]
. Because C €

by an argument analogous to the one found in Lemma 1

~M-mel-M"m and u is 7-invariant,

B
EBEQBK Ecgf memgFy (x, 1, L) dl—"(xlTM+mB)
B
= ZB E%IC _—(Lﬁ({:zl—.CS M+"'BF/\(.x, l, L) d#(x|TM+mB)
“MmE N U B)

me T
= Sico,u-nsrnelifaCe 1 L) dulxlrnC) M

= 25&@’, M= M+mc~f§F/\(x’ I, L) dy(x|1'M+mé)p,(U B IT_M mB)-

Consequently,
r< 2569’, Mem| M+mf-|f§F>\(x’ I, L) dl—"(xITM+mC)|

X[1=p(uB|r—™- "‘B)]exp(’B ) +8
=2§e@,_M_m|,M+méﬁ,‘(,—f%CT)[ - p(UB|r~M- '”B)]exp('B )+B
Let U = {1~M~"B : y(UB|r~M"B) > 1 - B%}. Observe that, since
rmMmB g Mom( MimEy =
(UB|rM"B)= w(UB N+ M "B NC)/ W+~ "B nC)
= w(uB|r~M-"B|C).

1-8<u(u®|C)
= 2, -w-mjeq it~ "B|C)p(UB|r M~ "B|C)

+ 2, w-ng gy (MBI C)p(U B |7 "B|C)
< p(u|C) + (1 - B2)[1 - p(LU|E)]
= for B<1,0<BT— B <Biu(uU|C),
ie, p(UA|E) > 1 — pr.



A CLT FOR CERTAIN INTERVAL MAPS 507

Hence

r< [z By @ mom)]

“M-mB e ( M+mc)

+2,-M-m§e%—“(3—)~[ - p(UB |7 M- "‘B)]}exp(ﬁ )+B

( M+m )
1 (e~ M) . M mB)
< [2 e BT E T Bren T ]

exp(B?/3) + B < {B(UAIC) + [1 = wUW|ON) exp(B/3) + B <
287 exp(B2/3) + B. Thus for € € r~M~"S 0 U,

@ i) — JeF(x 1 L) du(x|O)]
S w(4)f 4 Fa(x, 1, L) dp(x|4))
— [ msneFy(x, 1, L) dy(x|7M+mC)|
T+ £ 21,00 + m
< [Shey W) P 1, L) dis(x]4)
—Jueng (%, 1, L) dy(x|rM*mC))|
+28% exp( Bz) +p+ B Bz + 2l (M + M)

Let B; be an arbitrarily fixed atom of %Wj =1,---,k.Forj=1,---k,
J4F(x, I, L) du(x|4;) — [pFr(x, I, L) dp(x|B))

1
= ngeww)[umx, I, L) du(x|B) — [ Fy(x, I, L) du(x|B)].
J
By Lemma 2 and by seeing that / >/ — M
2
SoFr(x s L) dux|B) = [ Fy(x 1, L) d(x|B)] < exp( ) = 1.

Now one obtains

[§]

@ [ Fa(x b L) du(x]4) — [5Fy(x, I, L) du(x|B)] < exp(l%) L

fruem&Fy(x, 1, L) dp(x|r™*mC)
= Sk of menénaFa(x, 1, L) du(x|r+mC)
- ,,0”(,4 [4+7C) fwenéa Fr(x, 1 L) d(x14) |74+ 7€),
Notice that forj = 1, - - - , k, M*"C  4; consists of atoms B € B, - Thus
JomeménaFr(x, I, L) du(x|Aj|1-M+mc"')
= S'u(B N M E| A TMHE) - [ F(x, I L) du(x|B)
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where “Z"” is the summation only over those atoms of %, 4, intersecting TMEmé,
Using Lemma 2,

(5) U.,.M+ménAJFA(x, A L) dlL(XIAjl'rM"'mé)
— /5 Fa(x, 1, L) dp(x|B)| < (B N M*mCl 4| e M+ mE)| [ g Fy(x, 1, L) du(x|B)

—/5F\(x, I, L) du(x|B))| < exp(%z) -1
From (3), (4), and (5) one obtains for C € r~™~"$ N AL,
lé—iA) = feFa(x, 1, L) du(x|C)|
< [Sk 1w(4))f g Fa(x, I, L) du(x|B;)

—Sk_ (4|t +C) [ 5 Fy(x, I, L) du(x|B)|

+35_ m(4)|f g Fr(x, I, L) du(x|B)

— [ Fa(x, I, L) du(x|4,)| + Zk_, p(4)|r*+mC)

X [Z'w(B n rM+mC|4|rM+mE)

S sFa(x, I, L) du(x|B) — [ 5 Fy(x, I, L) du(x|B))|]

BZ

. 2
+28% exp( ) + 5+ B4 20000 + m

2 . 2
< Sk u4) — w4, mC)| + 2[exp(%—) - 1] + 282 exp(’BT)

2
+B+ 5+ 20 flle(M + m)A|

2 2 1 2
<+ £y 2{exp( £)- 1} + 28 exp( &) + 2001 + m)L

Therefore,
A, < [S¢er-w-nsna(C)feFr(x, 0, 1) du(x|C)
X [feFa(x, 1, L) du(x|C) — ¢, N ]| +38
< Sgerm-msnab(ONfeFr(x, 1, L) du(x|C) — ¢, AN)] +38

<Ep+ Tz + Z[exp(%z) - 1]

. 2
+28% exp( ) + 20110 + mN
<58+ 2[exp('BTz) - 1}

+28% exp(ﬁ;-) + 2l (M + mA| for B <.
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As for A,
Ay =lo (A) — 26er”-"'@f:%;_'",,,#(é)féFA(x, 0,7)

X du(x|C)f & Fa(x, 1, L) du(x|C))|

< o) — Zpeg,mM(B)/pFr(x,0,1)
X du(x|B)f s Fy(x, I, L) du(x|B)|
+|Z 5 cq,0(B)/F(x, 0, 1) du(x|B) [z F(x, I, L) du(x|B)
—S ¢ er-m-map-pom B(C)f &Fr(x, 0, 1) du(x|C) [ sFy(x, I, L) du(x|C))|

=TI +T,

I = IEBE@’,'U'(B)[.{BFA(X’ 0, L) du(x|B) — [gFy(x, 0, 1)
X dy(x|B)f s Fy(x, I, L) du(x|B)]|
< 23&@,#(B)|fBF>\(x’ A L)fB[F)\(x’ 0,7)
~ Fy(x1, 0, 1)] d(x,|B) du(x|B)
< zse@,#(B)foﬂFx(x, 0,/)
— F\(x1, 0, )] du(x,| B) du(x|B)
< Zpeou(B) s 207! [ f(r'x) — f(x) ]l
X dy(x,|B) dp(x|B)
< ZpeqMB)/ 5N f(Px) — f(rx))|
X du(x,|B) du(x|B).

Because f is Holder with exponent § € (0, 1], if x,, x, € B € 9, and M, is a fixed
Hélder constant for f, then |f(r/x,) — f(/x))| < My|tix; — v/x,)° < Mys=¢=7°
since |x, — x,| < s~ It follows that

S5 () = f(Px)]l < MG |r = Pl < MZgTis T

—M( 570 )[1—s—6<’-‘>]<M( s7° )
N1—-s"2 N1—-s-8

= K* and T, < [A|K*.

T, <|Zg e%l-‘(B)fBFA(x’ 0,7) fII*(xIB)fBFA(x’ I, L) du(x|B)
—Secam(C)eFy(x, 0,1) du(x|C)feFy(x, I, L) du(x|C)| +3(B + B?)
< |2peafsF(x,0,7) du(x)[ g F\(x, I, L) du(x|B)
—ZeeafeFr(x, 0,1) du(x) X
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J&F\(x, I, L) du(x|C)| + 3B + 387
< |ZpeafsFA(x, 0,1) du(x)f s Fy(x, I, L) du(x|B)
—SéeafeF(x, 0,1) du(x)- [eF(x, 1, L) du(x|C)
+ZecalfeF(x 0, 1) du(x)f aeFr(x, I, L) du(x|C)| + 5B + 38
< Izge%fBFA(x’ 0, 7) du(x)/pF\(x; I, L) d#(x|B)
—ZéecaleFr(x, 0,1) du(x)
S&F(x, 1, L) du(x|C)| + 1B + 5B
< IEBE‘beFA(x’ 0,7) dl‘«(x)fan(x, I, L) du(x|B)
—SecaleFa(x 0, 1) du(x) [ & Fy(x, I, L) du(x|C)|

+SecarONehie . D)1 - A | i + 38 + 187
r(C)

< |Z5eafsFr(x, 0,1) du(x)[pFy(x, I, L) du(x|B)
~SécaleFa(x 0,1) du(x)[eF(x, 1, L) - du(x|E)|
+Zgcqm(C)B +3B +3B°
< [S¢capencSsFa(x 0, 1) du(x)[ [sFr(x, I, L) du(x|B)
—f&Fy(x, 1, L) du(x|C) ]|
+%8+282  (because U need not be equal to U %B)
< Z¢caZpene MBI sFA(x, I, L) du(x|B)
—f&Fa(x, 1, L) du(x|C")| +4B

for B< 1.

Observe that ¢’ consists of atoms in B for which B,, B, € ® ¢ implies r'~™B, =
m/~MB,, ie., C' C A4, for somej =1, - - - , k. Allowing B; to be an arbitrarily fixed
atom of EBl 4l by Lemma 2 and reasoning analogous to that used to derive (4),

2

aFa(e, 1 L) du(x1B) = (v b 1) du(x|B)] < exp( ) = 1
- 32

5B, L) d(x18) =SBy & 1) du(x1€) < exp( 5-) = 1.

Therefore T, < 2[exp(B2/3) — 1] and A, < K*|A| + 2[exp(B2/3) — 1] + 4B. One
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now obtains that

© 1600 = 6] < KW + 2o 5} —1] 4 a4 55

+2[exp(%i) - 1] +2p1 exp(—’i—z) + 2| fllo(M + m)|
< [K* + 2| fllo(M + m) ]

+4[exp(-’%—2) - 1] + 9B + 287 exp('BTz)
= NLK* + 21 f1.(M + m)] + V(B).

Choosing n > 1 and setting L// = n, applying (6) successively to
¢, (A), ¢, _A), - - -, one obtains for L
(M o) = &) < n{N[K* + 2| fllo(M + m)] + V(B)}.

Substituting A(D, ( j))‘f for A in (7),
® 6 (MDL() ) — o7(NDL(H) )]
< n{AI(DLN) [ K* + 2 flo(M + m)] + V(B)).

For I > 0, define nonincreasing 8, > 0 for which 8, — 0, —log 8, = o(log /),
and M, + m; = o(log /) since M + m is determined by 8 which in this situation
will depend upon /. With this choice of 8, l}\l(cl)_ll[K* + 2f (M, + m)] + V(B)
—>0 as /— oo where ¢ is as in hypothesis 1. Now, for /, define a positive,
nondecreasing, integer-valued function of /, n(/) such that

(@) n(l) = o(—log B) (= o(o(log 1)) = o(log 1));
(ii) n(/) > o0 as I - oo;
(iii) n(! + 1) is either n(/) or n(/) + 1 for each /.
Because D, (f) ~ cL,

© (D)D) 2LK* + 201 fllo(M, + m)] + V(B))
~ n(D){ (e 1 n(D) T2 [K* + 20| fl(M, + m)] + V(B))
< n(){ (D) T2 K* + 201 fllo(M, + m)] + V(B)).
By the choice of n(/), M;, m;, and B,, one finds
n() o (M, +m) _ ollog No(log 1) _ o[Uog D]
Iz I I3 I3
and, as for n(/)V(B), the term n(l)[2( B,)z exp( ,812/ 3)] will approach 0 no more

slowly than 2e n(/)( ,B,)2 for B, < 32 but n(/)( ,8,)2 = o(—log B ,8,)2 — 0. Thus (9)
goes to 0 as / — oo, and (8) goes to 0 uniformly for A in each finite interval.

s
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For L > 0, set /(L) = max{/ : I n({) < L} and A(L) = I(L)n(I(L)). One wishes
to show that

-0

A A

S\ )\ =

(DL()? (Dawy(f))?
uniformly for A in each finite interval, i.e., the limiting distribution for S; (D ( f))‘l
and the one for S, y(Dp)(f)) 7 are the same where S, = ,=o ! f o /. Note that

SL = S, — SA(L) (DA(L)(f)) SA(L)
I I T-
(D()) (DL()? (D) (Drw(N)?
Again by hypothesis 1,
Dy1y(f) _ c¢A(L) —1— L — A(L)
D,(f) cL L )

By choice of n(/),
L-AL) _L-AIL) [H(L) + 1]n(I(L) + 1) — I(L)n(I(L))
L A(L) A(L)n(I(L))
< [{(L) + 1][n((L)) + 1] — I(L)n(I(L))
I(L)n(X(L))
= L + L + L -0
n(l(L))  UL) KL)n(I(L))

as L — co. Consequently Dy \(f)/ D (f) ~A(L)/L—1 as L — oo. If one can
show that

(10) 5.0

then one is done because (10) implies (D, ( f))'zlls Sxw)l — 0 in probability
which implies S; (D, (f))~ 7 and S Ay (Pawy(N™ * have the same limiting distribu-
tion (see, e.g., [1]). Because p is T-invariant,

f(l)ISL - SA(L)|2 dp. = f(l)lsL—A(L)l2 dp. = DL—A(L)(f)9

fols SA(L)|2 dp.'—')O as L— 0,

and
D, _ () _L- A(L) -0
D,(f) L

D (f) ——[olS, — Sawl dp =

as shown above.

Returning to ¢;"O(\(D; ,( £)~7), and setting L(/) = I n(!), one notices that the
characteristic function is the one for a sum of n(/) independent, identically
distributed random variables £, .{2, © oy &y With distributions given by

Py(2) = p{x : (D) 2 [E2bf(vn)] <z
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fori=1,- - ,n(!). In order that ¢ A(D,,,(f))~ 2) > exp( —A>2 /2) uniformly for
A in each finite interval it is necessary and sufficient that the Lindeberg condition
hold (see, e.g., [4]) which in this situation has the following form: for any fixed

Yy >0,
1) Sy ¥ dPe(x) >0 or (D)o le) Gy (5677 ) du(x) > 0

as /- oo where 9D, = {x: IEI"f(zj)l > y(D,_(,)(f))l} (Notice that
(n(1)/ Do) ~ )/ eL(D)) = ()~ ~ (D()"" and (D F)F ~
(n(1))2(D( j))2 .) By condition 2, for any given ¢ > 0, there are constants N(¢) and
L(e) such that if / > L(e), then (D(f) o GG o /) dp <e for Q,
=R (x| > N(s)(D,( f)) }. Given & > 0, for / large enough, 9, C Q, and

n(l)fs (26_1f°7j) dp ~——[q (25 1f°7") dp

D(f)

v DL(I)(f )

D (f
As!— o0, (D)™ fa (5 Yf o /) du — 0 because D, will be contained in Q, for
smaller and smaller €’s as /—0. Since the Lindeberg condition is satisfied,
& OA(D( j))‘%) — exp(—A?%/2) uniformly for A in each finite interval. It has
been shown that

b2y (MDy()) 72) = $7OA(Dyn()"7)] =0

uniformly for A in each finite interval. Consequently, ¢ A(Dyuy(S)” 2) -
exp(—A?/2) umformly for A in each finite interval. Finally, because S;(D,( f))“
and Sy (Dpy()~ * have the same limiting distribution, ¢, (A(D.( f))‘i) -
exp(—A?/2) uniformly for A in each finite interval as L — oo.

REMARKS.

1. Let B(m) = [} f(™x)f(x) du(x), the correlation function. From the results of
Leonov [6], if 3, ,|mB(m)| < oo, then the spectral density r(p) exists for the
process (f ° 1™),50 and c in condition 1 of the theorem can be taken as 27r(0).
(By spectral density, one means B(m) = [ exp(ipm)r(p) dp.)

2. As mentioned in Bunimovitch’s paper [3], in order for condition (2) to be
satisfied, it is sufficient that for some constant K > 0,

lim SUPL oo 5 fo( f(TJx)) dp(x) <
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