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LARGE DEVIATIONS OF THE SAMPLE MEAN IN GENERAL

VECTOR SPACES'
By R. R. BAHADUR AND S. L. ZABELL
University of Chicago
Let X;, X,, s be a sequence of i.i.d. random vectors taking values in a
space V, let X, = (X, + -+ +X,)/n, and for J C V let a,(J) =

n~!log P(X, € J). A powerful theory concerning the existence and value of
lim, , a,(J) has been developed by Lanford for the case when V is finite-
dimensional and X, is bounded. The present paper is both an exposition of
Lanford’s theory and an extension of it to the general case. A number of
examples are considered; these include the cases when X is a Brownian motion
or Brownian bridge on the real line, and the case when )7,, is the empirical
distribution function based on the first n values in an i.i.d. sequence of random
variables (the Sanov problem).

1. Introduction. Let V be a topological vector space, and let X, X,,- - -+ bea
sequence of independent and identically distributed random vectors taking values

in V.Foreachn=12,--- let

(L1) )?"=X,+-~~+X,,
n
Let J be a Borel measurable subset of V, let
(12) () =P(X, €J)
and let
(1.3) a,(J) = n""log p,(J).

We shall say that the set J has entropy s(J) if lim,_, a,(J) exists and equals
s(J), —oo < s < 0. This paper discusses certain methods for determining whether
s(J) exists and if so for finding its value.

The estimation of p,(J) was first considered by Cramér (1938) in the case when
the X, are real valued, the common distribution of the X; has an absolutely
continuous component, J is an infinite interval, say J = [a, o), and certain other
conditions are satisfied. Cramér obtained an asymptotic expansion of w,(J) which
shows that, in his case, the interval J has entropy given by

(1.4) s([a, ©)) = inf{ —ar + log () : ¢ > 0}
where ¢(f) = E(exp(tX;)) for —oo0 <t < 0,0 < ¢(f) < 0. It was shown by
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Chernoff (1952) that, whatever the distribution of X, the entropy of any interval
[a, o) exists and is given by (1.4). The initial work of Cramér and Chernoff has
been continued and extended in several directions by Bahadur and Ranga Rao
(1960), Sethuraman (1964, 1965), Hoeffding (1965a), Borovkov and Rogozin (1965),
Sievers (1975), Bartfai (1978), and many others; cf. Petrov (1975), Ibragimov and
Linnik (1971), and Bahadur (1971) for other references.

The following elegant generalization of the Cramér-Chernoff problem was pro-
posed by Sanov (1957). Suppose Y,, Y,, - - -+ is a sequence of i.i.d. real valued
random variables, and for each n let ﬁ;, be the empirical distribution function when
the sample is (Y;,---,Y,). Let J be a given set of probability distribution
functions on the real line. The Sanov problem is to show that n~! log P(ﬁ,, elJ)
tends to a particular limit defined in terms of the Kullback-Leibler information
numbers. An exposition of the relation between Chernoff’s theorem and Sanov’s
problem is given in Bahadur (1971). Sanov’s work has been clarified and extended
by Hoadley (1967); see also Hoeffding (1965b), Sethuraman (1970), Borovkov
(1967), Stone (1974), Sievers (1976), and Groeneboom, Oosterhoff and Ruymgaart
(1979). A useful large deviation result for rank statistics was obtained in the spirit
of Sanov’s work by Woodworth (1970); cf. also Ho (1974).

Lanford (1973) has made a penetrating attack on the problems described in the
first paragraph of this section. He proceeds independently of all the work cited
above, and uses methods developed by him and Ruelle (1965) in statistical
mechanics; indeed, he considers his deep excursion into this problem area merely a
digression and source of amusing examples! Lanford treats mainly the case when V'
is the finite dimensional Euclidean space R* and X, is a bounded random vector.

- In the following Sections 2 to 5 we present an exposition and generalization of
Lanford’s theory to the case of a possibly infinite dimensional V' and possibly
unbounded X,. Some of our results concerning the general case are closely related
to or even identical with certain results of Donsker and Varadhan (1975, 1976). We
think that the work just cited and the present one complement each other in
various ways. We should add that the cited papers of Lanford, Donsker, and
Varadhan are much more extensive in scope than might be suggested by our

subsequent references to some of their specific contents.
The present paper seems worthwhile to us for the following reasons. Our

generalization of Lanford’s theory is not entirely trivial or mechanical, and it
includes a wide variety of examples as special cases. In particular, given a
sequenceY,, Y,, - - - of ii.d. real valued random variables, for each i let X; be the
distribution function degenerate at Y;; then X, X,, - - - is a sequence of indepen-
dent and identically distributed random elements in the vector space of functions
of bounded variation on the real line, and X, = (X, + - - - +X,)/n is ﬁ,,. Thus
the Sanov problem can be studied in the present framework, and it is so studied in
Section 7. Finally, we think that some of the present considerations throw light on
exactly what are the real difficulties of the present large deviation problem in
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general and of the Sanov problem in particular. Our conclusions in this regard are
described in subsequent paragraphs of this section and in Section 7.
Now consider the framework of the initial paragraph of this section. Let u be the
probability measure induced on ¥V by the random vector X, i.e. ,
(1.5) w(J) = P(X, €J)
for Borel sets J C V; of course p is p; of (1.2). Assume henceforth that V is a
locally convex Hausdorff space and that certain further assumptions (Assumptions
1, 2, and 3 below) also hold. A sufficient condition for these further assumptions to
hold is that V be a separable and complete metric space (cf. Lemma 1.1 below).
It is shown in Section 2 that s(J) exists if J is a finite union of open convex sets
(Theorem 2.1). Define the point entropy function s(v) in terms of the set entropy
function s(J) by
(1.6) s(v) = inf{s(J) : v € J, J open convex }

for v € ¥V, —o0 < s < 0. Then s(v) is a concave, proper, and upper semicontinu-
ous function (Theorem 2.2, Corollary 2.1). For any J C V let

(1.7) lan(J) = sup{s(v) : v € J}
if J # &, and let lan(J) = — oo if J = . Then, one hopes,
(1.8) s(J) = lan(J)

for a large class of sets. This hope is based on the fact (cf. Lemma 2.1(b)) that the
entropy of a set equals, so to speak, the entropy of its most likely atom. It is shown
that (1.8) does hold if J is a finite union of open convex sets (Theorem 2.3). It is
~also shown that in general (1.8) does not hold for all open sets J (Example 7.1).

~ In Section 3 we consider some methods of evaluating the point entropy s(v). Let
@ denote a continuous linear functional on V, and let V* be the set of all such
functionals. With p defined by (1.5) let ¢ be the cumulant generating function of g,
ie.,

(1.9)  c(9) =1log [y exp[8(v) | u(dv) for 8 € V*, —o0 <c < o0.

Let c* denote the Fenchel transform of ¢, i.e.,

(1.10) c*(v) =sup{f(v) —c(0):0 € V*} for vEV.

Since 6(v) and ¢(#) vanish if @ is the zero functional, 0 < c¢*(v) < oo for all v. Let
© be the set of all § in V* for which c(8) defined by (1.9) is finite; we shall call ®
the natural parameter space. It is plain that § may be restricted to ® in the
definition (1.10) of c¢*(v). It is shown in Section 3 that

(1.11) s(v) = —c*(v)

for every v in ¥ (Theorem 3.2). We defer description of other methods of finding
s(v) to Section 3, but note here that perhaps the simplest and most useful method is
to deploy the exponential family of measures {p,: 8 € ®} associated with u
(Corollary 3.3); this method is, however, not always available (Examples 3.1).
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Now let J be a Borel measurable subset of ¥ which is not a finite union of open
convex sets, and consider the problem of finding asymptotic bounds for a,(J)
defined by (1.2) and (1.3). Let J° denote the interior of J. Then

(1.12) lim inf,_, a,(J) > lan(J°)

where lan is given by (1.7). To see this, let v € J°. There exists an open convex
A C J such that v € 4. It follows from (1.2), (1.3) that a,(J) > a,(A) for every n;
hence lim inf, , a,(J) > s(4) > s(v) by (1.6); since v € J° is arbitrary, (1.12)
follows. It seems much more difficult to obtain upper bounds, e.g.,

(1.13) lim sup,_, .a,(J) < lan(J),
or even
(1.14) lim sup,,_, a,(J) < lan(J),

where J is the closure of J. It seems to us that (1.13) or (1.14) require special
conditions or special methods in concrete cases. Some general sufficient conditions
for (1.13) are that J be compact (Lemma 2.5) or that J be a closed convex set
(Lemma 2.6). The point for us is, of course, that if (1.13) or (1.14) holds and J is
regular in the sense that lan(J°) = lan(J) or lan(J), one can conclude that the
entropy of J exists and (1.8) holds.

Sometimes it is possible to establish (1.8) in other ways. Suppose for example
that J = K’ where K is a compact convex set with nonempty interior; here, and
subsequently, A’ denotes the complement of the set 4. With no loss of generality
" assume that the origin is in the interior of K. Let a be a constant, 0 < a < 1, and
let {H} be the set of all hyperplanes H supporting aK. For each H let L denote
the open half-space determined by H which does not contain any point of ak.
Then {L} is an open covering of the boundary of K; let L, - -, L, be a sub-
covering. Then J C U;L; = M say; hence a,(J) < a,(M) for every n; hence lim
SUp,_, @, (J) < s(M) = lan(M) < lan((aK)), since M C (aK)'. Assuming that
lan((aK)’) tends to lan(J) as a — 1, it follows that (1.13) holds. Since J is open,
(1.12) now implies that (1.8) holds. This argument is used by Abrahamson (1965)
and Gupta (1972) in certain finite dimensional cases. A related argument is used by
Sethuraman (1964) to show that if ¥ is a separable Banach space, if condition
(1.15) below holds, if E(X;|p) =0, and if J, = {v : ||v|]| > €} where 0 <& < oo,
then s(J,) exists and equals the supremum of the entropies of all closed half-spaces
contained in J,. It can be shown that here lan(J,) and lan({v : ||v|| = €}) are
alternative formulae for s(J,).

Donsker and Varadhan (1975, 1976) have studied asymptotic bounds for a,(J)
when {X,} is a Markov process on a Polish state space. When specialized to the
present case of an ii.d. process, the lower bounds of Donsker and Varadhan are
equivalent to (1.12), but their upper bounds provide important complements to the
present version of Lanford’s theory. For example, Theorem 5.3 of Donsker and
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Varadhan (1976) implies that if ¥ is a separable Banach space, and if
(1.15) Jvexp[t]v]| Ju(dv) < o0 forall ¢>0,

then (1.13) holds for all closed sets J. It follows hence that if ¥ is a separable
Banach space and (1.15) holds then s(J) exists and equals lan(J) for every Borel set
J such that lan(J°) = lan(J). We use several results of Donsker and Varadhan
(1975, 1976) in subsequent sections.

Our conclusion that it is harder to find adequate asymptotic upper bounds for
a,(J) than to find adequate asymptotic lower bounds is at variance with the
superficial appearance of some of the purely probabilistic literature on the subject.
The conclusion is, however, in accordance with the well-known fact (cf., e.g.,
Bahadur (1967)) that in large sample theories of inference it is relatively easy to
establish certain universal lower bounds for the rate of convergence of estimates or
test-statistics but much harder to establish that these bounds are attainable. The
accordance just mentioned is not fortuitous; some of the connections are de-
scribed and used in Bahadur and Zabell (1979).

A number of examples are presented in terms of Lanford’s theory in Sections 6
and 7. Our infinite-dimensional examples are the case when V is a Hilbert space
and p is a Gaussian probability measure (Example 6.3); the case when V is the
space of continuous functions on [0, 1] and p is Wiener measure (Example 6.4); the
case when X, is a Brownian bridge on [0, 1] (Example 6.5); and the Sanov problem
(Section 7). There are some indications that if ¥ is infinite-dimensional, and there
are several topologies on ¥ which meet all our requirements, then the point entropy
function is independent of which of these topologies is introduced on V (cf.

~ Corollary 5.1). Assuming that this interesting independence does hold in a given
case, what topology to introduce on V involves considerations such as the follow-
ing: a large topology will have a large class of open convex sets (for which (1.8) is
known to hold), but it will have a small class of compact sets (for which (1.13) is
known to hold), and it will be relatively hard to compute s(v) from (1.10) and (1.11)
since V* will be a large set.

We conclude this section with a formal statement of the present model and of
the assumptions required in Sections 2 to 5. Let V" be a real vector space of points
v, and 7 a given topology on V. We assume that, under 7, V is a locally convex
(Hausdorff) topological vector space. Let % be the o¢-algebra of Borel sets of V,
and p a given probability measure on %B.

Let © be a space of points w, @ a o-algebra of sets of §, P a probability measure

on @ and {X,:n=1,2,- -} a sequence of @ — % -measurable transforma-
tions of  into ¥ such that, for each n and B, - - - , B, in B,
(1.16) P(X(w) € B;fori=1,---,n) =1, u(B).

As is well known, such entities (2, €, P) and {X,} always exist; these entities are
not really essential here but they facilitate certain descriptions, arguments, and

verifications.
Formn=1,2,--- letY, ()= Smrn=1 x (w)/n.
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AsSUMPTION 1. (@) Y,, , is an @ — B -measurable transformation of ¥ into V.
(b) For all B,,B, in %,P(Y, ,, € B, Y1, € B)=P(Yy,, €B)  P(Y,y1,n
€ B,). (c) Forall Bin %, P(Y,,,, , € B)= P(Y,, € B).

Part (a) of Assumption 1 with m = 1 implies (cf. (1.1), (1.2)) that, for each n, p,
is a well-defined probability measure on % . It is known that in the general case
Assumption 1 is not automatically fulfilled.

Let A be a probability measure on % . We shall say that A is regular if for each
open set B C V, A(B) = sup{A(K) : K C B, K compact}. We shall say that A is
convex-regular if for every open convex set J C V,A(J) = sup{A(K): K CJ, K
compact and convex}.

ASSUMPTION 2. For each n, the measure u, is regular.
ASSUMPTION 3. For each n, the measure p, is convex-regular.

The above assumptions are stated here in forms convenient for immediate use in
Sections 2 to 5. Certain more familiar or more readily verifiable conditions are
considered in an Appendix in the course of the proof of the following:

LemMMA 1.1. Suppose that there exists a closed convex set V| C V such that V, is
a Polish space in its relative topology and such that X,(w) € V, for all n and . Then
Assumptions 1, 2, and 3 hold. Moreover, s(J) exists and equals lan(J) for every
convex J which is a relatively open subset of V.

Lemma 1.1 (supplemented on occasion by Theorem 5.1) is adequate for all the
examples considered in this paper.

2. Existence and properties of Lanford’s entropy functions. We begin with the
following simple but useful

LemMa 2.1. (a) If A C B, and s(A), s(B) exist, then s(A) < s(B). (b) If s(4,)
exists for i = 1,- + -, k then s(U*_,A,) exists and equals max{s(4;): 1 <i < k}.

PROOF. (a) A C B implies a,(4) < a,(B) for all n; hence s(4) < s(B). (b) Let
B = U¥_ 4, Then 4; C B and y,(4)) < p,(B) < k max{p,(4,): 1 <i <k} for
each j and n; hence a,(4) < a,(B) < max{a,(4,): 1 <i< k} + (log k)/n for
each j and n. Hence s(4;) < lim inf, ,a,(B) for each j=1,---,k, and lim
SUp,_,@,(B) < max{s(4): 1 <j <k}. [I

Let J be a Borel measurable convex set. Let m and n be positive integers, and let
Y =37+ X, /n. Since X,., =aX, + (1 — a)Y with a=m/(m+ n), it
follows from the convexity of J that the event {X,, €J and Y € J)} implies
(X,., €J). Since X, and Y are independent, and since Y has the same
distribution as )?,,, it follows that .

PRV Emsn(T) Z () - 1, (T)
foralmn=12,---.

LeEMMA 22. IfJ C V is a Borel measurable convex set such that p,(J) > 0 for
all n > k then s(J) exists and

(2.2 s(J) = sup{a,(J) : n > k}.
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Proor. It follows from (2.1) that log u,(J) is finite and superadditive for n > k,
and the lemma follows as in Lanford (1973), page 16, Lemma A2.4. []

Let S be the support of the measure p defined by (1.5), i.e., v € S if and only if
every open neighborhood of v has positive u-measure. Let S be the convex hull of
S, and let C be the closure of S; C is called the closed convex hull of S.

LEMMA 23. The set S is closed, W(S) = w(C) =1, and every closed set of
p-measure 1 contains S.

PrROOF. Suppose x € S’. There exists an open neighborhood of x, say 4, such
that u(4) = 0. By the definition of S, v € 4 implies v & S, so 4 C S’. Since x is
arbitrary, S’ is open, and so S is closed. Now let K C S’ be compact. Then v € K
implies that there exists an open set containing v of u-measure zero. It follows that
there exist a finite number of open sets, each of y-measure zero, whose union
contains K. Hence u(K) = 0. The assumed regularity of p now implies u(S’) =0
that u(C) = 1 follows trivially from S C C. Suppose D is closed and w(D) = 1.
Then x € D’ implies that D’ is an open neighborhood of x of p-measure 0, so
x € S’;hence D' C S'. [J

For n a positive integer, let S, be the support of the measure p, defined by (1.2),
let S, be the convex hull of S, and let C, be the closure of S,. The following lemma
is a version of results of Barndorff-Nielsen (1978), page 91:

LeEMMA 24. (a) The set S, is closed, and p,(S,) = p,(C,) =1.(b) S, D S and
C, = C.(c) If J is an open set then J N C # D if and only if J N S, is nonempty
Jor all sufficiently large n.

* PROOF. Part (a) follows from the regularity of u, by replacing u, S, and C with
&, S, and C, in the proof of Lemma 2.3. Now let x be a point in S, and let J be an
open set containing x. There exists an open convex set J, C J which contains x.
Then u(J,) > 0. Hence, by an application of (2.1), u,(J;) > [u(/)I" > 0; hence
®,(J) > 0. Since J is arbitrary, x € S,. Thus S C S,; hence ScS, and C C C,
We observe next that (2.1) with J = C implies that p,(C) > [u(C)]" = 1; hence
(by the last part of Lemma 2.3 with p replaced with y,) S, C C. Since C is convex

and closed, it follows that C, C C and part (b) is established.
To prove (c), choose and fix an open J. If J N S, # & for some n then

J N C, # D for that n; hence J N C # & by part (b). Suppose now thatJ N C #
&. Then J N S is nonempty. Let x be a point in J N S. There exist positive
constants a;, - - * , oy and vectors y, - * -, y, in S such that x = 2,_1a,y,, Zlf_la,
=1.Foreachn=1,2,- - letj, =[na] and o, = j,,/n for 1 <i <k — 1, and
let o, =1 — Sk, jin = nay,. Then a;, —> a; as n— oo for 1 < i < k; hence
x, = =*_,a;,,y; > x. Hence, for all suff1c1ently large n, x, €J and j, > 1 for
1 <i < k. Choose and fix such an n. For each i let B, be an open convex
neighborhood of y; such that

(23) a,By, + - +o,B, CJ.
Since y, € S, u(B;,) >0 for 1 <i <k. Let E, denote the event that in the
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sequence X,, - - - , X, the first j,, random vectors lie in B,,, the next j,, lie in
B,, - -, and the last ji, lie in B,,. Then, by (1.16), P(E,) > 0, and E, implies
that X, € J, by (2.3). Hence P(X, €J) = u,(J) > 0; hence p,(J N S,) >0 by
part (a); hence J N S, # <. []

THEOREM 2.1. If J is a finite union of open convex sets then s(J ) exists,
—00 <5(J)<0,and s(J) > — oo if and only if J N C # 2.

Proof. In view of Lemma 2.1(b), it will suffice to consider a single open
convex J. Suppose first that J/ N C = &. Then p,(J) = 0 by Lemma 2.4(a), (b);
hence a,(J) = — oo for every n, and s(J) = — oo. Suppose now that J N C # &.
It then follows from Lemma 2.4(c) that there exists a positive integer k such that
#,(J) > 0 for all n > k. The existence and finiteness of s(J) now follows from
Lemma 2.2. []

For each v € V, let s(v) be defined by (1.6).

THEOREM 2.2. The function s: V — [— o0, 0] is concave and upper semicontinuous.

Proor. To prove upper semicontinuity, choose x € ¥, and let r be a real
number such that s(x) < r. Then, whether s(x) > — o0 or = — oo, there exists an
open convex set J containing x such that s(J) < r; hence s(v) < r for every v € J,
by (1.6). Thus s is upper semicontinuous at x.

Now choose x,y € ¥, and a, 0 <a < 1, and let z = ax + (1 — a)y. Let J be
an open convex set containing z. Then there exist open convex sets containing x
and y respectively, say J, and J,, such that aJ, + (1 — a)J, C J.

Suppose first that « is rational, say a = j/k, 1 < j < k. For r a positive integer,

let Y = PP jr+1X:/(k — j)r. 1t follows from the preceding paragraph that the event
{X, €J,and Y € J,} implies {Xk, € J}. Since Y and X, are independent, and Y
has the same distribution as X_;,, it follows that p,I,(J D Br—ip(JD < e J).
Hence ag,(J)) + (1 — @)ag_;,(J,) < a,(J). Letting r — o0, we obtain s(J) >
as(J)) + (l — a)s(J,). Hence s(J) > as(x) + (1 — a)s(y) by (1.6). Since J is arbi-
trary, it follows that
(24) s(ax + (1 — a)y) > as(x) + (1 — a)s(y).
Thus (2.4) holds for every rational «; that it holds for all « € (0, 1) now follows
from the upper semicontinuity of s. []

Our next objective is to show that (1.8) holds for open convex sets. As noted
previously, if J is open (1.12) implies that lim inf,_,.a,(J) > lan(J); the problem is
to show that (1.13) holds. Lanford’s method is, in effect, to show that (1.13) does
hold for compact sets J, and then to show that it holds for an open convex set by
approximating the set by compact convex sets.

LEMMA 2.5. If K C V is a compact set then
(2.5) lim sup,_, . a,(K) < lan(X).

ProOF. Since (2.5) holds trivially if K = &, assume that K is nonempty. Let
e > 0 and m > 0 be constants. It follows from the definition of the point entropy
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s(v) that for each v € K there exists an open convex set containing v, 4 say, such

that, whether s(v) = — 00 or > — o0, 5(4) < max{—m, s(v) + €} <
max{—m, lan(K) + ¢}. Since K is compact there exist open convex sets
Ay, - -+, Ay such that K C U¥4, = B say, and s(4,) < max{—m, lan(K) + &} for
i=1---,k. Since a,(K) < a,(B) for all n, and since each 4; has an entropy, it

follows from Lemma 2.1(b) that lim sup,_,,a,(K) < s(B) = max{s(4,): 1 <i <
k}; hence lim sup,_,,a,(K) < max{—m, lan(K) + ¢}. If lan(K) = — o0, (2.5)
follows by letting m — oo; if lan(K) > — o0, (2.5) follows by letting ¢ — 0 and then
choosing m sufficiently large. []

LEMMA 2.6. If K C V is a closed convex set then (2.5) holds.

This lemma is not used in the present paper and its proof is omitted. We note
here in connection with Lemmas 2.5, 2.6, and 2.7 that in general s(K) does not
exist for every compact convex K (cf. Example 6.1).

LEMMA 2.7. If J is an open convex set with s(J) > — oo then for given ¢ > 0
there exists a compact convex K C J such that s(K) exists and s(K) » s(J) — .

PrROOF. Since s(J) > — oo there exists a positive integer k such that p,(J) > 0
for all n > k; we may and do assume that a,(J) > s(J) — (¢/2). Since each p, is
convex-regular, for each integer n with k < n < 2k there exists a compact convex
L, C J such that a,(L,) > a,(J) — (¢/2) > — oo. Let K, = U% , L,. Then K, is
compact, K, C J, i (K)) > s(J) — ¢, and a,(K;) > — oo for k < n < 2k. Let K be
the convex hull of X;; it follows from Choquet ((1969), I, page 337) by the convexity
of J that K has all the properties just listed for K;; moreover, since K is convex, it
follows from (2.1) (with J = K) that p(K) > 0 for all n > k. It now follows from
Lemma 2.2 (with J = K) that s(KX) exists and s(K) > a(K) > s(J) — e. ]

THEOREM 2.3. If J is a finite union of open convex sets then s(J) = lan(J).

Proor. It will suffice to show that if J is an open convex set then s(J) <
lan(J). Since this holds trivially if s(J) = — oo, assume s(J) > — . Choose
e > 0. It follows from Lemma 2.7 that there exists a compact K C J such that
s(K) > s(J) —e; since lan(K) < lan(J), Lemma 2.5 implies s(J) < lan(J) + ¢.0

COROLLARY 2.1. Either s(v) =0 forallvin V, or
(2.6) sup{s(v) ;v EV} =0 and inf{s(v):vE V} = —co.

PrOOF. V is an open convex set with w,(¥) = 1 for all n; hence s(¥V) = 0. It
follows from Theorem 2.3 that lan(¥’) = 0, i.e., the first part of (2.6) holds. Suppose
s 2 0. Then there exists an x; with s(x,) <O0. If s(x;) = — oo the corollary is
established. Suppose then that s(x;) > — co. The first part of (2.6) implies the
existence of x, such that — oo < s(x,) < s(x,) < 0. Let a be a constant, 0 < a < 1,
and let x, be determined by ax, + (1 — a)x; = x,. The concavity of s implies
as(x;) + (1 — a)s(x;) < s(x,), and it is plain that s(x;) > — 0 asa—1. []

Let F be the set of all v € V such that s(v) > — . Let F° be the (possibly
empty) interior of F, and let I be the (possibly empty) interior of C.
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THEOREM 24. (a) F c C. (b) If F° is nonempty then
2.7 Fo°=1 and F=_C.

(©) If V is finite-dimensional and I is nonempty then (2.7) holds and s is
continuous on 1.

PrOOF. Suppose v € C’. There exists an open convex neighborhood of v, J say,
with J C C'. Then s(J) = — oo by Theorem 2.1; hence s(v) = — oo by (1.6). Thus
C’ C F’, so part (a) holds. To establish part (b) we note first that, since s is
concave, F = {w :s(w) > — oo} is a convex set. Let v € V be such that s(v) =
— o0. Then v &€ F, and since F° is nonempty there exists (Choquet (1969), I1, page
30) a nonzero § € V* and a constant y such that 8(v) < y and 8(w) > vy for every
weE F. Let L= {w:80(w) <y} Then s(w) = — oo for all w € L; hence s(L) =
— 00 by Theorem 2.3; hence L Cc C’ by Theorem 2.1. Since v € l—,, eitherv & C
or v is on the boundary of C; in either case, v & I. Thus {v : s(v) = — 0} C I';
hence I C F; hence I C F°. Part (a) implies F° C C and so F° C I. Thus F° = I,
and so I is nonempty. Hence I = C (Choquet (1969), I, page 335); the second part
of (2.7) now follows from

(2.8) IcFccC

and part (b) is established. Now choose v € V, and for 6 € V* let Hy(v) =
{w: 8(w) > 0(v)}. As is noted in the first paragraph of Section 3, s(H,) exists. It
follows from (2.1) that yu,(Hpy) > [ n(H,)]" for every n; hence

(29) s(v) > inf{log u(Hy(v)) : 0 € V*}

* by Theorems 3.1 and 3.2. To prove part (c) suppose that V is finite-dimensional
and I is nonempty. It then follows from (2.9) by Lemma 9.2 of Barndorff-Nielsen
(1978) that s(v) > — oo forv € I, so I C F. Since [ is open, F° is nonempty, and
it follows from part (b) that (2.7) holds. That s is continuous on I follows from
Choquet (1969), I, page 343.

In Theorem 2.4 the hypothesis that F° be nonempty is essential to part (b), and
the hypothesis that V" be finite-dimensional is essential to part (c); this may be seen
from Examples 6.3 and 6.4. The following is a finite-dimensional example in which
both inclusions in (2.8) are strict and s is not continuous on F.

EXAMPLE 2.1. Suppose ¥ = R? s the Euclidean plane. Let D be the closed unit
disc {v : ||v|| < 1}, and let A denote the uniform probability measure on D, i.e.,
A(4) = (constant) X Lebesgue measure of 4 N D. Let vy, = (0, 1), let » be the
probability measure degenerate at vy, and let p = (A + »)/2. Then S = S = C =
D, and I = {v: ||v| < 1}. It follows easily from Theorems 2.4, 3.1, and 3.2 that
s(v) > — oo for v € I; that ||v|| > 1 implies s(v) = — oo unless v = vy; and that
s(vp) = log(3). Hence F = I U {v,}. To see that s is not continuous on F choose
t, —o0 <t <log(3). For each k =1,2,- - let v, be such that ||v,|| =1 and
loe — voll = k™. Since s(v,) = — oo, it follows from the definition of s that there
exists r, > 0 such that ||v — v;|| < r, implies s(v) < ¢. Let w;, be a point in I such
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that || w, — v;]| < min{k~', r,}. Then {w, : k = 1,2, - - } is a sequence in I such
that s(w,) < ¢ and ||w, — v,|| < 2k~! for each k. Hence w, — v, as k — oo, but
lim sup,_, .s(w,) < s(vy).

3. Some formulae concerning the point entropy. For v € V, 0 € V*, and for
e>0let
3.1) Ly(v, €) = {w : 8(w) > 0(v) — ¢}.

It follows from Theorems 2.1, 2.3 that s(L,) exists and equals lan(LZ,). We observe
next that

(3.2) Hy(v) = {w:0(w) >68(v)}

also has an entropy. To see this, let ¥, = 8(X,) for each n. Then X, € Hy(v) if and
only if ¥, > 6(v). It now follows from Chernoff’s theorem that s(H,) exists and (cf.
(1.4), (1.9)) that

(33) s(Hy(v)) = inf{ —t0(v) + c(19) : t > 0}

where (10)(w) = ¢ - 8(w). A relatively simple proof of Chernoff’s theorem is given in
Bahadur (1971). It can be shown that we also have s(H,) = lan(H}).

If 8 is not the zero functional, H,(v) is the typical closed half-space with v on its
boundary, and Ly(v, ¢€) is the typical open half-space containing v. The following
theorem in effect relates the Fenchel transform of the cumulant generating func-
tion of u to the entropies of half-spaces.

THEOREM 3.1. For eachvin V,

34) —c*(v) = inf{s(Hy(v)) : 0 € V*}
" and
(3.5) —c*(v) = inf{s(Ly(v,e)) : 0 € V*,0<e < 0}.

ProOF. The range of 18 as ¢ varies over [0, 00) and 8 over V* is V*. It follows
hence from (1.10) and (3.3) that (3.4) holds. To establish (3.5), choose § € V*, ¢ >
0, and for each n let ¥, = 8(X,) — O(v) + ¢, and let T, = 37_,Y,. Then X, €
Ly(v, &) if and only if 7, > 0. Hence p,(Ly(v, £)) = P(T, > 0) < P(exp(T,) > 1)
< E(exp T,) = exp{n[c(8) — 8(v) + €]}; hence a,(Ly(v, &) < c(0) — O(v) + &;
hence s(L,(v, €)) < c(8) — 6(v) + ¢; hence, with r(v) the right-hand side of (3.5),
r(v) < ¢(8) — 6(v) + . Since 8 and ¢ are arbitrary, r(v) < — c*(v) by (1.10). Since
Ly(v, €) D Hy(v) for every 6 and ¢ > 0, it follows from Lemma 2.1(a) and (3.4) that
r(v) > — c*(v).

THEOREM 3.2. For each v in V, s(v) = — c*(v).

Proor. Choose and fix a v € V. Let Ly(v, €) be defined by (3.1). It follows
from the definition of s(v) that s(v) < s(Ly(v, €)). Since 0 and e are arbitrary, it
follows from (3.5) that s(v) < — c*(v). It remains to show that —c¢*(v) < s(v).

Choose positive constants m and 8, and let #(v) = max{—m, s(v) + 6 }. We shall
show that there exists a § € V* and an ¢ > 0 such that

(3.6) s(w) <t(v) for w € Ly(v,e).
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Let 4 = {w:s(w) > t(v)}. If 4 is empty, (3.6) holds for every @ and &; suppose
then that A is nonempty. It follows from Theorem 2.2 that A4 is a closed convex set;
moreover, whether s(v) = — o0 or > — o0, v € A. Consequently (Choquet (1969),
I1, page 28) there exist # € V* and y € R such that 8(v) >y and 6(w) < y for
w € A. Let € = 0(v) — v; then (3.6) holds. It follows from (3.6) by Theorem 2.3
that s(Ly(v, €)) < t(v); hence, by Theorem 3.1, — c*(v) < #(v). Since m and § in the
definition of #(v) are arbitrary it follows that —c*(v) < s(v). []

Theorems 3.1 and 3.2 provide three related but distinct methods of computing
the point entropy: use (1.10), or (3.4), or (3.5) to find c* and then s = — c*. Next,
we describe a very different method, based on the Kullback-Leibler information
numbers, of finding the point entropy; this method is implicit in Sanov (1957) and
is considered explicitly by Lanford (1973); cf. also Donsker and Varadhan (1976).
Let » be a probability measure on the Borel sets of V. If » is not absolutely
continuous with respect to pu let K(») = + oo; if » is absolutely continuous, let
K®») = [, log[(dv/du)(v)l¥(dv), 0 < K < 0. In the following if v is a point in V'
and » is a probability measure, we write E(X,|») = v if and only if for every
- 8 € V* the integral [, 8(w)v(dw) exists and equals 8(v).

Let M(v) be the set of all probability measures » such that E(X,|») = v. M(v) is

nonempty since {v} is Borel measurable and the measure which assigns mass 1 to
{v} is in M(v). Let
3.7) o(v) = sup{ —K(») : » € M(v)}.
The following Theorem 3.3 and Example 3.2 at the end of this section show that
although o is not quite the point entropy function it comes very close; in particular
o can be used instead of s in computing the entropy of any open convex set.
‘According to part (c) of Theorem 3.3 the technical reason why o fails to coincide
with s is because in general ¢ is not upper semicontinuous.

THEOREM 3.3.

(@) The function ¢ : V —[— o0, 0] is concave.

(b) For all v in V, o(v) < s(v).

(¢) For all v in V, lim sup,,_, 6(w) = s(v).

(d) For every nonempty open set J, sup{a(v) : v € J} = lan(J).

(e) If V is finite-dimensional, {v : a(v) # s(v)} is a subset of the boundary of C.
(®) If V is one-dimensional, o(v) = s(v) for all vin V.

At present we shall establish only part (b). Choose § € V*, v € V, and let Hy(v) :
be defined by (3.2). It follows from Theorem 4.2 in Bahadur (1971) that s(Hy(v))
equals the supremum of — K(») over all » such that i = [, 8(w)r(dw) exists and
0(v) < i < oo. This last set of measures contains M(v); hence o(v) < s(H,(v)) by
(3.7). Since 8 is arbitrary, it follows from Theorems 3.1 and 3.2 that o(v) < s(v), so
part (b) holds. The rest of the proof of Theorem 3.3 is deferred to Section 4. An
interesting structural relation between the functions s and o is pointed out in
Section 5.

COROLLARY 3.1. If E(X,||p) =v then s(v) =0.
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ProoF. The hypothesis p € M(v) inplies o(v) > — K(p) = 0; hence o(v) =
s(v) = 0 by Theorem 3.3(b). ]

Corollary 3.1 is immediate in case the law of large numbers holds, i.e., E(X,| p)
exists and equals v, say, and lim,_,, P(X, € J) = 1 for every open J containing v;
for then s(J) = 0 for every such J, and hence s(v) = 0 by (1.6).

For each 0 in the natural parameter space © let y, be the measure on V defined
by py(dw) = exp[d(w) — c(0)] u(aw). For each n and @ let p, , be the probability
measure on V defined by

(3.8) 1, o(dw) = exp[nB(w) — nc(8) ] p,(aw).

The measure p, , is to be thought of as the distribution of X, when the marginal
distribution of the independent X; is y,. Since p, , is dominated by u,, u, , is also
regular and convex-regular. It can be shown that in fact the sequence { p, 4} has all
the properties of { p,}; in particular, lim,_, n~" log p, 4(J) exists for every open
convex J, say sy(J). Let s,(v) be defined by (1.6) with s(J) replaced by s,(J). We
note that our g, s(J), and s(v) are g, So(J/), and sy(v).

THEOREM 3.4. For every v in V and 0 in ©
3.9 sp(v) = s(v) + 0(v) — ¢(0).

Proor. Choose v € V,0 €0, and &€ > 0. Let J, = {w: |8(w) — O(v)| <e}.
Let J be an open convex neighborhood of v. It follows easily from (3.8) that, for
every n,

(3.10) t, o(J N Jy) = exp{nd(v) — nc(8) + nd,e} - p,(J N J,)
-where |§,| < 1. Since s(J N J;) and sy(J N J;) both exist, it follows from (3.10)
that

(3.11) ss(UNJ) <s(INJ)+0(v)—c(8) +¢

ss(J NJ) =s(JNnJ)+0(v) —c(8) — e

It is plain that s(v)[sp(v)] is the infimum of s(J N J)[sp(J N J,)] over all open
convex sets J containing v. It follows hence from (3.11) first that sy(v) < s(J N J;)
+ 0(v) — c(0) + ¢ and sp(J N J)) > s(v) + 6(v) — c(0) — €&, and next that sy(v)
< s(v) + 8(v) — (@) + € and sp(v) > s(v) + 0(v) — (@) — . Since ¢ is arbitrary
it follows that (3.9) holds. []

COROLLARY 3.2. For each v inV
(3.12) sup{sy(v) : 6 €0} =0 or — 0.

Proor. If s(v) = — oo it follows from (3.9) that s,(v) = — oo for all § € ©. If
s(v) > — o0, (3.9) implies that the supremum in (3.12) equals s(v) + c*(v), and this
is zero by Theorem 3.2. []

It follows from (3.8) that log(dy,/dp)(w) = 6(w) — ¢(8); hence, for 8 € 6,

(3.13) K(pg) = [v 0(w)pg(dw) — c(0)
= Jv 0(w)exp[8(w) — c(6)] p(dw) — <(8).
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The integrals in (3.13) always exist since K(») is well defined for every » but they

could equal + 0.
Let W be the (possibly empty) set of all v in ¥ such that

(3.149) E(X,\|p) =v
for some # in ®. We shall call W the space of means. For each v € W let
©(v) denote the set of all # € © such that (3.14) holds, i.e., O(v) = {#: 0 €0,

Ky € M(v)}.
COROLLARY 3.3. Suppose that v is a point in W. Then

(3.15) s(v) = o(v) > —

and

(3.16) s(v) = —K(pp) = —0(v) + c(0)
for every 8 in ©(v). If 0 and 8 are in O(v) then

(3.17) o = Ho

on the Borel sets of V.

ProOOF. Choose 8 € O(v). It follows from Corollary 3.1 with p replaced by p,
that sy(v) = 0; hence s(v) = — 8(v) + c(8) by (3.9); hence s(v) = — K(uy) by
(3.13) and (3.14), and (3.16) is established. Since py € M(v), o(v) > — K(py) =
s(v); hence (3.15) holds, by Theorem 3.3(b). Now suppose 8§ € ©(v). Then (3.16)
holds with 4 replaced by §; hence —s(v) = K(py) = K(ps) < 00. Suppose py 7 pis.
It is easily seen that K is a strictly convex functional on the convex set {» : K(») <
o0 }. Consequently, A = (py + p5)/2 is a measure in M(v) with KQA) < — s(v);
hence a(v) > — K(A) > s(v), contrary to (3.15). []

It follows from the last part of Corollary 3.3 that if

(3.18) p{v:0(v) =y} # 1 fornonzero § € ¥* and y € R'

then, for each v € W, the set ®(v) consists of a single linear functional.

It may be worthwhile to note here the following connections with classical
nonasymptotic theories of estimation and testing. Suppose that V is finite dimen-
sional, say ¥ = R*. Then V* = R and @ is a (not necessarily open) convex subset
of R¥. Suppose that the unknown measure on V is some member of { y, : § € O}
and suppose that the observed sample point is v. Then c*(v) = — s(v) is equivalent
to the likelihood ratio statistic of Neyman and Pearson for testing § = 0, large
values of c* being significant, and the conditions (3.14) are equivalent to the
likelihood equations. Corollary 3.3 implies that solutions of the likelihood equa-
tions "actually maximize the likelihood function. A detailed study of maximum
likelihood estimation in exponential families is given in Barndorff-Nielsen (1978);
in particular, sufficient conditions for I C W or even W = ¥ are discussed there.

The following Examples 3.1 are simple illustrations of various cases that arise in
the contexts of Corollaries 2.1, 3.2, and 3.3.
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ExampLEs 3.1. In each of the examples (a)-(d), ¥ = R, ¥* = R!, and 6(v)
=0-o.

(a) p assigns probability one to {0}. Then s(0) = 0 and s(v) = — oo for v # 0.
Here ® = V*, W = {0}, ©(0) = 0, and g, = p for all 4.

(b) w(dv) = a,/(1 + |v|’) dv for —o0 <v < o0, where 1 <p <2 and q, is a
normalizing constant. Here ¢(§) = + oo for  # 0 and ¢(0) = 0, so s(v) = — c*(v)
= 0 for all v; ® = {0}, and W is empty.

(©) w(dv) = a,[1 + v*]~! exp(—v) dv for 0 < v < o0, and w((— o0, 0]) = 0. Here
0 = (—o0, +1]; W = (0, E(X;| n)]; s = — o0 on (— o0, 0]; s is strictly concave on
(0, E(X,| mp]; s increases from — oo to zero over (0, E(X,| u)] and then decreases to
a negative value at E(X,|p,); and s decreases linearly to —oo over
(B I, +00).

(d) p(dv) = 2m)~2 exp(—v?/2) dv for — 0 < v < 0. Here s(v) = — v?/2 for
eachov,® =V*, and W= V.

The following example shows that (3.15) can break down even in two dimensions
(cf. Theorem 3.3). The example is based on a counterexample constructed by
Barndorff-Nielsen (1978), page 174, for a different purpose.

ExamMpPLE 3.2. Suppose V = R2 Let py,p,, - -+ be positive numbers with
27.op; = 1. Foreachj=2,3,--- choose g > I so that g;,, > g, for all j and
(3.19) 2%, pyexp(xa) = +o00 forall x >0,

eg., a =2 and g, = max{q; + 1, 1/p;,,} for all j > 2. Let v, = (0,0), v, =
(1,0), and for j > 2 let v; = (a; 1). Let p be defined by u({v;}) =p; for j =
0,1,2,---.

The only probability measure » which is dominated by p and satisfies E(X,|v) =
v, is the measure degenerate at v,. It follows hence that
(3.20) o(v,) = logp,.

We observe next that the cumulant generating function of p evaluated at (x, y) €
V*=R?is

(3.21) c(x,y) =log[ py + p, exp(x) + =52, p; exp(xa; + y)].

It follows easily from (3.19) and (3.21) that c*(v) =sup{x — c(x,y) : (x,y) €
R?} equals —log(p, + p,). Hence

(3.22) s(v,) = log(po + P1)

by Theorem 3.2. It is plain from (3.20) and (3.22) that s(v,) > o(v,) > — .

In the present notation, Theorem 5.2 of Donsker and Varadhan (1976) states that
if ¥ is a Banach space, and if (1.15) holds, then (i) ¢ is an upper semicontinuous
function on ¥V into [— o0, 0]; (ii) 6(v) = 0 if and only if E(X,|w) = v; (iii) for each
real ¢, {v : o(v) > t} is a compact set; and (iv) 6(v) = — c¢*(v) for all v. In view of
Theorem 3.2, this theorem is a useful complement to Theorem 3.3 and Corollary

3.1. It can be seen from Examples 3.1(b) and 3.2 that the condition (1.15) is
essential to every part of the stated theorem of Donsker and Varadhan.
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4. Proof of Theorem 3.3 (Continued). It is well known and easy to see that
K(») is a convex functional on the set of probability measures on V. Let x,y be
points in ¥, let a € (0, 1), and let z = ax + (1 — a)y. Let », and », be measures in
M(x) and M(y) respectively. Then av, + (1 — a)», is a measure in M(z), and
hence o(z) > — K(av, + (1 — a)»,) > a(—K(»)) + (1 — a)(— K(v,). Since »,
and », are arbitrary, 6(z) > as(x) + (1 — a)o(y), so part (a) holds. Part (b), i.e.,

4.1) o(v) < s(v)
for all v in V, has already been established in Section 3.

Now regard V as a sample space equipped with the probability measure p, and
let Y(v) be a real valued measurable function on V. Let N be the set of all » such
that i = [, Y(v)»(dv) exists and 0 <i < 0. Let b = sup{—K(») : » € N}if N #

Pandleth= — o if N=. Let ¥}, Y,, - - - denote a sequence of independent
replicates of Y, and for each n =1,2,- - - letb, = nllogP(Y,+ -+ +Y,>
0).

Lemma 4.1. lim, b, = b.

PROOF. Suppose u(Y < 0) = 1. Then no measure in N is dominated by u;
hence b, = b = — oo for each n, and the lemma holds. Suppose then that w(Y >
0) > 0. In this case N % &. Let B,(u) = n~'log P(Y; + - - - +Y, > u), and let
B(u) = lim,_,, B,(u); B(u) exists for every real u, by Chernoff’s theorem. It follows
from Lemma 3.3 of Bahadur (1971) that B(u) is finite and continuous in a
neighborhood of u = 0. Choose & > 0. There exists 7 > 0 such that 8(¢) > B(0) —
e. It follows from Theorem 4.2 in Bahadur (1971) and the definition of b that

- (42) b < B(0), b >pB(tr) > B0) — e
We observe next that 8,(f) < b, < B,(0) for every n. Hence
(4.3) lim inf, b, > B(?), lim sup,_,.b, < B(0).

Since ¢ is arbitrary, it follows from (4.2) and (4.3) that b = B(0) and that Lemma
4.1 holds. []

Now choose and fix x € ¥, 8 € V*, and ¢ > 0, and let Ly(x, €) be defined by
(3.1). In the following, Ly(x, €) is often abbreviated to L.

Lemma 4.2. s(L,) = sup{o(v) : v € Ly}.

PrROOF. Suppose first that L, n C = &. Then s(Ly) = — o by Theorem 2.1;
hence s = — o on L, by Theorem 2.3; hence ¢ = — o0 on L, by (4.1), and
Lemma 4.2 holds. Suppose then that L, N C # &. Then s(L,) > — 0. Let Y(v) =
6(v). — 6(x) + ¢ in Lemma 4.1, and let N be the set of measures determined as
above by this Y. Then N # & and s(Ly) = sup{ — K(») : » € N} by Lemma 4.1.
Since s(L,) > — oo it follows that

4.4) s(L,) = sup{ —K(») : » € N}
where N, = (v : » € N, K(») < o0}.
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Foreachj=1,2,- - - let4; be a compact convex set such that u(4;) <,~'. Let
B; = UJ_,4,;, and let D; be the convex hull of B,. Then D; is a compact convex set,
D, C D;,,, and w(D)) > 1 as j — oo.

Choose a » € N,. Then K(v) < oo; hence » < p, say, (dv/du)(v) = f(v),0 < f

< o0, and K(») = [y f(v)log f(v)u(dv). It is plain that g, =»(D)) = [ D f(v)u(dv) >
1 as j — o0. In the following assume j so large that a; > 0, and let the probability
measure »; be defined by v;(4) = (4 N D))/a;. It is easily checked that K(») —
K(») as j — oo and that [, Y(v)y;(dv) — [, Y(v)»(dv); consequently »; € N, for all
sufficiently large j. We observe next that »(D,) = 1 and D; is a compact convex set;
hence E(X,|y;) exists (Choquet (1969), II, page 115). Since » € N, in this paragraph
is arbitrary, it follows from (4.4) that
(4.5) s(Ly) = sup{ —K(») : » € N,, E(X,|v) exists}.
If E(X,|v) exists, say E(X,|v) = v, then » € N, if and only if K(») < oo and
0 < [, Y(Wp(aw) = [, [0(w) — O0(x) + €lv(dw) = B(v) — 8(x) + ¢, ie., v € L. Tt
therefore follows from (4.5) that s(L,) < sup{—K(») : E(X,|v) € L,}; this last
supremum equals sup{o(v) : v € L,} by (3.7). The reverse inequality s(L,) >
sup{o(v) : v € L,} is a consequence, e.g., of (4.1) and Theorem 2.3, and Lemma
4.2 is established. []

For each v in V let
(4.6) g(v) = lim sup,,_, o(w), -0 < g<0.
As is well known, the concavity of o (part (a)) and (4.6) imply that g is concave and
upper semicontinuous. We note also that (4.1), (4.6), and the upper semicontinuity
of s imply that

- (4.7) a(v) < g(v) < s(v)
for all v.

Now choose x € ¥V, and positive constants m and §, and let #(x) =
max{—m, g(x) + 8}. It follows by replacing s with g and v with x in the second
part of the proof of Theorem 3.2 that there exist # in ¥* and ¢ > 0 such that
g(v) < t(x) for v € Ly(x, €). Hence s(Ly(x, €)) < #(x) by the first inequality in (4.7)
and Lemma 4.2. Hence s(x) < #(x) by the definition of s(x); hence s(x) < g(x);
hence s(x) = g(x) by (4.7). Since x is arbitrary, part (c) holds. Now let J be a
nonempty open set. It is plain from (4.6) that, for each v in J, g(v) < sup{o(w) : w
€ J} = o(J) say; hence, by part (c) and (4.6), lan(J) < o(J). The reverse inequal-
ity lan(J) > o(J) is evident from (4.1), so part (d) holds.

If v  C, s(v) = — oo by Theorem 2.4(a); hence s(v) = o(v) by (4.1). To estab-
lish part (e) it will therefore suffice to show that s = o on I. To this end, suppose 1
is nonempty. Then s is finite (and continuous) on I, by Theorem 2.4(c). Since I is
open, it follows from part (c) that the set G = {w : o(w) > — o0} is everywhere
dense in I. Let z be a point in I. If V is k-dimensional there exist points
Xgo X5+ * X% in I such that z is in the interior of the convex hull of
{xos * * * , x.}. For each i let B; be an open set containing x; such that B, c I and
such that if y, € B;fori =0, - - - , k then z is in the convex hull of {yy, * - * , ¥ }.
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Now choose y; € B; N G for each i; then 6(y,;) > — oo for each i; hence o(z) > —
oo by part (a). Thus o is concave and finite on the open convex set I; hence ¢ is
continuous on 1. It now follows from part (c) that o(v) = s(v) for v € I; thus part
(e) holds.

Suppose, finally, that V is one-dimensional. In view of part (e), it will suffice to
show that if x is a boundary point of C then s(x) = o(x). The closed half spaces
with x on their boundaries are H;, = {v: v < x} and H, = {v : v > x}. Suppose
C is a subset of H,. Then s(H,) = 0 and s(H,) = logp < 0, where p = u({x}).
Hence s(x) = log p by Theorems 3.1, 3.2. If p > 0, the only measure in M(x) which
is absolutely continuous with respect to p is the measure degenerate at x, and hence
o(x) = logp; if p =0, then s(x) = — oo and hence s(x) = o(x) by (4.1). This
completes the proof of Theorem 3.3.

5. On the invariance of Lanford’s theory under continuous linear transforma-
tions. We recall from Section 1 that V is a topological vector space equipped with
a locally convex Hausdorff topology 7, that {X,} is a sequence of measurable
transformations on (2, &, P) into V such that {X,(w)} is an ii.d. process with
PX, ! = pu, and that Assumptions 1, 2, and 3 hold. Now let ¥° be a real vector
space and let ¥'° be equipped with a topology 7° in which it is a locally convex
Hausdorff topological vector space. Let £ be a continuous linear function on ¥V into
V% Foreachn =1,2,- - - let XA(w) = &X,(w)). In the following we refer to the
entities V°, 7% u® = p¢ 7', and {X} as the transformed framework.

THEOREM 5.1. All conclusions of Sections 1, 2, and 3 hold in the transformed
Jramework.

PrOOF. Let ®° denote the Borel field in ¥°. Since £ is a measurable transfor-
mation of ¥ into ¥'°, and since X;?= £(X,) and Y} , = £(¥,, ,), it is plain that the
conditions stated in the paragraph containing (1.16), as well as Assumption 1,
continue to hold with X;, u, and B replaced by X°, u° and B°. Let A be a regular
and convex-regular probability measure on V. It follows easily from the continuity
of £ that A® = A¢ ~!is regular on ¥°, and from the continuity and linearity of £ that
A® is convex-regular. Since p® = ¢ ~! and each p, is regular and convex-regular,
we conclude that Assumptions 2 and 3 also hold in the transformed framework. []

Let y denote the typical point in ¥, and let s% y) be the point entropy at y in the
transformed framework. According to Theorem 5.1, s° exists, and can be computed
and used to estimate or bound large deviation probabilities concerning X?, by
using the methods of Sections 1, 2, and 3 in the transformed framework. Of course,
for any given B C V° we may, if we wish, express pd(B) as p,(4) with 4 =
£ 1(§ ), and estimate or bound p,(A4) in terms of the original framework. The latter
procedure amounts, roughly speaking, to replacing the actual entropy function s°
on V° with another function, s, say, defined as follows: for each y € ¥°

(CRY so(y) = sup{s(v) : v € £~ {y}}
if £7{y} is nonempty and so(y) = — oo otherwise. We shall call s, the pullback
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entropy function induced by £. It is of some interest to enquire whether

(52) so(y) =5°(»).

Example 5.1 at the end of this section shows that in general the pointwise
invariance represented by (5.2) does not hold. A number of sufficient conditions
for (5.2) are given in Theorems 5.2(f) and 5.3 below.

THEOREM 5.2.

(@) The function sy : V° —[— o0, 0] is concave.

(b) For ally € V° s(y) < s%»).

(c) For ally € V° lim sup,_, so(z) = s°%y).

(d) For every nonempty open set B C V°, sup{so(») : ¥y € B} = sup{s%y) :y €
Bj}.

(e) If V° is finite-dimensional, {y : s(y) % s%»)} is a subset of the boundary of
the closed convex hull of the support of p°.

() If V° = R! then sy(y) = s%y) for all y € R'.

PROOF. We shall establish only parts (b), (c), and (d). Let B c V° be a
nonempty open convex set. The supremum of s° over B is the entropy of B, by
Theorem 2.3°. However, the entropy of B is also the entropy of £ ~!(B); the latter
entropy equals the supremum of s, over B, by Theorem 2.3 and (5.1). Thus part (d)
holds for open convex sets; that (d) holds for all open sets now follows from the
local convexity of ¥ Part (c) is an immediate consequence of part (d) and
Theorem 2.2°. Part (b) is an immediate consequence of part (c). []

Theorems 3.3 and 5.2 suggest that the functions s(v) and o(v) of the preceding

- sections are the actual and pullback entropies induced by some mapping of an i.i.d.
process on some vector space into V. We now show that this suggestion is correct
at least in the case when ¥V is a Polish space. Let ¥ be the space of finite signed
measures on ¥, and let ¥ be equipped with the weak topology. For each n let fn(w)
be the probability measure degenerate at X, (w). It follows from Section 7 (with the
space Z of that section replaced by V) that {fn} is a well-defined process on v,
that the conclusions of Sections 1, 2, and 3 hold for this process, and that the point
entropy at a pomt vin Vis —K(») if v is a probability measure and is — o0
otherwise. Let W be the space of all » such that E(X,|») ensts, and let n(») =
E(X 1|v) on W Then 7 is a linear map of W onto V. Regard {X } as a process on
W. Since n(X (w)) = X, (w), it follows that s(v) and o(v) are the entropy functions
induced by 5. Theorem 3.3 is, however, not a special case of Theorem 5.2, mainly
because in general 7 is not continuous. For this same reason the present considera-
tions applied to the framework of Example 3.2 do not yield a contradiction to (5.2).

As in preceding sections let V* denote the set of real-valued 7-continuous linear
functions @ on V. With ¥V and V* regarded as vector spaces in duality, let 7,, be the
weak topology on ¥ and 7% the Mackey topology on V*. Let ¢ denote the moment
generating function of p, i.e., $(8) = exp[c(8)] = [, exp[d(v)] u(dv) for 8§ € V*, 0
< ¢ < o0. As in Sections 2 and 3, let C be the closed convex hull of the support of
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p in the r-topology. For any real ¢ let
(5.3) A, ={v:s(v) >t}, B, =¥§A4,).
We note that 4, is a 7-closed convex set; hence B, is a convex set in V°.

THEOREM 5.3.  Each of the following conditions is sufficient for (5.2):
(i) C is 7,-compact.
(ii) V is a Banach space and (1.15) holds.
(iii) V is a reflexive Banach space (e.g., V = R* = V*) and ¢(0) < 0 in a
neighborhood of § = 0.
(iv) ¢(8) is 1%-continuous at § = 0.
(v) For each t, A, is 1,-compact.
(vi) For each t, B, is 1°-closed.

Proor. We observe first that both ¢ and ¢ are proper convex functions on V*,
and that both are lower semicontinuous in the Mackey topology (and therefore in
any topology compatible with the duality between V and V*). That ¢ is convex is
immediate from the convexity of the exponential function, and the convexity of c is
a consequence of Holder’s inequality. To see that ¢ (and therefore c) is lower
semicontinuous, choose and fix § € V*. Since p is convex-regular, there exists a
sequence {D; :j=1,2,- - - } of compact convex sets of ¥ such that D, C D,,,
for each j and w(D;) — 1 as j — oo (cf. Section 4). Choose ¢ > 0 and for each j let
N(¢) be the set of all § € V'* such that sup{|8(v) — 8(v)| : v € D;} <e. Since
compact sets are weakly compact, D; is a weakly compact convex set; hence N(e)
is a Mackey-open neighborhood of 8. Hence

lim infs_,4(8) > inf{$(8) : 6 € N,(e)}
(5.49) > inf{fDJ exp[d(v) | u(dv) : 8 € Nye)}
>e [ exp[ 8(v) | p(dv).

It follows from (5.4) by letting e >0 and j — oo that, whether ¢(f) < o or
= + oo, lim inf;_4¢(8) > ¢(#); thus ¢ is lower semicontinuous on V*.

We show next that each of the conditions (i) through (v) implies condition (vi).
Since c is proper, convex, and lower semicontinuous, it follows from a theorem of
Moreau (1966) that (iv) is equivalent to the condition that {v : c*(v) < — ¢} be
weakly compact for each real #; Theorem 3.2 and (5.3) now imply that (iv) is
equivalent to (v). To show that (v) implies (vi) let 7 be the weak topology on V°
(determined by the given topology 7°. Since £ is a 7 — r%-continuous linear
funiction on ¥ into V9, it is easily seen that £ is also 7, — 79-continuous. Hence (v)
and (5.3) imply that each B, is r%-compact. Since 79 is a Hausdorff topology each
B, is weakly closed and therefore closed in V0 and (vi) holds. We observe next
from (5.3) and Theorem 2.4(a) that A4, C C. Since 4, is a closed convex set it is also
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weakly closed; it follows hence that (i) implies (v). It follows from Theorem 5.2 of
Donsker and Varadhan (1976) (quoted at the end of Section 3) by Theorem 3.2 that
(i) implies that each 4, is compact and therefore weakly compact; thus (ii) implies
(v). Suppose next that (iii) holds and let ||@|* = sup{|8(v)| : v € V, ||v|| < 1} for
0 € V*. By the present hypothesis, there exists an ¢ > 0 such that ||§||* < e implies
#(0) < oo0; since ¢ is convex, it follows (Rockafellar (1974), page 31) that ¢ is
| - ||*-continuous at # = 0. Since V is reflexive, the || - ||*-topology on V* is
identical with the 7X*-topology, so that (iii) implies (iv). It is thus shown that
(i) = (v), (ii) = (v) (and more), (iii) = (iv), (iv) & (v), and (v) = (vi).

It will now suffice to show that (vi) implies (5.2). Choose a point z € V°, let m
and ¢ be positive constants, and let = max{—m, so(z) + €}. It follows from (5.1)
and (5.3) then that the intersection of 4, and £ ~'{z} is empty; of course one or
both of these sets might be empty. In any case B = £(4,) does not contain z. Since
B is a closed convex set there exists an open convex set L° such that z € L° and
L° N B =@ Then L = £ ~!(L% is an open convex set such that the intersection of
L and £~ '(B) is empty. Since 4, C £ ~(B) we have s(v) <t for v € L; hence
s(L) <t by Theorem 2.3. However, s(L) is also the entropy of L% hence s%z) < ¢
by the definition of s°(z). Since m and ¢ in the definition of ¢ are arbitrary it now
follows from Theorem 5.2(b) that s4(z) = s°(2). ]

NotEe 1. It is no accident that some of the conditions of Theorem 5.3 resemble
sufficient conditions (cf., e.g., Theorems 18, 18’ of Rockafellar (1974)), in order that
certain convex optimization problems have solutions; indeed, the general theory of
such problems can be used to obtain some necessary and sufficient conditions for
(5.2), as follows. Let y denote a real valued 7%continuous functional on ¥, and let
T be the space of all such functionals y. Choose and fix a point z € VO, Since
v¢ € V* foreachy €T,

(5.5) F(8, v|z) = c(8 + v§) — v(2)

is a well-defined function on V* X T into (— o0, + o0]. Let
(5.6) f(8)z) = inf{F(0, v|z) : y €ET}.
It follows easily from (5.5), (5.6) by Theorem 3.2° that

(5.7) 5%z) = f(0lz).
It follows from (5.5) and (5.6) by application of Theorems 1 and 7 of Rockafellar
(1974) that f(#|z) is a convex function of 6, and that

(5.8) so(2) = lim inf,_, f(6]z)

in any compatible topology on V*; we omit the verification. It follows from (5.7)
and (5.8) that (5.2) holds if and only if f(#|z) is lower semicontinuous at § = 0 for
each z € V° Another conclusion provided by the present methods is that (5.2)
holds if and only if s, is an upper semicontinuous function on ¥?; this conclusion
is, however, available also from Theorem 5.2(c).
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NotE 2. We have seen in the proof of Theorem 5.3 that ¢ is always a lower
semicontinuous proper convex function. It follows (Rockafellar (1974), page 16)
that (—s)* = ¢** = c. Thus there is always a one-to-one correspondence between
cumulant generating functions ¢ on V* and point entropy functions s on V. Of
course, different probability measures p may have the same cumulant generating
function; cf. Example 3.1(b).

We consider next an interesting special case. Let 7; be a topology on V weaker
than 7 but such that V remains a locally convex (Hausdorff) topological vector
space under 7,. The following corollary is then immediate from Theorems 5.1-5.3
with V% = V, 7% = 7, and £ the identity:

COROLLARY 5.1. Al conclusions of Sections 1, 2, and 3 hold with 1 replaced
throughout by t,. With s, the point entropy function on V in the T, topology,
s1(v) > s(v) for all v. If any of the conditions (1)—(vi) of Theorem 5.3 is satisfied, then
5,(v) = s(v).

We note that condition (vi) reduces in the present case to the condition that s(v)
be 7,-upper semicontinuous on V. It follows hence from Theorem 5.2(c) that in the
present case condition (vi) is necessary and sufficient for s,(v) = s(v). Yet another
sufficient condition for s,(v) = s(v) is that the dual space of ¥ under 7, be V'*; this
is immediate from Theorem 3.2. This last condition is satisfied by an admissible 7,
ifand only if r, C 7, C 7.

The following example shows that (5.2) can break down even in the finite-dimen-
sional case (cf. Theorems 5.2 and 5.3).

ExampLE 5.1. Choose sequences {p;:j=0,1,2,---} and {g :j=
©2,3,-- -} of positive constants exactly as in Example 3.2. Let ¥ = R3, let
Uy =(0,0,0),u; =(1,0,0), and 4, = (a;, 1, - a) for all j > 2, and let u be defined
by p({%}) =p; forj=10,1,2,- - - . Let ¥* = R? and let £ : ¥ — V° be defined
by &(ry, 1y, 13) = (ry, rp). Let z = (1, 0). We shall show that

(5.9 so(z) = log py, s%(z) = log(p, + p)).
The moment generating function of u evaluated at @ = (¢, t,, t;) € V* is
(5.10) #(0) = po + py exp(z)) + Eﬁz b; exP[(’l +jt3)a; + t2]~

It follows from (5.10) by (3.19) that here the natural parameter space is the union
of ®, and ©,, where ®, = {#:¢, < 0,7, =0} and O, = {#:t; < 0}. For each
real r let w, = (1, 0, r), and let A,(r) denote the supremum of 6(w,) — c(@) over O,
for i =1,2. Since 6(w,) = t, + rt;, it follows from (5.10) by straightforward
calculations that A,(r) = — log(py + p,), and that Ay(r) = —logp, if r > 0 and
hy(r) = + o if r < 0. Hence c*(w,) = max{h,(r), hy(r)} = hy(r); hence s(w,) =
— hy(r). Since w, = (z,r), it follows that sy(z) = sup{s(w,): —o0o <r < 0} =
log p;, and the first part of (5.9) is established. The second part of (5.9) is
equivalent to (3.22) since the present u° and z are the p and v, of Example 3.2.
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6. Some examples. In each example of this section V is a separable Banach
space and it follows from Lemma 1.1 with ¥, = V that Assumptions 1, 2, and 3
hold.

ExXAMPLE 6.1 (the multinomial case). Suppose ¥ = R%, k > 2, and suppose u

assigns probabilities p,, - - - , p, respectively to the unit vectors
1,0,-+-,0),---,(,- -+, 1), where p, > 0, =¥p, = 1. Here V* = R¥, and for
0=(8,,--:,0)€ V* c(8) =log(Z*p, exp[f;]). Let V, be the set of all v =
(v, * * -, 1) in V with v; > 0 for each i and S¥v, = 1. It is known (Rockafellar
(1974)) and easily verified that the Fenchel transform of c is

(6.1) c*(v) = Zi.10; log(v,/p,)

for v € V, and c*(v) = o on V|. We have

(6.2) s(v) = —c*(v)

by Theorem 3.2.

In the present case s(4) exists and equals lan(4) for every open 4 C R*. To see
this, note that p,(4) < p,(4) = p,(4 N V,) for every n, and that 4 N V, is
compact; hence

(6.3) lim sup,,_, ,a,(4) < lan(A_ N Vl)
by Lemma 2.5. It is plain from (6.1), (6.2) and 0 log 0 = O that s(v) is continuous
on V;; hence lan(4 N V;) = lan(4 N V). Since s = — oo on V], it follows, as

desired, that the upper bound in (6.3) equals lan(A4).

The above conclusion is easily seen to be equivalent to the following: in the
finite multinomial case, Sanov’s theorem holds for every open set in the space of
probability distributions of the single observation (cf. Section 7). An equivalent
conclusion is obtained by ad hoc methods in Bahadur (1971). (There is a rectifiable
error in Lemma 5.2 of Bahadur (1971).)

The special case k = 2, p, = p, =3, and K = {(3, 3)} provides an example of a
compact convex K for which s(K) does not exist and (2.5) holds with equality.

EXAMPLE 6.2. Suppose that ¥ = R*, k > 1, and that u is a given probability
measure on the Borel sets of V. Of course we cannot compute the resulting point
entropy function explicitly, but Theorems 2.1, 2.3, and 3.3(d) afford the following
semi-explicit conclusion. For every J which is a finite union of open convex sets
s(J) exists and

(6.4) s(J) = lan(J) = sup{ — K(») : E(X,|») € J}.

Suppose henceforth that © includes a neighborhood of 8 = 0; in the present case
this is equivalent to the existence of an ¢ > 0 such that m = E, (exp[e||x||]) < oo. It
then follows from Theorem 3 of Bartfai (1978) that (6.4) holds for every open J. It
also follows that the inequality (1.14) holds for every Borel set J. To see this,
choose » > 0 and let B = {||o|| : ||v]| < r}. Since || X,|| < n~'S7||X;|, it follows
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from Bernsteins’s inequality that p,(B ') < m” exp(— nre). Since p,(J) < p.,,(J ) <
2 max{ p,,(.l N B), u,(B")}, and since J N B is compact, it follows from Lemma
2.5 that the left-hand side of (1.14) is not greater than max{lan(.l ), log m — re};
(1.14) now follows by letting » — c0. It would be interesting to know whether the
present integrability assumption is essential to the conclusions of this paragraph.
We note in this connection that in general lan(J) # lan(J), even if (1.15) holds and
J is open.

ExAMPLE 6.3. (Gaussian measure on a Hilbert space). Let ¥ be a Hilbert space
with inner product (v, w). Then V* = ¥, and §(v) = (0, v) for§ € V*,v € V. We

assume that ¥V is infinite dimensional but separable. Let {¢; : j=1,2,- - - } be a
complete orthonormal system in ¥, let {A;:j =1,2,- - - } be positive constants
such that Z{°A; < oo, and let T be the covariance operator defined by

(6.5) To=Z3P )\ (ve) ¢

for v € V. Let u be the probability measure on the Borel sets of ¥ such that, for
each @ € V, the distribution of (4, v) under p is normal with mean zero and
variance (79, ). We have

(6.6) (79,0) == N- (8,¢)’ = Q(9), say.

It is known (cf., e.g., Kuo (1975)) that such a p exists and is unique.

Choose v and @ in V, and let Hy(v) be defined by (3.2). It follows from (3.3), or
otherwise directly from the fact that 0(5’:,) is normal with mean zero and variance
Q(8)/n, that s(Hy(v)) equals 0 if (v) < 0 and equals —[8(v)]>/2Q(8) if 8(v) > 0.
Hence s(v) = — sup{[8(v)]?/2Q(8) : § # 0} by (3.4) and Theorem 3.2. A straight-
forward calculation, which we omit, now shows that

6.7) s(v) = =32 N (v, e) for ve V.

Let Vo = {v: ZPA 7' (v, ¢)* < o}; then ¥ is the range of the operator T?. In
view of (6.7), V, is precisely the set F of Section 2. The point entropy function is
not continuous on V or even on V.

For each § € V* let the probability measure y, be defined as in Section 3 in the
paragraph preceding Theorem 3.4. Since the covariance between the random
variables §(v) and 8(v) is (79, §) when p obtains, an easy calculation shows that

(6.8) E(X|pp) = T9

It follows from (6.8) that W, the space of means, is the range of T, i.e.,, W =
{v:ZPN2- (v, ¢)* < o0}. It is interesting to note that W is a proper subset of
V,; consequently Corollary 3.3 does not apply to every v with s(v) > — o0. We
observe next that, under g, {(v, ¢)/ ()\)2 :j=1,2,- - - }is a sequence of indepen-
dent N(0, 1)-variables. Hence {v : (v, ¢)/ ()\)2 > 1 for mfmltely many j} is a set of



LARGE DEVIATIONS OF THE MEAN 611

u-measure 1. Consequently ¥, and W are both sets of y-measure zero. It follows
that if v is distributed in ¥ according to some unknown one of the probability
measures { iy : @ € V'} then, for almost all v, the likelihood is a continuous but
unbounded function of # and the likelihood equation E(X,|py) = v has no solu-
tion. It is thus seen that the inference methods considered in the final paragraph of
Section 3 all fail in the present example.

According to a theorem of It6 (1970) there exists a point x € V and a closed
subspace H such that S, the support of p, is the set x + H. (Cf. Section 2.) Hence
C = S. It follows from Lemma 2.3 by an application of the separating hyperplane
theorem that, in the general case, C # V if and only if there exists an open
half-space of zero p-measure. Since Q(8) > 0 for § # 0, no such half-space exists
in the present case. We conclude that S = C = V = I. However, F = V, is an

everywhere dense subset of ¥V with empty interior; cf. Theorem 2.4.
It is known (cf., e.g., pages 159165 of Kuo (1975) and Lemma 6.1 of Donsker

and Varadhan (1976)) that (1.15) holds in the present example, and also in
Examples 6.4 and 6.5 below. It follows (cf. Section 1) that in all three examples s(J)
exists and equals lan(J) for finite unions of open convex sets and also for all Borel
sets J such that

(6.9) lan(J°) = lan(J).
Let € be given, 0 < € < o0, and consider the particular set
(6.10) J,={v:|v|] >e}.

Then J? = {v : ||v|| > ¢€}. Choose v € J, N V,. Then, with § a positive constant,
‘w = (1 + 8)vis a point in J°, and s(w) = (1 + 8)%(v) by (6.7); since s(v) > — o
and & is arbitrary, lan(J?) > s(v); since v is arbitrary, lan(J;) > lan(J, N V) =
lan(J,); thus (6.9) holds for J,. We observe next that, since the point entropy is a
concave function and since s(0) = 0, lan(J,) = lan{v : ||v|| = &} = lan{v : ||v|?* =
%, v € V,}. Since ||v|? = (v, ¢)?, it follows from (6.7) by inspection that
lan{v : ||v|* = €% v € V,} equals —e?/(2\,) where Ay = max{\, : j =1,2,- - -°
We conclude that s{v : ||v]| > ¢} exists and equals —&>/(2\,). This conclusion is

available also from Theorem 7 of Sethuraman (1964).

ExXAMPLE 6.4. (Wiener measure). Suppose V is the vector space of all continu-
ous real valued functions v on the interval [0, 1] of the real line with v(0) = 0. Let
V be equipped with the topology of uniform convergence, 7 say, and let % be the
resulting o-algebra of Borel sets of V. Let p be the standard Wiener measure on %,
i.e., X, is the Gaussian process with mean zero and covariance function min{¢, u}
for t,.u €0, 1]. ’

Let ¥, be the class of all functions v in ¥ which are absolutely continuous and
such that [}[v'(f)]* d¢ < co. We shall show that

(6.11) s(v) = —33[v'(1)]? at
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for v € ¥, and that s(v) = — oo for every v &€ V. It is known (cf,, e.g., Kuo
(1975), page 115) that every nonempty open set of ¥ has positive u-measure. Hence
S=V=C=1Ibut F=V, Fis of p-measure zero, F=V,and F° is empty.

For each ¢ € [0, 1] let /, be the point in V* defined by /(v) = v(t), and let V§ be
the span of the functionals {/, : 0 < ¢ < 1}. Let 7, denote the smallest topology in
which each § € V§ is continuous. Since functionals in the vector space V§ separate
the points of ¥, and since condition (ii) of Theorem 5.3 is satisfied, it follows from
Corollary 5.1 that Theorem 3.2 with 7 replaced by 7, will yield the common point
entropy function in the 7 and 7, topologies. Let 8 be a point in V(’,". Then there exist
a positive integer k, constants a,, - - - , @, and points ¢, - -, # in [0, 1] with
0<1t <+ <t < 1, such that 8(v) = Za,0(t,) for all v in V. With b, = Z%_.a,
and ¢, = 0 we have

(6.12) 8(v) = Zi. b o(r) — o(t_1) ],

so that @ is normally distributed with mean 0 and variance d %(6), where

(6.13) d*(8) = Zi_ b} (1 — 1)

Hence c(@) =2d%@). Choose a v in V. Holding k and ¢,,- - -, # fixed, the

maximum of 8(v) — 2d*(9) over all a,, - - -, g is easily seen from (6.12) and
(6.13) to equal

[o(2) — D(ti-—l)]2
(&= ti-y)
The supremum of f over all k and ¢, - - - , ¢, equals [J[v'())? dtif v € Vyand + 0
if v € ¥} (Riesz and Nagy (1956), page 75). It now follows, as desired, that

s = — oo on ¥} and that (6.11) holds on ¥,

Let J, be defined by (6.10). It then follows exactly as in Example 6.3 that s(J,)
exists and equals the supremum of s(v) over all v in ¥ such that ||v|| =e. It
follows hence that s(J,) = — &2/2.

As noted previously by Donsker and Varadhan (1976) and others, if {X,

1,2,- - - }is an iid. process of centered Gaussian vectors then X, /n'/? has the
same distribution as X,; consequently, large deviation results concerning X, are
equivalent to certain results concerning X,. It follows hence from the preceding
paragraph that in the present example n~! log P(|| X,|| > en'/?) — — €?/2 as n >
oo. With ¢ a parameter taking values in [0, 00) this last conclusion is equivalent to

(6'14) 21-1 =% (k’ S TIR tk)’ say.

(6.15) lim,_, .t~ ! log P(|| X,|| > et'/?) = —¢&?/2.

Now let {¥(#): 0 <t < oo} be a standard Wiener process, and for T a positive
constant let Z(T) = sup{|Y(f)| : 0 < ¢ < T}. Since the processes { Y(:T)/T'/: 0
<t <1} and {X,(¢) : 0 <t < 1} have the same distribution, the distribution of
Z(T) is the same as that of 7'/ X|. It follows that (6.15) is equivalent to

6.16 limy_ T 'log P(Z(T) > eT) = —¢&*/2
T—o0
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and also to
(6.17) lim,_,T log P(Z(T) >¢) = —32/2.

The conclusions of this paragraph are special cases of results of Varadhan (1967),
Marcus and Shepp (1972), Borell (1977), and others.

ExampPLE 6.5. (Brownian bridge). Let V, 7, u, and ¥, be the same as in
Example 6.4 and let ¥, be the set of all v € V with v(1) = 0. Now let p be replaced
by the conditional p-measure given that v € V. It can be shown by the same
method as is used in Example 6.4 that s is then given by (6.11) forv € V, n ¥V,
and s = — oo elsewhere. It follows hence that with J, defined by (6.10) we have
s(J) = — 2¢%

Let {Y():0<t < o0} and {Z(T):0 < T < o0} be the processes defined in
the last paragraph of Example 6.4. It then follows from s(J,) = — 2¢? that
limy_ T~ 'log P(Z(T) > eT|Y(T) = 0) = lim,_,T log P(Z(T) > ¢|Y(T) = 0) =
— 2¢%

NotEe 1. The referee has kindly pointed out that in Examples 6.4 and 6.5 the
point entropies in the 7 and 7, topologies can be shown to be the same without
using Theorem 5.3. Choose 8 € V*. There exists a function F of bounded variation
on [0, 1] such that §(v) = fio ;v(£)F(df) for all v € V. There exists a sequence
{F,:j=1,2,-- -} such that each F; is a step function on [0, 1] with a finite
number of steps, and such that F; — F weakly. With §,(v) = [jo 1 j0()F(dr), {6;} is
a sequence in Vg such that §,(v) > 8(v) for each v. If § and 6, are normally
distributed with means 0 and variances d*(#) and d*(f) respectively, it follows
from the continuity theorem for characteristic functions that d%(6;) — d*(8). Hence
c¥(v) = sup{8(v) — 2d*(8) : 8 € V§} > 6(v) — 3d*(0) for each v. Since 6 is arbi-
trary and V3 C V*, c(v) = c*(v).

Note 2. Examples 3.1(d), 6.3, 6.4, and 6.5 are special cases of a Gaussian
measure on a Banach space. B. V. Rao and V. Mandrekar have kindly suggested to
us that the general case can be treated as follows. Suppose that V is a separable
Banach space with norm || - || and that p is a centered Gaussian measure, i.e., for
each § € V* the random variable 8(v) is normally distributed with mean zero and
variance Q(@) say, where 0 < Q(f) < oo. Regard V* as a subspace of L, =
Ly(V, %, n) and let M be the closure of ¥* in L,. For f € M let Rf denote the
Bochner integral of v - f(v) with respect to ; it is known that ||v||® is p-integrable;
hence ||v- f(v)|| = ||v|| - | f(v)| is p-integrable and so Rf exists. With (-, -), the L,
inner product we have

8(Rf) = 6(f, 0 f(o)u(d0))
'6.18) = [y0(v - f(v))p(dv)
= 1,8(0)- flo)u(d)

= (0’f)2
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for all 8 € V*, f € M. It follows from (6.18) that R is a linear one-to-one map of
M onto a set ¥, C V. Define (u, v), = (R "', R 'v), and ||ully = (4, u)g)* for
u, v € V. Since M is a separable Hilbert space, so is the space ¥, with norm || - ||,
(It is easily verified from (6.18) that, with elements of ¥V, regarded as functionals on
V*, ¥, is the reproducing kernel Hilbert space of the covariance function (-, *), on
V* X v*. Cf. Kuo (1975), Kuelbs (1976), and Mandrekar (1979) for various other
properties of ¥, The present construction of V| is the one given in Mandrekar
(1978).) 1t is shown in the following paragraph that

(6.19) s(v) = —3|lvl3 for v EV,

and
(6.20) s(v)=—o00 for vEV

It is plain from (6.19) and (6.20) that finding the point entropy function is always
equivalent to finding the set ¥, and the norm || - ||, on V.

The cumulant generating function of p is ¢(8) =3 Q(8) =3||8|)3 for § € V*. To
avoid trivialities we assume that Q(8) > 0 for at least one #. Choose a point
x € V,, say x = Rf. It then follows from (6.18) that c*(x) is the supremum of
8, ), — 3118]13 over V*. Since (g, f), — 1|l gl = Ug say is continuous on M and
V* is dense in M, c*(x) is the supremum of Ug forg € M. Forany r,0 < r < oo,
the maximum of Ug over the set {g:g € M, || g|l, = r} is r(f, f), — 3r* hence
c*(x) =1(f, /), =1||x||3. Since x is arbitrary and s = — c*, (6.19) is established.
To establish (6.20) it will now suffice to show that if x € ¥V and c*(x) = — s(x) <
o then x € V. By the definition of c*, 6(x) — 3|0|)3 < c*(x) for all § € V*. It
~ follows that |6(x)| < a(x) < oo for all # € V* with ||8||, = 1, where a(x) = c*(x)
+ 3, so that §(x) is a bounded linear functional on V*. There exists an extension of
this functional to a bounded linear functional on M, say T. Since M is a Hilbert
space there exists an f € M such that Tg = (g, f),; in particular 79 = 0(x) =
8, f), for 8 € V*. It now follows from (6.18) that x = Rf, so x € V,. The
arguments just concluded show, incidentally, that x € V,, if and only if 8(x) is an
L,-bounded linear functional on V*. It follows from (6.19), (6.20) by Theorems 2.1,
2.3, and It6 (1970) that ¥V, is an everywhere dense subset of the support of u.

For ¢ > 0 let J, be defined by (6.10). It follows from (6.19), (6.20) exactly as in
Example 6.3 that s(J,) exists in the present general case, and that

(6.21) s(J,) = —; inf{||o|3 : v € ¥, |l0]| = e}.

7. The Sanov problem. Let (Z, ¥,p) be a probabilit); space; here Z is a set of
points z, ¥ is a o-algebra of subsets of Z, and p is a probability measure on ¥. For
any probability measure g on ¥ let k(q) = [, log[(dg/dp)(2)]q(dz) if ¢ < p on F,
and let k(q) = + oo otherwise. Let V; denote the set of all probability measures on
%. For any set J C V, define

(7.1) san(J) = sup{ —«(q) : ¢ €J}
if J is nonempty and san(J) = — oo otherwise.
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Now let Y}, Y,, - - - be a sequence of independent observations, each Y; taking
values in Z according to the probability measure p. Foreachnand Y, - - -, Y, let
b, denote the empirical measure based on the sample Y, ---,7,, ie.,
P (A; Yy, - -+, Y,)=(3# of indices i with 1 <i <nand Y, € A)/n for 4 € ¥.
We shall say that Sanov’s theorem holds for a set J C V, if P(p, € J) is well
defined for each n and lim,_ n~" log P(p, € J) = san(J).

Suppose that ¥, is a topological space, and let J C ¥V, be an open set. Assume
that {5, € J} is a measurable event, and that the law of large numbers holds in
the sense that, for each probability measure ¢ € J, P(p, € J|qg) > 1 as n — o0;
these assumptions are, of course, conditions on the topology of V. It then follows
by an application of Lemma 6.1 in Bahadur (1971) that

(7.2) lim inf,_, n~" log P($, € J|p) > san(J).
Assume further that
73 lim, . n~"log P(p, € J|p) exists

for every J which is an open convex subset of V. For each ¢ € ¥, let #(g) be the
infimum of the limit in (7.3) over all such J which contain gq. It then follows from
(7.2) by the definition of san(J) that

(74) —x(q) <t(q)

for all ¢ € V. It is thus seen that Sanov’s purely measure-theoretic point entropy is

a lower bound for the topological point entropy generated by virtually any

reasonable topology on ¥V,. We think that this is an important source of the

difficulties and complications of the Sanov problem; as noted in Section 1, and as
-is evident from (7.2), the main problem is to find adequate asymptotic upper

bounds for a,(J) = n~! log P(p, € J|p).

Various sufficient conditions in order that Sanov’s theorem hold for a given
J C V, are given in Sanov (1957), Hoadley (1967), Sethuraman (1970), Borovkov
(1967), Stone (1974), Sievers (1976), Donsker and Varadhan (1976), and
Groeneboom et al. (1979). It is shown in the following paragraphs that if Z is a
Polish space and J is a finite union of weakly open convex subsets of V; then
Sanov’s theorem holds for J. We believe that this sufficient condition supplements
rather than supplants the other conditions cited. It is also shown, incidentally, that
equality holds in (7.4) in the weak topology (and therefore in any larger topology
which satisfies the conditions of the preceding paragraph).

It is assumed henceforth that Z is a Polish space and that ¥ is the o-algebra of
Borel sets of Z. Let V be the vector space of finite signed measures on ¥. Let C be
the class of all functions f: Z — R! such that f is continuous and bounded. For
each f € C let / be the linear functional on ¥ defined by

(7.5) I(v) = [z f(z)v(dz).

Let 7 be the smallest topology in which / is continuous for each f € C. Since each
point in V is the difference of two finite nonnegative measures it follows easily
from Billingsley (1968), page 9, that the points of ¥ are separated by functionals in
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{l;: f € C). Since {I; : f € C} is a vector space, it follows that 7 is an admissible
topology on ¥, and that V* = (/. : f € C}. It should be noted that now the
relative topology on ¥ is that of weak convergence of probability measures, and
(Parthasarathy (1967), pages 45—46) that V, is a Polish space.

We observe next that V] is a convex and closed subset of V. The convexity of V;
is obvious; the fact that V] is closed in V is well known and easily established by
standard arguments (cf., e.g., Billingsley (1968)).

For each z in Z let §, denote the probability measure degenerate at z, and let
T:Z -V be the map which takes z into §,. It is readily seen that T is a
continuous map; consequently 7 is an %-% -measurable transformation of Z into
V, where 9B is, as usual, the Borel field in V. Hence

(7.6) p=pT~!
is well defined on 9. Clearly, w(V,) = 1.

Let (R, @, P) be a probability space and for each n let ¥, : 2 —> Z be an
@-%-measurable transformation such that, under P, {Y,(w): n=1,2,- - - }isan
ii.d. process with PY,~! = p. For each n let X,(w) = TY,(w). It then follows from
the preceding discussion first that (2, @, P) and {X,(w) : n = 1,2, - - - } satisfy all
the conditions listed in the paragraph containing (1.16). Since X, =p,, it then
follows from the preceding discussion by Lemma 1.1 that {w:p, €J} is @-
measurable for every J € B and every n, and that if J is a relatively open convex
subset of ¥, then (7.3) holds and the limit equals lan(J). Since V; is a closed
convex set with u(7,) = 1, it also follows (cf. Lemma 2.3, Theorem 2.4(a)) that for
Lanford’s point entropy s we have
N s(v)= —0 on V.

To estdblish Sanov’s theorem for finite unions of relatively open convex sets of ¥
it remains to show that lan(4) = san(A) for such sets A. We shall show that in fact

(7.8) s(¢9) = —«k(q) forall geEV,.

Let D = {8, : z € Z}. It is known (Parthasarathy (1967), page 42) that D is a
sequentially closed subset of ¥,. Since ¥V, is metrizable and closed, D is a closed
and therefore Borel measurable subset of V. Let &) be the g-algebra of Borel sets of
D,ie,% = {D N B:B € B} Itis known that T is a homeomorphism between
the topological spaces Z and D (Parthasarathy (1967), page 42). It follows that the
measure spaces (Z, ¥, p) and (D, D, ) are isomorphic whenever p and u are
related by (7.6). .

Choose a § € V*, say § = /. With ¢ the moment generating function of g,
#(0) = f, exp[ 6(v)] (o)

= [p exp[6(v) ] p(dv)
= /» exp[ [{(v) ] u(do)
= [z exp[ f(z)] p(dz),

(1.9)
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since u(D) = 1 and since /[(8,) = f(z) by (7.5). It follows from (7.5) and (7.9) that
(7.10)  ¢*(v) = sup{[f(z)v(dz) — log [ exp[ f(z)]p(dz) : f € C}

for all v in V. It follows from (7.10) by Lemma 2.1 of Donsker and Varadhan
(1975) that _

(7.11) c*(q) = «k(q) forall ge V.

It follows from (7.11) by Theorem 3.2, as desired, that (7.8) holds.

Let g be a measure in ¥, and » a probability measure on % . It is readily seen

that E(X,|v) = ¢ and » < p if and only if ¢ < p and » = ¢T~'; and that, in this
case, K(v) = k(g). It follows hence that
(7.12) o(q) = —«k(q) forall gV,
In view of (7.7), (7.12), and Theorem 3.3, (7.8) is equivalent to the statement that «
is a lower semicontinuous function on ¥,. We note also that the easily established
(7.12) and Corollary 3.3 imply that s = — x on W; W is, however, a proper subset
of ¥, in the general case.

ExaMPLE 7.1. (Sanov (1957)). This example shows that in general Sanov’s
theorem does not hold for all relatively open sets of ¥;; the example therefore also
shows that in general (1.8) and (1.13) do not hold for all open sets of V. Assume
that p is a nonatomic probability measure on the Borel field & of the Polish space
Z.LetA={v:v € V,s(v) < —1},and J = 4 A V,. Then, by the upper semi-
continuity of s, 4 is an open subset of V. If ¢ is a purely atomic probability
measure on & then g is not dominated by p; hence k(q) = + oo, and hence g € J
by (7.8). It follows that p, € J for all w and n; hence s(J) = 0. However,
lan(J) = san(J) < — 1 by (7.8) and the definition of J. The present assumption -
that p is nonatomic implies, of course, that Z is an uncountably infinite set. It
would be interesting to know whether Sanov’s theorem can fail for open sets even
when Z is countably infinite (cf. Example 6.1).

In view of (7.10) and (7.11), an important theorem of Donsker and Varadhan
((1976), Theorem 4.5) may be stated as follows: under the present assumptions that
Z is a Polish space and that the topology on ¥ is that of weak convergence, (7.2)
holds for every open J C V,, and '

(7.13) lim sup,_,.n " log P(p, € K|p) < san(K)

holds for every closed K C V. It follows from this theorem that if A C ¥ is Borel
measurable, and if san(4°) = san(4), then Sanov’s theorem holds for 4. An even
weaker sufficient condition for Sanov’s theorem is given in Theorem 3.1 of
Groeneboom et al. (1979).

The bound (7.13) is, of course, a special case of (1.14). As noted in Section 1, it
seems difficult to establish (1.14) in the general case. It might be added (cf.
Example 6.2) that at present we know of no counterexamples to (1.14). In
particular, (1.14) holds with equality for the sets A and J of Example 7.1.
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The following is a proof of the bound (7.13) of Donsker and Varadhan (1976)
based on the present methods. We have seen that with 7 the weak topology on the
present V, the present framework V, 7, p, and {X,,} satisfies Assumptions 1, 2, and
3, that X, =p,, and that (7.7) holds. Let || f|| = sup{|f(z)| : z € Z} for functions
in C, let ¥° be the dual space of the resulting Banach space ©, and let 7° be the
weak*-topology on ¥°. For each v in V let £(v) be the functional on @ defined by
[£(0))(f) = [(v) where I(v) is given by (7.5). Then £ is a continuous linear function
on ¥ into ¥ It follows from (7.7), (7.8) by Lemma 2.3 of Groeneboom et al.
(1979) that condition (v) of Theorem 5.3 is satisfied; hence (5.2) holds for the
actual and pullback entropies induced by £ With R = §(V), ¢isa 1l — 1 map of V
onto R. It follows hence from (5.2) and (7.7) that, with R, = & V), the actual
entropy on V0 is given by

(7.14) s°(é(q)) = s(q) for g€V,
and
(7.15) s%y)= - for y ER].

We observe next that § is a homeomorphism between the spaces V, and R, in

their relative topologies. Consequently, given a closed set K in V; there exists a
closed L c V° such that
(7.16) §K)=LnNR,
Since R, is a subset of B, = {y : |y(f)| < 1 for all f with || f|| < 1}, and since B, is
compact, we may suppose that the set L in (7.16) is compact. Although §(K) and
R, might not be Borel sets, it follows from (7.16) that {X, € K} and {{(X,) € L}
are the same @-measurable sets in 2, so p,(K) = pd(L). Hence

lim sup, o,a,(K) =1im sup,_, .a%(L)

<lan®(L) by Lemma 2.5°
=lan%(L N R)) by (7.15)
=1an’(¢(K)) by (7.16)
=lan(K) by (7.14)
=san(K) by (7.8).

Note. In this section we have regarded the Sanov problem as a special case of
the large deviations problem for the sample mean. In Groeneboom et al. (1979) the
authors travel in the opposite direction; they first study the Sanov problem, and
then obtain conclusions concerning the sample mean and many other statistics by
regarding these statistics as functions of the empirical probability measure. Ade-
quate discussion of this important work cannot be undertaken here and the
following remarks must suffice: the main conclusions of Groeneboom et al.
concerning the Sanov problem are stronger or more useful than ours (partly
because their topology on ¥, is much stronger than the weak topology), and their
applications include certain results which are very close to our Theorems 2.1 and

2.3.
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APPENDIX

PrOOF OF LEMMA 1.1. Let V be a real vector space, 7 an admissible topology on
V (cf. Section 1), and let b be the o-algebra generated by the T-open sets of V. Let
A be a probability measure on B. A is said to be inner regular if A\(B) =
sup{A(K) : K compact, K C B} for all B € 9. An inner regular measure is
evidently regular in the sense of Section 1. It is well known that every probability
measure on the Borel sets of a Polish space is inner regular. A is said to be
convex-tight if for every e > 0 there exists a convex compact K, such that A(K) <
€. Since ¥V is an open convex set it is clear that convex-regularity in the sense of
Section 1 implies convex-tightness. The following is a useful partial converse.

PROPOSITION 1. If A is regular and convex-tight then X is convex=regular.

PrROOF. Let J be an open convex set. Choose ¢ > 0. There exists a compact
K, c J with A(K}) > A(J) — &, and a compact convex K, with A(K;) <e. Let
K, = K| N K,. Then M(K3) > A(K}) — MK3) > A(J) — 2¢. Since ¢ is arbitrary, it
will suffice to show that there exists a compact convex set G such that K, C G C
J.

Since J is open and ¥V is a regular space, it follows from local convexity that for
each x € J there exists an open convex neighborhood of x, say B(x), such that
B(x)C J. Since {B(x): x € K,} is an open covering of K, there exist open
convex sets B,, -+, B, such that B, C J for each i and K, C U*B,. For each i, let
C; = K, n B, let D, be the closed convex hull of C, and let F; = K, N D;. Then
_each F,isa compact convex set. It follows that with G = U*F, and G the convex

hull of G, G is a compact convex set. Now, K, = U¥K, n B) = U*C, c u*D;;
hence K; = K; N K, C UXF, = G; hence K, C G. We observe next that C CB,
and B, is closed and convex; hence D, C B, C J; hence F,cJ; hence G C J.
Since J is convex, G clJ. 0

Now let V; be a closed convex subset of ¥ such that ¥, is a Polish space in its

relative topology.
PROPOSITION 2. If (V) = 1 then A is regular and convex-regular.

PrOOF. Let B, be the o-algebra of Borel sets of V}, ie., B, = (VN B: B €
% }, and let A; denote the restriction of A to %,. Since ¥, is Polish it follows that A,
is inner regular on V. It follows hence that A is inner regular on V’; in particular, A
is regular. In view of Proposition 1 it will now suffice to show that A is convex-tight.
Choose & > 0. Since A is regular there exists a compact K, such that A(K}) > N(V)
— & =1 — e&. We may assume that K; C V;. Let K, be the closed convex hull of
K. Since A(K,) > 1 — ¢, it will suffice to show that K, is compact. Since K, is
closed, and K, C V), K, is complete. We observe next that since K, is compact, K,
is totally bounded (Choquet (1969), I, page 358). Since V is a regular space, K, also
is totally bounded. [J



620 R. R. BAHADUR AND S. L. ZABELL

To establish Lemma 1.1, let (2, @, P) be a probability space and {X,(w) : n =
1,2, - -} asequence of functions on € into ¥ such that all the conditions listed
in the paragraph containing (1.16) are satisfied.

It is known and easily verified that if C and D are second-countable topological
spaces, and C and %) are the Borel fields of sets of C and D respectively, then the
Borel field of the space C X D equipped with the product topology is exactly the
product c-algebra @ X ). It follows hence by standard arguments that if V is
second-countable (e.g., if V is Polish) then Assumption 1 is automatically fulfilled.
Verification that Assumption 1 holds under the hypotheses of Lemma 1.1 is a
trivial extension of these standard arguments and so is omitted. As noted in Section
1, Assumption 1 implies that each p, is a well-defined probability measure on B .
The hypothesis X, € ¥, for all n implies X, € ¥, and hence (V) = 1 for all n. It
now follows from Proposition 2 with A = u, that each p, is regular and convex-
regular; thus Assumptions 2 and 3 also hold.

Since V; is a closed convex set with u(¥;) = 1, (7.7) holds and the last part of
Lemma 1.1 follows by straightforward modifications of some of the arguments of
Sections 1 and 2. This completes the proof of Lemma 1.1.

Acknowledgment. The authors are very grateful to the referee for his careful
reading of the paper and for many helpful comments and suggestions.

REFERENCES

[1] ABRAHAMSON, I. G. (1965). On the stochastic comparison of tests of hypotheses. Doctoral disserta-
tion, Univ. of Chicago.
[2] BAHADUR, R. R. (1967). Rates of convergence of estimates and test statistics. Ann. Math. Statist. 38
303-324.
[3] BAHADUR, R. R. (1971). Some Limit Theorems in Statistics. SIAM, Philadelphia.
[4] BAHADUR, R. R. and RANGA Ra0, R. (1960). On deviations of the sample mean. Ann. Math. Statist.
31 43-54.
[5] BAHADUR, R. R. and ZaBeLL, S. L. (1979). A lower bound for large deviation probabilities.
(Manuscript in preparation.)
[6] BARNDORFF-NIELSEN, O. (1978). Information and Exponential Families in Statistical Theory. Wiley,
New York.
[7] BARTFAL P. (1978). Large deviations of the sample mean in Euclidean spaces. Mimeograph Series
No. 78-13, Statist. Depart., Purdue Univ.
[8] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.
[9] BoreLL, C. (1977). Tail probabilities in Gauss space. Unpublished manuscript.
[10] Borovkov, A. A. (1967). Boundary-value problems for random walks and large deviations in
function spaces. Theor. Probability Appl. 12 575-595.
[11] Borovkov, A. A. and RoGgoziN, B. A. (1965). On the multidimensional central limit theorem.
Theor. Probability Appl. 10 55-62.
[12] CHErNOFF, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. Ann. Math. Statist. 23 493-507.
[13] CHOQUET, G. (1969). Lectures on Analysis, 1 and 2. Benjamin, New York.
[14] CraMER, H. (1938). Sur un nouveau theoreme-limite de la théorie des probabilités. Actualites Sci.
Indust. 736 5-23.
[15] DONSKER, M. D. and VARADHAN, S. R. S. (1975). Asymptotic evaluation of certain Markov process
expectations for large time-1. Comm. Pure Appl. Math. 27 1-47.
[16] DoNSKER, M. D. and VARADHAN, S. R. S. (1976). Asymptotic evaluation of certain Markov process
expectations for large time-III. Comm. Pure Appl. Math. 29 389-461.



LARGE DEVIATIONS OF THE MEAN 621

[17] GrOENEBOOM, P., OOSTERHOFF, J. and RUYMGAART, F. H. (1979). Large deviation theorems for
empirical probability measures. Ann. Probability T 553-586.

[18] Guprta, J. C. (1972). Probabilities of medium and large deviations with statistical applications.
Doctoral dissertation, Univ. of Chicago.

[19] Ho, NGUYEN VAN (1974). Asymptotic efficiency -in the Bahadur sense for the signed rank tests.
Proc. Prague Symp. on Asymptotic Statistics (September 1973) 2 127-156.

[20] HoaDLEY, A. B. (1967). On the probability of large deviations of functions of several empirical
cdf’s. Ann. Math. Statist. 38 360-382.

[21] HoerrDING, W. (1965a). On probabilities of large deviations. Proc. Fifth Berkeley Symp. Math.
Statist. Prob. 1 203-219. Univ. of California Press.

[22] HoEerrDING, W. (1965b). Asymptotically optimal tests for multinomial distributions. Ann. Math.
Statist. 36 369-408.

[23] IBrAGIMOV, 1. A. and LINNIK, Yu. V. (1971). Independent and Stationary Sequences of Random
Variables. Wolters-Noordhoff, Groningen.

[24] I16, K. (1970). The topological support of Gauss measure on Hilbert space. Nagoya Math. J. 38
181-183.

[25] KuUELBSs, J. (1976). The law of the iterated logarithm and related strong convergence theorems for
Banach space valued random variables. Lecture Notes in Mathematics 539 224-314.
Springer-Verlag, New York.

[26] Kuo, H.-H. (1975). Gaussian measures in Banach spaces. Lecture Notes in Mathematics 463.
Springer-Verlag, New York.

[27] LaNForD, O. E. (1971). Entropy and equilibrium states in classical statistical mechanics. In
Statistical Mechanics and Mathematical Problems. Lecture Notes in Physics 20 1-113.
Springer-Verlag, Berlin.

[28] MANDREKAR, V. (1979). Gaussian Processes and Their Markov Property. Almquist and Wicksell,
Uppsala. (To appear.)

[29] Marcus, M. B. and Suepp, L. A. (1972). Sample behavior of Gaussian processes. Proc. Sixth
Berkeley Symp. Math. Statist. Prob. 2 423-439. Univ. of California Press.

[30] MOREAU, J. J. (1966). Fonctionelles convexes. Séminaire sur les équations aux dérivées partielles.
College de France, Paris.

[31] PARTHASARATHY, K. R. (1967). Probability Measures on Metric Spaces. Academic Press, New York.

[32] PeTROV, V. V. (1975). Sums of Independent Random Variables. Springer-Verlag, New York.

[33] Riesz, F. and NaGy, B. Sz.- (1955). Functional Analysis. Ungar, New York.

[34] ROCKAFELLAR, R. T. (1974). Conjugate Duality and Optimization. SIAM, Philadelphia.

[35] RUELLE, D. (1965). Correlation functionals. J. Math. Physics 6 201-220.

[36] Sanov, 1. N. (1957). On the probability of large deviations of random variables (in Russian). Mat.
Sb. 42 11-44. (English translation in Selected Transl. Math. Statist. Prob. (1961) 1 213-244.)

[37] SETHURAMAN, J. (1964). On the probability of large deviations of families of sample means. Ann.
Math. Statist. 35 1304-1316. (Corrections (1970), Ann. Math. Statist. 41 1376-1380.)

[38] SETHURAMAN, J. (1965). On the probability of large deviations of the mean for random variables in
D(0, 1). Ann. Math. Statist. 36 280-285.

[39] SETHURAMAN, J. (1970). Probabilities of deviations. In Essays in Probability and Statistics 655-672.
Univ. North Carolina Press, Chapel Hill.

[40] Sievers, G. L. (1975). Multivariate probabilities of large deviations. Ann. Statist. 3 897-905.

[41] Sievers, G. L. (1976). Probabilities of large deviations for empirical measures. Ann. Statist. 4
766-770.

[42] SToNE, M. (1974). Large deviations of empirical probability measures. Ann. Statist. 2 362-366.

[43] VARADHAN, S. R. S. (1967). Diffusion processes in a small time interval. Comm. Pure Appl. Math.,
20 659-685.

[44]. WOODWORTH, G. G. (1970). Large deviations and Bahadur efficiency of linear rank statistics. Ann.
Math. Statist. 41 251-284.

DEPARTMENT OF STATISTICS

UNIVERSITY OF CHICAGO
CHICAGO, ILLINOIS 60637



