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THE TAIL o-FIELD OF TIME-HOMOGENEOUS
ONE-DIMENSIONAL DIFFUSSION PROCESSES'

By UwWE ROSLER
Universitdt Gottingen

We give necessary and sufficient conditions for tail o-fields of time-
homogeneous one-dimensional diffusion processes and birth and death
processes to be trivial and study related questions.

1. Introduction. Let X(¥) = X(t,w), t € T Cc R*, w € Q, be a Markov pro-
cess on a probability space (R, ¥, P) having time-homogeneous transition proba-
bilities. By P,, P, we denote the probabilities uniquely determined by the transition
kernels P* and the initial measure «, respectively the point measure in x, on the
state space (S, % ). E,, Var,, are the expectation, variance relative to P,.

Let I be an interval on the real line with boundaries b, ¢, possibly infinite,
endowed with the Borel o-field. A diffusion is a Markov process X(¢), t € R*, on
I = S with continuous paths and Feller transition probabilities. These processes,
sometimes called Feller processes (Breiman (1968)), possess the strong Markov
property.

We denote the smallest o-field generated by X(u), s < u <t € R* (), by .
The intersection of all 5, s € R™, is the tail o-field ¥, . The invariant o-field %,
consists of all shift invariant sets. The shift 8, s € R*, maps @ to @ by the
transformation

- (1.1) X(t,w)=X(t—3s50,(w) weQs<teR*.
In general we have g C 9. For an example %y # ¥ see Orey (1971), page 21,
Example 4.1.

A o-field is trivial relative to p, if the o-field consists of two elements p almost
surely. The tail (or invariant) ¢-field ¥, (%) is said to be trivial or to obey the
zero-one law, if ¥ (%g) is trivial for P,, 7 any initial measure.

Before we handle continuous Markov processes we refer to some work done for
discrete-time Markov processes. Let T be the natural numbers and (S, %) a
measurable space, A 9B -measurable function f is harmonic, if for alln € N

(12) h(x) = [h(y)P"(x, dy)

holds, where P”( - - - ) is the usual n-step transition kernel. The function P (B),
B € Fg, is an example of a harmonic function. All bounded harmonic functions
are constant a.s. if and only if the invariant o-field is trivial (Orey (1971)).
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A similar result is true for the tail o-field. All bounded space-time harmonic
functions are constant a.s. if and only if the tail o-field is trivial (Orey (1971)). A
space-time harmonic function is a harmonic function for the (space-time) process
X*(t) = X(t + 1), where 7 is a random variable taking values in the natural
numbers.

Now consider a diffusion process. The invariant o-field is trivial, iff all bounded
harmonic functions are constant, i.e., all % measurable functions m satisfying

(a)0<px<1
(1.3) (b) p in the domain of §
(c)S(p) =0

where § is the generator of the process, are identically constant a.s. The theorem is
stated in It6-McKean ((1965), page 303—305. The first condition in 8.7 is fulfilled
because we have only two boundary points). But the given proof is only valid for
the invariant o-field. We shall use this theorem in Section 2.

Before we start to consider the tail o-field of diffusions let us have a look at
random walks and birth and death processes on the real line.

A random walk is a Markov process X(#), ¢t € N, with state space S = Z. Only
the one-step transitions from x to x + 1 and x — 1 are allowed with probabilities
p, and g, = 1 — p,. For simplicity assume 0 < p, < 1 for all x € Z. The process is
called right drifting, if

(14) P(An>0 X(n)=1)=1

holds (left drifting analogous).

Using harmonic functions it is easy to show that % is trivial if and only if the
process is right or left drifting. The related result (Résler (1977)) for the tail o-field
is: ¥, is trivial, iff the process is right and left drifting (recurrent) or only right
(left) drifting and the condition X,.ng, = ©0(Z,cnp -, = o) is satisfied. An
example in which % is trivial and % is not is obvious.

In Section 2 we formulate our necessary and sufficient condition for the triviality
of ¥, and start with the proof in Section 3. Section 4 gives the idea for the
remaining part of the proof which then is finished in Sections 5 and 6 and is based
on the fact that Py(¢* < 0) is in general unimodal (Rosler (1978)) and even strong
unimodal if zero is absorbing (Keilson (1971)). The method used works for birth
and death processes too. Theorem 2.2 remains true for those processes.

2.. Main result. We will use frequently the stopping times t and tf , x,
y € S, relative to Jy, t € R*, the first passage of y and the first exit from (x, y).
For simplicity we work with regular processes, which means

(2.1 P(f<o0)>0 xe€intS,y€S.
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A diffusion possesses a natural scale (Breiman (1968)), if
(2.2) P(t* =1t = i :); x<y<zes.

We shall call a diffusion right drifting (left) if there exist x,y € S, x <y(y <x)
with
(2.3) P(tf < o) = 1.
It is easy to prove that a right drifting (left) regular diffusion will satisfy (2.3) for all
x <y € S(y < x). There is a close connection between right drifting and the
behavior of the left boundary b.

PROPOSITION 2.1. A regular diffusion X(¢) on the natural scale is right drifting iff
the left boundary b of S is minus infinity or an element of S and then not absorbing.

In order to see this we distinguish four cases: (i) b= —oc0; (ii) b & S, b >
— o0; (iii) b € S absorbing; (iv) b € S not absorbing. In the first two cases we use
the fact that £, ,) is almost surely less than infinity (Breiman (1968)). Further, #f,
tends to £* if x converges to b, because of the continuity of the paths and b & S.
Thus for y > 0, assuming 0 € int S,

Py(g < o0) = lim,_, Po(t*(s, ) = 8 < 0)
=1 b = —o00,
<1l b>—c.

If b is absorbing one reaches b with positive probability, but never leaves b. If b is
not absorbing one leaves b almost surely and thus by the Markov property
P(tf <o)=1fora<y€S.

(2.4) =lim,_,x(y — x)~"

THEOREM 2.2. Let X(¢) be a regular diffusion process. Assume that 0 is an interior
point. Let X(f) be the process defined on S n [0, o) by the scale- and speed-measure
of the X(t) process on (0, c0), with 0 a reflecting boundary.

The tail o-field is trivial, if and only if one of the conditions (a), (b), (c) hold.

(@) The process is right and left drifting (recurrent, persistent (It6-McKean

(1965))).
(b) The right (left) boundary c¢ (b) is an element of S and the process is right (left)
drifting. .

(c) The right (left) boundary ¢ (b) is not an element of S, the process is right (left)

drifting and

(2.5) lim, _,, s Varg(£*) = o0
for the X(f) process.

NoTe. “Zero an interior point” is no restriction. This theorem can be formulated for nonregular
diffusion processes too. But then one gets only a trivial tail o-field relative to initial measures 7 with
restrictions to the support of #. This note is also true for the following theorem.

THEOREM 2.3. Let X(¢) be a regular diffusion. The invariant o-field is trivial iff
the diffusion is right or left drifting.
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PrOOF OF THEOREM 2.3. Because of %y C %, and of symmetry it suffices to
consider (i) right drifting processes where c¢ is not an element of S and (ii) neither

right nor left drifting processes.
(i) If the process is also left drifting then the diffusion is recurrent and the

invariant o-field is trivial (Itd-McKean). If the process is not left drifting then X(¢)
converges to the right boundary. Therefore a bounded harmonic function A is
constant (A(X(¢)) is a converging martingale). This implies a trivial invariant
o-field.

(ii) Define
Al = {0 AVt >ty X(1) >y}
A7 = {w AVt >ty X(1) <y}
A’ and A" are disjoint invariant (even tail) sets. By the strong Markov property
we obtain for x <y <z € §

Py(Ay+) > Py(t*(x,z) = tz* < w)Pz(t_: = w) > 0

P(A) > P(t*, ) = tF < )P (tF = 00) >0

(2.6)

and thus %, %g are not trivial.

3. Proof of Theorem 2.2. The neither right nor left drifting case was treated
already in the proof of Theorem 2.3, see (2.6). By symmetry and using Proposition
2.1 it suffices to treat.

3.1) right and left drifting processes,

(3.2) right and not left drifting processes, where ¢ is not an element of S.

We come back to (3.1) in Section 6, to (3.2) in Section 5. As a preparatory step we
reformulate the problem using stopping times. Afterwards the proofs of (3.1), (3.2)
will differ.

ProposiTiON 3.1. For a regular diffusion process the following conditions are
equivalent:

(@) G, is trivial;

(B) lim,_,, sup,cgx|P(4 N B) — P(A)P,(B)| =0 for all B € ¥ and for all
probability measures ;

() g(x,p, t;, ty) = lim,_,_ sup,|P**"(x, D) — P****(y, D)|=0 x,y €S, 1,

t, € R*;
8) let h(x,t*, t,t):=|P.(t*+ ¢, E )~ P(t*+ t, € )| where t* is a
stopping time and || - || denotes the total variation norm. Let t',i € I C R, be

stopping times satisfying
(@) P,(t' < o) = 1 for i large enough;
(ii) t’: is increasing for i > iy = ij(y) large enough as. P;
(iii) ¢’ increases to infinity;
@iv) 74 = t'* — t' is a stopping time for X'(t) = X(t + t');
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(v) k() € S P(X(t) = k(i) = P,(1' < ©0) y € S. Then

lim,_ h(x,t',1,,5,) =0 x € S,1,1, €R*

holds.

Note. We define P, (X(¢) € - ) = O for negative 7.

ReMARK. If the process is right but not left drifting, and further ¢ & S, then the
stopping times £* = ¢, y’ € S, y’ > y fulfill conditions (i-v) of 8. However, for a
recurrent process (iii) is not true in general. Take for example ¢ € S. The random
variables ¢* tend to ¢* if y tends to c. But £* is almost surely finite.

PrOOF. The proof uses well-known standard methods and is given here only for
reasons of completeness.

a © . The statement (B) is a well-known necessary and sufficient criterion for
the triviality of %, obtained by martingale arguments (Orey (1971)).

Because of the Markov property it suffices to require only that () holds for
B € U,5%/. In order to see this, we observe )

D ={BeYF:pB isvalidfor B}

contains a generating class closed under finite intersections. Further, %) contains
the union of disjoint sets and B-A is contained for4 c B,4A € %D, B € ). Again
by the Markov property it suffices to require (B) for 4 € %;. (Use the Markov
property and the Hahn decomposition.)

B < v. For a signed measure » with total mass zero we have as a consequence of
the Hahn decomposition

(3.3) (Il = 2 sup,|»(4)].
For a convolution of » with a probability measure p we have
(34) v+ ull < |7l

By this argument it follows that
(3.5 2supy|P°*(x, D) — P*(y, D)| = ||(P'(x, ) = POy, ))*P°(, )l
is monotonically decreasing for s > 0. Therefore g(-) is well defined, measurable

and in fact the limit of sup | - |.
By definition we have the property

(B36) 0<glx,y,t, ) =8y, x, 85, 8)) =g(x, 9,8, — 1,b,0) < L, t; > 1,

Part “=>”: choose II(z) = I(y) =3 and B = {X(0) = z}. By () one obtains
g(z,y,0,0)=0. Let t > 0.

(3.7)  g(x,,t,0) = lim, sup, |/ P*(z, D)P'(x, dz) — P*(y, D)[P'(x, dz)|
< fg(z,y,0,0)P*(x, dz) = 0.

Part “<": let B € 5/, 4 € %°,t <s. Use again the Markov property, the
triangle inequality and the lemma of Fatou in the same manner as in 3.7.
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v < 8. The function A(-, ¢/, -, -) is increasing in i for i large enough. In order to
see this, we remark that #**/ is the sum of ¢’ and 7%/,

Pt e )= P(t'" -t €-—1t|X(s)-0< s <t)dP,

= [Pyy(t%'* € - —1t')dP,

(38) = [Py (7" € - —1)dP,
= Pyy(th' € )*P (1 € ).

k(i) is the constant for which P (X(¢') = k(i)) = 1 holds.

The key equations for y < § are
P*(x,D)=P(t' >s+ 1,X(s +1) € D)
(3.9) + [PTHITI(k(i), D)P(1' € ),
P(t'+teD)=P(t'<s+t,t'+teED)
(3.10) + Py+(t' — s € D)P*H(x, -).

The proof now is straightforward and so we shall omit it.

4. Unimodal functions. The most important property of £ is the fact that
P (tf < -) is a continuous unimodal function (Rosler (1977)). A distribution
function F is called unimodal, if F is convex for ¢ less than a ¢, and concave for ¢
greater than ¢, (Ibragimov (1956)). At ¢, itself there may be a jump. A unimodal
function F possesses a density f relative to Lebesgue measure. This density is a.s.
increasing on ¢ < ¢, then monotone decreasing and

4.1) F(t) = [ f(x)dx.

Let X be a random variable with a continuous unimodal distribution F. We shall
estimate the total variation between the distributions of X and X + .
T(F):=|P(X €-)—P(X+1te")

= [rlf(x) = f(x — 0)|dx

= [0 (%) = fx = 0))dx + [2%| f(x) — f(x — ¢)|dx
+ f?:w(f(x — 1) — f(x))dx

S2(F(tg+ t) — F(ty — 1)

< 4t sup, g f(x).

For our purposes we will choose F(r) = P (¢ <1),x <y. If x is a reflective
point, even a little bit more is known (Keilson (1971)): namely, Py(zf < -) is
strong unimodal. A function F is called strong unimodal, if every convolution of it
with a unimodal function is again unimodal. A convolution with a point measure
shows that strong unimodality implies unimodality. Ibragimov (1956) gave a

useful unimodality characterisation. A distribution function F is strong unimodal if
and only if F is continuous and ¥(-) = log F’(-) is a concave function on the

4.2)
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interval E = {F’ # 0}. Further the property that ¥ is concave (Schonberg (1951),
Lemma 1) implies that F’ is twice positive. If twice positive functions are also
density functions then we call them Poélya frequency functions of order 2, in short
(Karlin, Proschan, Barlow (1961)) PF, functions. They gave a useful inequality
between moments and the extreme values of F':

THEOREM 4.1. Let f(t) be a PF, function, continuous on [0, o), and vanishing on
(—o0, 0). If

= [t f(¢)dt
exists for i = 1, 2, then
By < 2pf
and f(0) < p;.
Note. Every PF, function f is continuous on int{ f # 0}.
We need this result in the following version.

PROPOSITION 4.2. (a) Let F be a continuous strong unimodal function, F = f a
PF, function. Let a be the point, such that f is increasing on (— o0, a) and decreasing
on (a, ). The moments

Y =020 - af(nat

Vl_ = fa—oo(a - t)ff(t)dt
shall exist for i = 1, 2. Then it is true that

4.3) ess sup, g f(x) < —— (VO i (1;0_) .

(b) Let f,,y € N, be a sequence of functions as described above, then
[R ol (0)dt — (J2 tf()d) >0 asy —>o0
implies ess sup, cg f,(x) >0 as y — co.

Proor. The functions f* = f- la wop S~ =F* 1(_c,q are both twice positive
and, after a normalisation, PF, functions. An application of the above theorem
taking the note into account shows the truth of (4.3) and further

+ - +1\2 -
) V) V1 8!
V—++—_<2(—I) +2(—_)
Further, we have

vh o+ vy = (2 PA(0)dt — (J2 L tf(D)dr) + (a — [ 1f(2)dr)>.

Combining the last two inequalities and (4.3), the proposition follows.

5. Main part of the proof of Theorem 2.2. Throughout this section X(¢)
denotes a right but not left drifting process with no absorbing points. Zero is an
interior point. We will show that, for triviality of F only the behaviour at the right
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boundary c is important. Therefore we may change zero into a reflecting point and
take into consideration the related process X(¢). The X related functions are
barred. Using the unimodality it suffices to look at the supremum of the function
@/ at)Po(t;* < +) for y near c. The unimodality of Px(t;i" < +) is needed only for
this step. Now Py(z* < - )isevena strong unimodal function; thus by Section 4 it
suffices to look at the behaviour of Vary(#}) for y tending to c.

PROPOSITION 5.1.  The following conditions are equivalent:
() ¥, is trivial;
(ii) hmy_)c h( , y, ese)
(iii) lim,_, h( o)
@iv) lim,_,, max, Px(lt;,“ - t| < a)=0, a€eR*' x€S;
() lim,_, max, Py(|i* — 1| <a) =0, a€R*;
(vi) lim, . Var, (2f) = o

PrROOF. (i) & (ii). This is Proposition 3.1.
(ii) < (iii). We will establish the following equality:

(5.2) lim,_ lim,_  h(x, 2}, .d,.,)
= llmx lln]y h(x, t*(o’y), .y .)
= lim, lim, A(x, *@,,y.,.) = lim,_,, lim__ &(x, £*,.,.).

This proves (ii) < (iii) because lim, A(x, ¥, .,.) is an increasing function in x. In
order to see this, note that

P(r+1<:)=P(f < )PP(r+1<:) x<z<ye€eSs
and then use || p*q|| < ||p||, where p is a signed and ¢ a probability measure.

Without loss of generality assume the diffusion is on the natural scale. Thus

cC— X
Sllpx<ny(t;f = t*(O,y)) = m-—)o as x — C.

This gives us the first equality and, with an analogous argument, the third. The
second follows from the fact that the distribution of ¢§ ,) and ¢ y), 18 the same.

(iii) & (iv). This is a consequence of the unimodality of P, (5 < ) (Rosler
(1978)). Let f be the density of this function and ¢, be the point such that f(x) is
increasing left of ¢, and decreasing on the right side.

h(x, 8, 0,a)

= JIf(x)= f(x — a)|dx < [ (f(x) — f(x — a))dx + [R**(| A(x)] + |f(x — a)l)dx
+ 24 o(f(x — a) = f(x))dx = 2P(t* — 1, < 2a) < 2 sup, P(|* — 1| < 2a)

<2P(|5¥ — 1| < 4a) = 2/0* 2 f(x)dx = 2f" ,(f(x) — f(x — 2a))dx
+2/72,2a(f(x — 2a) = f(x))dx < 2f|f(x) = f(x — 2a)|dx = 2k(x, £}, 0, 2a).
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This is true for all x € S,a € R.
(iv) = (v). Obvious.
V)=>(@v). Lett,a e R*,0<x <y € S.
max, Px(lt;‘," - < a) = max, Po(lt:v* -t -1 < a)
< max, 5. _ wPo(It;* —nt,—t|<a+ t,)
-Po(t¥ €[ nty, (n + D1,))
< max, Po(lt;’," -t <a+ t,)

-SP(1¥ €[nty, (n + D1y)).

This is true for arbitrary t; € R*.

(vi) = (v). Po(t_* < -)is a strong unimodal continuous function (Keilson (1971)).
Its density is a Polya frequency function of order 2. Take any sequence Vi
converging to c. Proposition 4.2b gives

(53) max, Po(lt* -t < a) < 2a sup, gt (t* < ) -0 asy, —c.

(v) = (vi). We suppose lim, Varo(t}’,“) < oo0. The random variables Z; = t;’," -
t* are independent and the sum of their variances is finite. Therefore S, =
27_1(2 E(Z)) = t* Eo(t;’,';) converges to a random variable S, with a con-
tinuous distribution, say G, which is strong unimodal too (Ibragimov (1956)).

Now

(5.4) max, Po(|£2 — 1| < a) —,max,(G(t + a) — G(t — a)) > 0.

Actually we obtain a little bit more: lim,,(t;’: - Eo(t:v’:)) exists almost surely and is
%, measurable. Therefore

A, = {tim,(5r — Eq(5t)) <d}
is a tail event, satisfying P(4,) = G(d).G is continuous, so ¥, possesses no atoms.

COROLLARY 5.2. Let X(f) be a right and not left drifting regular diffusion process.
Assume that zero is an interior point and that the right boundary is not absorbing. If
limy_,cVaro(t;*) < o0, then for all d € [0, 1] there exists a terminal set A] obeying
P_(AJ) = d and the tail o-field possesses no atoms.

REMARK. Recently Fristedt-Orey (1978) showed that the tail o-field is generated
by lim, (£ — E(%)) in the case lim, Vary(#}) < oo.

COROLLARY 5.3. Let X(t) be a right not left drifting regular diffusion process.
Zero is an interior point, the boundaries b, ¢ are not absorbing. Assume further

lim, . bVaro(t;’,") =00
for the X * and X ~ process on the positive and negative part of R, O reflecting. Then
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the tail o-field is generated almost surely by the two atoms
{lim X(#) = ¢},  {lim,X(¢) = b}.
Proor. The processes X ¥, X~ obey the 01 law. From the strong Markov
property and from

P(X=X*)>1 asx—c, P(X=X")>1 asx—ob,

one obtains the corollary.
For an example of a right but not left drifting process satisfying lim, , Vary()
- < oo see Rosler (1977) or Fristedt and Orey (1978, Theorem 2).

6. Recurrent diffusions.

PROPOSITION 6.1.  Every right and left drifting regular diffusion process possesses a
trivial tail o-field.

Proor. For fixed x <y € § define stopping times
" =inf(t > X(1)=y} ne€N
(6.1) £r =inf{tr >/ X()=x} neN

© =0
These random variables fulfill the conditions 3.1.6(—v).

The random variables Z;, = ¢t'*! — ¢’ are independent and each possesses a
unimodal distribution function. However, it is not known whether the nth partial
sum S, = ¢"*! possesses a unimodal distribution or not. However, S, is the sum of
independent random variables with a unimodal distribution. This fact is used in
Rosler (1977) to prove a trivial tail o-algebra. But we will use an idea similar to that
for discrete Markov chains. Let ¥; = ¢**? — ¥ Now ¥, is trivial is equivalent to
lim,A(x, t¥,.,.) = 0 and this is equivalent to a trivial tail o-algebra of the process
S, = 3"Y; (similar to Proposition 3.1). The Hewitt-Savage zero-one law (Breiman
(1968), Corollary 3.50) gives us the triviality of the tail o-field. This uses heavily the
fact that the distribution of the random variables Y; are identical.
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REFERENCES

BREIMAN, LEO (1968). Probabilitv. Addison-Wesley, Reading, Mass.

FRISTEDT, BERT and OREY, STEVEN (1978). The tail o-field of one-dimensional diffusion. Unpublished
manuscript.

IBRAGIMOV, L. A. (1956). On the composition of unimodal distributions. Theor. Probability Appl. 1
255-260.

I10, K. and MCKEAN, H. P. (1965). Diffusion Processes and Their Sample Paths. Springer-Verlag, Berlin.

KARLIN, S. and MCGREGOR, J. (1957). The classification of birth and death processes. Trans. Amer.
Math. Soc. 86 366—400.



THE TAIL 0-FIELD OF DIFFUSIONS 857

KARLIN, S., ProscHAN, F. and BarrLow, R. E. (1961). Moment inequalities of Pélya frequency
functions. Pacific J. Math. 11 1023-1033.

KeiLson, J. (1971). Log-concavity and log-convexity in passage time densities of diffusion and
birth-death processes. J. Appl. Probability 8 391-398. ‘

OREY, STEVEN (1971). Limit theorems for Markov chain transition probabilities. Van Nostrand-Rein-
hold, London.

ROSLER, UWE (1977). Das 0-1 Gesetz der terminalen ¢-Algebra bei Fellerprozessen. Ph.D. thesis,
Gottingen.

ROsLER, UWE (1978). Unimodality of passage time densities for one-dimensional strong Markov
processes. To appear in Ann. Probability.

SCHOENBERG, 1. J. (1951). On Polya frequency functions. J. Analyse Math. 1 331-374.

INSTITUT F. MATH. STATISTIK
LOTZESTR. 13

3400 GOTTINGEN

WEST GERMANY



