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ASYMPTOTIC INDEPENDENCE IN THE
MULTIVARIATE CENTRAL LIMIT
THEOREM'

By WiLLiam N. HuDsON AND HOWARD G. TUCKER
Tulane University and University of California, Irvine

Necessary and sufficient conditions are given for asymptotic independence
in the multivariate central limit theorem. If {X,} is a sequence of independent,
identically distributed random variables whose common distribution is symmet-
ric, and if the distribution of X2 is in the domain of attraction of a stable
distribution of characteristic exponent «, then X and s? are asymptotically
independent if and only if 1 < a < 2. If the components of a multivariate
infinitely divisible distribution are pairwise independent, then they are indepen-
dent.

1. Introduction and summary. One particular question related to the multi-
variate central limit theorem is that of asymptotic independence of the component
random variables. In [10] and in [4] the special case was asymptotic independence
of the sums of the positive parts and of the negative parts for an infinitesimal
system of random variables satisfying the univariate central limit theorem. A use
for such asymptotic independence is given in [1]. In what follows a brief look will
be taken at the general problem of asymptotic independence with solutions
provided for two particular problems.

The results obtained here are as follows. First a general theorem is obtained
giving necessary and sufficient conditions for the components in the multivariate
central limit theorem to be asymptotically independent. This is applied toward
obtaining the main result: if {X,} are independent, identically distributed random
variables with symmetric common distribution function F, and if the distribution
function G of X? is in the domain of attraction of some stable distribution, then

(1 X,=(X;+ -+ +X,)/n
and

1 " =1\2
)] 33 = mzi-l(xi - Xn)

are asymptotically independent if and only if G belongs to the domain of attraction
of a stable distribution of characteristic exponent not less than 1. Finally, a
theorem due to Pierre [7] is proved without any assumption of finite moments: if
{Xy, 0 € ©} is a family of random variables such that every finite dimensional
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marginal distribution is infinitely divisible, then pair-wise independence implies
independence.

It is of course recognized that the theorem on asymptotic independence of X,
and s? extends in a way the classical theorem due to Geary, Lukacs, Kawata,
Sakamoto and Zinger that states: if X, - - - , X, are independent and identically
distributed, then X, and s? are independent if and only if their common distribu-
tion is normal. (See [6], page 80 for details and references.) The basic assumption
on our extension must contain the hypothesis that G is in the domain of attraction
of some stable distribution, for otherwise there would be no joint convergence even
of the partial sums and the partial sums of squares of {X,}. The underlying
assumption of symmetry of F might be removable. The weakening of the hypothe-
sis in Pierre’s theorem shows that in the multivariate central limit theorem,
asymptotic pairwise independence of the components implies asymptotic indepen-
dence.

The starting point is the general form of the multivariate central limit theorem,
possibly given for the first time by Rvacheva [8] and quoted by us in [4]. We quote
it here for quick reference: ‘

THEOREM 1. Let {{X,}} be an infinitesimal system of row-wise independent
p-dimensional random vectors, and define the probability measure H,; over the
measurable space (R?, BP) by H,(A) = P[X,; € A] for all 4 € PP, Then there
exists a sequence {c,} C R? such that the distribution of %X, + ¢, converges
completely to a (necessarily infinitely divisible) distribution function F if and only if
there exist a Lévy spectral measure N over the Borel subsets BP of R? and a
nonnegative definite quadratic form Q(u) defined over R? which satisfy the following:

(i) for Borel sets of the form S = {(x E R? : |x| > R, w, € A}, where A is a
Borel subset of the surface of the unit sphere, w, denotes the point of intersection of the
vector X with the surface of the unit sphere, and such that N(bdry S) = 0,

Sk H,/(S)> N(S) as n—oo,
and .
@) lim, o lim, | 5% ([, <e(u’x)zH,,j(dx‘)\ ~ (J <X H,(dX))*} = Q(u), where
u'x = 3?_,u.x;. The characteristic function F(u) of F(x) is given by
ﬁ(u) = exp[ iv'u— Q(uw)/2 + f||x||>0(e’“"‘ -1- —iu‘x—z)N(dx)},
~ 1+ |x||
where ¥y € R? is constant.

2. Asymptotic independence of components. The general theorem for asymp-
totic independence is as follows. Notation is provided in Section 1.

THEOREM 2. Let {{X,, 1 <j<k,}} be an infinitesimal system of row-wise
independent p-dimensional random vectors for which there exists a sequence {c,} of
p-dimensional constant vectors such that the distribution of Ef"_ 1X,; + ¢, converges to
that of some random vector X. Necessary and sufficient conditions for the components
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of X to be independent are:
(i) for every closed ball S C RF that has an empty intersection with each axis in
R?, % H,(S)—0as n — oo, and
(i) for 1 <i<j<p,

limeio llln_ n—>oo2,lc"' 1 {fl"i|<8§ |xj|<3x‘.'xfll.H”1(dx)

- f|x,-|<ex'Hnl(dx)f|)9|<exanl(dx)} =0.

Proor. For1<r<p,letX,,,, X, and ¢, , denote the rth components of X,,
X and ¢, respectively. We first prove that condmons (i) and (ii) are sufficient From
the basic hypothesis it follows that, for 1 < r < p, the distribution of Z* 1 X,
¢, , converges completely to that of X, (since marginals of a convergent sequence
converge to the marginal of the limit). Thus by the converse of the univariate

central limit theorem, it follows that
lim@lo ll_l'_n_ n—»c:lozfn= 1 {flxr|<8x"2H"j(dx)

— (f 1 <eX-H,(dx)) } (some) o, > 0.
Thus by (3) and condition (ii) we have

(©)

limgo lim 34 (/<o) H,(dx)

= (<) Hy(dx))'} = S2_10,u2.

If, for A € PO, we define M,(4) = N{x : x, € A}, then by condition (i) and by
(4) we determine the characteristic function of X to be

(4)

fx(“) = Hir,=lexp{i.Yrur Oy r/2 +f ( Wk — ] - llux )M(dX)]
+ x

i.e., the components of X are independent. Conversely, let us assume that the
components of X are independent. Since each component, X,, of X is infinitely
divisible, then its characteristic function may be written in the form

S (w) = CXP{iY,u, - 0,u’/2
)

+fx,#(ewr —1- %‘_)M(dx)}

and thus we obtain as the characteristic function of X the following:
Fx(w) = exp{ iv'n — %z’r’-l"rr“rz

. iux
+32_ e — 1 — — M, (dx,) ;.
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However, by the hypothesis and Theorem 1 we know there exist a vector a € R”, a
nonnegative definite quadratic form Q(u) over R” and a Lévy spectral measure N
over R? \ {0} such that

f(w) = exp{fa'u ~ O@)2

uf iu'x
+ e —1-— N(dx) ;.
fx#( 1 +x‘x) ( )}
By the uniqueness of the canonical representation of a, Q(u), N(-), it follows that ¥
is the measure over (R?, B?) concentrated along the axes only of R? and defined

by (for 4 € B@)
NA) =22 M{x,:(0,---,0,x,0,---,0)€ A4},

a =1y, and Q(u) = =?_ 0, u>. Therefore, for every closed ball S C R” that has an
empty intersection with each axis, N(S) = 0. By Theorem 1, condition (i) follows.
We now show that condition (ii) is true. Since the rth components obey the
(univariate) central limit theorem, it follows that (3) holds for 1 <r < p. In
condition (ii) in the statement of Theorem 1, let 4, = »; = 1 for 1 <i <j < p, and
letw, =0,k +#i,k+j,1 <k < p. Combining this with (3) yields condition (ii) of
our theorem.

3. Asymptotic independence of X, and s2. If {U,} is a sequence of p-dimen-
sional random vectors, we shall define what is meant by asymptotic independence
of the components. Let the components of U, be denoted by U,,, - - - , U,,. If
there exists a p-dimensional random vector U with independent components, none
- of which is a constant, and if there exist numbers b,;, - - -, b,y,, Qups* * 5 Gy, such
that the joint distribution function of b,,U,, + 4, * * , b,,U,, + a,, converges
completely to that of U as n — oo, then we shall say that the components of U, or
of {U,} are asymptotically independent.

First a word about notation. The symbols X, s? and H,; have been defined in
Section 1. For 0 < a < 2, % (a) denotes the domain of attraction of the class of
stable distributions of characteristic exponent a, and %q (a) refers to the domain of
normal attraction for a. If Z is a random vector, F, will always denote its

distribution function.

THEOREM 3. Let {X,} be a sequence of independent, identically distributed
random variables with common symmetric distribution function F and such that the
distribution function G of X? is in D (a) for some a € (0,2]. Then X, and s? are
asymptotically independent if and only if G € %D (a) for some a € [1, 2).

PROOF. Let us assume that G € D (a) for some a € (1, 2]. Then it is known
that E|X[® < oo for 0 < & < a (see [3], page 179), and thus EX? < oo, which
implies that F € g (2). It is also known (see Lemma 5 in [10]) that if G € D (a),
then there exists a slowly varying function L(x) (wWhere L(x) ~ const. if and only if
G € Dy(a), and L(x) > o as x —> o0 if G € D(2) \ Dg(2)) such that for some
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sequence of constants {d,},

1

n'/*L(n)
converges in law to a stable distribution with characteristic exponent . Since F is
symmetric and in %y (2), then the distribution of n ‘%2:?_ ,X; converges completely
to N0, py), where p, = EX2. Let p =2 now, X, = Xk/n%, X2 =
X2/n'/*L(n) and X, be the vector random variable whose components are X,,. ,
and X,,.,. We shall show first that the infinitesimal system {{X,,, 1 < k <n}}
obeys Theorem 1 and that the component summands are asymptotically indepen-
dent. Let a, = 2 ; we shall first show that 3% _, X, + a, satisfies condition (i) of

Theorem 1 as weﬁ as (i) in Theorem 2. We do it first for a = 2. If G € 9 (2), then
by the univariate central limit theorem nP[|X,,.,| > €] >0 and nP(|X,,,.,| > ¢] >0
as n — oo for every € > 0, thus establishing (i) in both theorems when a = 2. We
shall next show that (i) is verified in Theorems 1 and 2. Indeed, for any ¢ > 0 (now
1<a<?2),

nP[|X1| > en, X2 > enl/"‘L(n)]= nP[ X2 > ', X2 > en'/*L(n)].

E'i'- lAfi2 + dn

By a theorem of Karamata ([5], page 59), if Q(x) is a slowly varying function,
x%0(x) - o0 as x — oo for all § > 0. Since 1/ L(x) is slowly varying, it follows that
for all large n, n'/*L(n)e < ¢’n, and hence each side of the above equation is
eventually equal to nP[X?2 > €’n]. Since G € D(a), 1 <a < 2, there is a slowly
varying function Q(x) such that

P[X} > x] ~x7Q(x).

(See [2].) Hence nP(X2 > e%n] ~ ¢~ 2*n~*~DQ(en). By Karamata’s theorem above
and the fact that @ > 1, we observe that n~©@~VYQ(e?n) -0 as n— oo, thus
verifying (i) in both Theorems 1 and 2 for 1 < a < 2. We have yet to establish
condition (ii) in both theorems for a € (1, 2]. By the symmetry of F, we know that
condition (ii) is true in Theorem 2 without even taking limits. This symmetry also
implies that the matrix of the quadratic form on the left side of the equation of
condition (ii) of Theorem 1 is diagonal. Thus, it remains to prove that the iterated
limits

2 1220 Var(an; x| <e])

exist and are equal; if they do, then automatically the limit is a nonnegative
definite quadratic form. By the univariate central limit theorem, since Fy € Dg(2),
it follows that

lim,, lim _

limﬂlo h_m n—-»ooz;='1 Var(X"'; lI[|X,,,; ,|<e]) = “2'

Also, since Fy; € ®D(a), then the same theorem implies that both limits of

lim, o lim, 3% , Var(X,; »ljx, <) €Xist and are equal, being positive if and
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only if a = 2. Thus we have shown that the joint distribution of

1= 1
nzX, and ——3"_X>+d
nl /e 7, (n) P=1% n
converges to a bivariate distribution of a random vector with independent compo-
nents. We now observe that

L sn x244 4+
—— St X24d = ——2+d + g
nV/oL(n) " '/ (n) L(n)
and
1-1/a __
PR = (s X))

Lin) ©"  npVeL(n)

Since the distribution of » 212,,1X converges to that of N(0, u,), it follows that
(n'/*L(n))~ l(n‘52§'_ 1X;)* —,0. Thus we obtain in the case a € (1, 2] that the joint
distribution of nZX and ((n — 1)/n'/*L(n))s? + d, converges to a bivariate dis-
tribution function of independent random variables. We must next show asymp-

totic independence of X, and 52 when a = 1, i.e., G € D (1). In this case there
exist a slowly varying function Q(x) and a sequence of constants {d,} such that
(nQ(n))~'S7.,X? + d, converges in law to a stable distribution of characteristic
exponent a = 1. It is also known (see [3], page 176) that Q must satisfy nP[X? >
cn@Q(n)] ~ K # 0, where K and ¢ are positive constants which determine each
other. There is also a slowly varying function R(x) such that P[X? > x] ~
x!R(x), from which we obtain P[X, > x] = P[X; < — x] ~ x 2R(x?) /2. Now
R(x?) is a slowly varying function of x; thus, by Theorem 4 in [9], F € 9 (2). By
Lemma 5 of [9], there is a nondecreasing slowly varying function S(x) such that
{n%S(n)} serve as normalizing coefficients for F. (Note: since F is symmetric, no
centering constants are needed.) We now denote X, as the vector whose compo-
nents are X,;., = X,/ n%S(n) and X,,., = X2/nQ(n). We shall show that condi-
tions (i) of Theorems 1 and 2 are satisfied. Since F € 9 (2), then by the univariate
central limit theorem, nP[|X,| > en2S(n)] — 0 as n — oo, or nP[X? > enS*(n)l -» 0
as n — co0. However G € (1) implies nP[X? > enQ(n)] ~ (some constant) K 7 0.
Hence for sufficiently large n, nS*(n)e? > nQ(n)e, and therefore nP[|| X, > ¢] =
nP[|X,| > niS(n)e, X? > nQ(n)e] = nP[X? > nS*(n)e?] - 0. Thus, conditions (i)
of Theorems 1 and 2 are satisfied. The proof that conditions (ii) of Theorems 1 and
2 are satisfied is the same as in the case when 1 < a < 2, with obvious modifica-
tion when F € 9 (2) \ %Dg(2). Thus we have shown that the joint limiting distribu-
tion of (n% /S(n)X, and (nQ(n))~'27_ X + d, exists and is that of two indepen-
dent random variables. One can easily verify that

— 1l

nQ(n) +d,+ D,

2".,X2+d—
nQ() =t
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where

ol = SHn)or —lan 2

Dn - Q(n) Xn - nQ(n) ((nZS(n)) 2i-l)(i) .
By Karamata’s theorem referred to above, S%(n)/nQ(n) — 0 as n — c0. Coupling
this with the fact that (n zlS(n))‘ I37_ X, converges in law to a normal distribution,
we obtain D, —,0. Thus in the case a =1, the joint limiting distribution of
(n2/ S(n)X, and ((n — 1)/nQ(n))s? + d, exists and is that of two independent
random variables. Conversely, let us suppose X, and s? are asymptotically indepen-
dent. We shall assume a < 1 and arrive at a contradiction. Thus we assume
G € 9D (a), 0 < a < 1. This implies that there is a slowly varying function K(x)
such that P[X? > x] ~ x~°K(x). By symmetry of F, P[X, < — x] = P[X, > x]
~1x72%Q(x), where Q(x) = K(x?) is also a slowly varying function. Hence F €
9 (2a). As was pointed out in a previous argument, normalizing coefficients { B,}
for F are known to be of the form B, = n'/2*L(n), where L(x) is a slowly varying
function. This is also known to satisfy

P[]X,| > en'/**L(n)] ~ K/n,
where positive constants K, ¢ determine each other. Hence P[X?2 > ¢*n'/*L¥(n)] ~
K/n, and thus {n'/*L*(n)} may serve as a sequence of normalizing coefficients for

G. Let {d,} be a sequence of constants such that the distribution of
n~VeL~Xn)S"_,X?> + d, converges to some stable distribution (). Then

n—1 n =
s2+d, +———X2

nVeL(n)) 'S X2 + d, = ———
( ( )) 144 n n]/aLz(n) n n nl/aL2(n)

But

" g2 ()2 ~1gn 2
nl/aLZ(n) X" n ((n L(n)) 2i-lXi) ’

and the quantity being squared on the right converges in law to a symmetric stable
distribution o_f characteristic exponent 2a, from which it follows that
(n/n'/*L¥(n))X? — 0. Thus we have shown that the joint distribution of

1 1
————s" X, and ————3"_ X?+d,
nl/ZaL(n) 1 nl/aLZ(n) i=1

converges to that of two independent random variables. But
nP[|X,| > en'/*L(n), X} > en'/*L3(n)]
= nP[|X,| > max{e, ex}n'/2L(n)| ~ K # 0,

and hence condition (i) in Theorem 2 is violated, yielding the contradiction
promised, and thus concluding the proof of the theorem.
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4. Pairwise independence implies independence. The result of this section is
related to Section 2 in that the intention is to show that within Theorem 1, pairwise
asymptotic independence implies asymptotic independence. This is implied by
showing that pairwise independence within a multivariate infinitely divisible dis-
tribution implies independence. This was proved by Pierre [7] under the assump-
tion that finite second moments exist. It is proved here without that assumption.

THEOREM 4. If Xy, - -, X,, are random variables with a multivariate infinitely
divisible distribution, and if X; and X; are independent for all i <j, then X,, - - - , X,
are independent.

Proor. If Fy(x) denotes the joint distribution function of X, - - -, X,,, then its
characteristic function is given by

Fy(u) = exp{ iy'u — Ju'Cu
(6)

+fx#(ei“"‘—1— w'x )M(dx)},

1+ xx

where y € R” is a constant vector, u € R", C = (¢;) is an n X n nonnegative
definite matrix, and M is the Lévy spectral measure. If 1 < i <j < n, and if one
sets , = 0 for k # i, k # j, 1 < k < n, then we obtain from (6) the joint character-
istic function of X; and X; as

By () = exp[ iCrn + )

1(,.2 2
—E(u,. c; + 2c,.j-ui14j. + ujcﬂ)

+f efwxitux) _ 1 — M M(dx) .
1+ 37 ,x?
The finiteness of
X, *1

- M(dx
1+ 3 x? 1+ 32 %7 (@)

l

is verified by noting that if I(x,, x,) denotes the integrand; then for ¢ > 0
2

I(x,, x,)M(dx) = | X i M{(dx
4f||x||<e (%15 x2) M(dx) flxl<el l|(1+2n-lx,2)(1+22_1x12 (dx)

< &f i <elXIPM(dx) < oo,

and
Jixi>eI (21 ) M(dx) < 2M {x : ||x]| > e} < oo.
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Thus, for k = i, j, and denoting

X, Xy
a, = - M(dx),
- f(1+||x||2 1+x,-2+x,?) ()

which is finite by this last argument, we have

ﬁxi,,\;(“i, “,) = exo{i((Yi — o)y, + (Yj - aj)“,)

@) — 3 (s + 2uuc, + ulcy)

. (yx; + u
+f(e'(uixi+"j)g) -1- ‘_( ))Mj(dxx‘, dxj)}’

2
1+x+j

where M;(4) = M{x : (x;, x;) € A} for 4 € B®. If we let u, = 0 or u, = 0 in (7),
we can show in the same way as above that, for / = i, j, the quantity B, defined by

B=/ ( ail adl > )M’j(dx,-, dxj)

L+ x2+x2 1+ x

is finite and that, for / = i, j,

i x;

2 )M(dxl)

(® ﬁx,(“l) = exP{i”I(YI — o — By) —zuicy +f(ei“’x' -1-
7

- where My(A4) = M;{(x;x) : x; € A}, M(A) being likewise defined, for 4 € PV,
Because of the independence of X; and X;, we have

FX X( U, j) Fx,(u.)ﬁxj(u,)

= eXp{ [u(r; — o, = B) + u(y, — o — B)]

9) (uc +uc)
. i x;
+flems — 1 — 25 My,
f( 1+x,.2) ()
+fle™s —1— 8% M(dx)}.
l+xj

For A € 32 let us define
M} (A) = M{x,: (x,0) € 4} + M{x;: (0,x) € 4}.
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Then (9) becomes
ﬁ,\q,x,(ui’ w) = eXp{i[ui(Yi == B)+ uly, — o= B)]

— 3 (4w, + ulcy)

T

+f( ) ] ﬁ“—"‘i——))w(d(x,-ns)}-

1+ x? +xf

By the uniqueness of the canonical representation of the characteristic function of
infinitely divisible distribution functions, we have Mj = M, ¢; = ¢; =0 for
1<i<j<n,and B =0, 1< j < n. Thus the covariance matrix of the Gaussian
component, C, is diagonal, and we have shown that the projection of the M-mass
in R" onto the (x;, x;)-plane places all mass along the x;- and x;-axes for 1 <i <
< n. This implies that all of the M-mass is concentrated along the n axes. Thus, we
obtain

A ) i, x
F(u)=1}., exp{iuk(yk - ) — %okku,f + f(e"‘k"" -1- l—:—;—)Mk(dxk)]

The kth member of this product has been shown above to be the (marginal)
characteristic function of X,. Thus we have shown independence. []
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