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MARKOV-DEPENDENT o-FIELDS AND CONDITIONAL
EXPECTATIONS

By RICHARD IsaAcC
Herbert H. Lehman College, CUNY

Basterfield showed that if X € L log L and {%,} form a sequence of
independent o-fields, then E(X|¥,) - EX as. His proof uses the theory of
Orlicz spaces. We generalize Basterfield’s theorem to the case of Markov-depen-
dent o-fields and also weaken the restrictions on X. Our approach is different
from Basterfield’s in that it is martingale-theoretic.

1. Let (2, 2, P) be a probability space and {%,} a sequence of sub-o-fields of
2. The ¥, are said to be Markov-dependent (see, e.g., [4]) if, for all n > 1,
E(f1%, %, - - -, F,) = E(f1F,)

E(glofn’ 65n+l’ e ) = E(glgn)

for all L, functions f and g such that fis B(%,, 9,,,,: - -+ ) measurable and g is
B(%, %, - - -, F,) measurable (B (-) is the sub-o-field of = generated by the
o-fields in parenthesis).

The principal result of this paper (Theorem 1) shows that if Y, is a sequence of
random variables converging to a random variable Y a.s., then, under certain
conditions we may assert E(Y,|%,) — E(Y|Y) a.s. where 9 is the tail o-field of the
Markov-dependent sequence {%,}, i.e., T = N, B(F,, T4, - - ).

As a corollary we deduce a theorem of Basterfield [1]: if the {¥,} are indepen-
dent, then E(X|%,) —» EX a.s. provided that E|X| log*|X| < co. Independence of
{%,}, a special case of Markov-dependence, can be written as: if F; € ¥, fori < k,
" then P(N; ¢ F) = II,; P(F). Basterfield’s proof uses the theory of Orlicz spaces
whereas we use an entirely probabilistic approach based on the martingale conver-
gence theorem. The nub of the argument is an elementary lemma about conditional
expectations when both the functions and the o-fields are varying. This martingale
approach seems to yield much more with much less work than the Orlicz space
attack.

Gundy, in reviewing Basterfield’s paper [3], indicated that the hypothesis
X € Llog L (that is, E|X|log*|X| < o) could be weakened to sup,
|E(X|%,, %, - -, §,)| € L, with Basterfield’s proof still going through to obtain
his result. Gundy’s suggested extension is also one of our corollaries.

Our random variables will always be in L, and all our o-fields will be sub-o-
fields of 2. We are only careful to write “a.s.” in statements of results; otherwise
we take the usual liberties. We write submartingales (U, A,) to indicate that the
random variables U, are adapted to the nested o-fields A,.

and
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The following lemma seems to be known. We include a proof for completeness.

2. LEMMA. Let X, be a sequence of random variables, and B, an increasing or
decreasing sequence of o-fields with B, — B . Then

(a) lim inf, E(X,|%®,) > E(lim inf, X,|®) as. if X, > Z € L,.

®) If X, <Z € L, then

lim sup, E(X,|®,) < E(lim sup, X,|B) a.s.
(¢) If sup,|X,| € L,, and X,, > X a.s., then
lim, E(X,|%,) = E(X|®) as.

ProOF. Letn > ny Then
(1) E(an%n) < E(Supk>nXkIG‘Bn) < E(supk>noXkI%n)‘

If X, <Z € L,, the right side of (1) converges to E(sup;,X;/®) by the
martingale theorem as n — o0, so that

lim sup, E(X,|®,) < E(sup;, X|®).

Letting ny — oo proves (b). We may also write
E(an%n) > E(infk>nXk|%n) > E(infk>noXkl%n)
and an argument similar to the above shows (a). Under the hypotheses of (c) both
(a) and (b) are true with
lim inf, E(X,|%®,) > E(X|%®) > lim sup,E(X,|B,),
proving (c). Notice that there is no problem in (a), (b) or (c) with the finiteness of
the conditional expectation of the limits, since under the stated conditions the
limits belong to L,.
The main result follows. Recall the definition of I from Section 1.

THEOREM 1. Let the sequence of o-fields {F,} be Markov-dependent, and let I
be the tail o-field of {F,}. Let {Y,} be a sequence of random variables with

sup,|Y,| € L, and Y, — Y a.s.. Suppose that either (a) Y, is B(F}, 5, - - -, F,)
measurable for each n, or (b) Y, is B(F,, F,,,, * + ) measurable for each n. Then,

E(Y,|%,) - E(Y|9) as.
In case (b), the limit E(Y|9) = Y as.

Proor. To simplify the notation, put B(F,, %, - - -, F,) = XK,
BT, Gy e 0 )=, B(F,, Fpir»: - - ) = J,. Assume (a), and use the lemma

and Markov-dependence to obtain
E(Y,|%,) = E(Y,|5,) > E(Y|9).
Assume (b). Then ’
E(Y,|%,) = E(Y,|3C,) > E(Y|30),
but the limit ¥ is J measurable under (b), so E(Y|¥) = Y = E(Y|9). This
concludes the proof of Theorem 1.
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COROLLARY 1. Let X € L,. If the sequence {%,} is Markov-dependent each of
the following conditions is sufficient for E(X|%,) — E(X|9) a.s.:

() X € Llog L.

(b) supnIE(Xléfl, gz’ ) gn)l EL,.

(C) SupnIE(Xlgn’ an+l’ e )l € LI'

Proor. It is known that (a) implies (b) and (c) ([2], page 317 and Jensen’s
inequality) so it is sufficient to prove the implications for (b) and (c). Using our
shorthand notation, put Y, = E(X|J(,). Under (b), we have Y, - Y = E(X|J() by
the martingale theorem and sup,|Y,| € L,. Theorem 1 may be applied under case
(a), so

E(X|%,) = E(E(X|3C)|%,) = E(Y,|%,) - E(E(X|)0)|9) = E(X|9),
proving the sufficiency of both (a) and (b). If (c) holds, set Y, = E(X|9,) —
E(X|9). Then (b) of Theorem 1 is satisfied and the conclusion is

E(X|9,) = E(E(X|9,)|,) = E(Y,|%,) > E(E(X|9)|9) = E(X|9),
completing the proof of Corollary 1.

COROLLARY 2. Let X € L, and let the sequence {%,} be independent. Then each
of the following conditions is sufficient for E(X|%,) — EX a.s.:

(@ XeLloglL (Basterfield’s theorem).

(b) sup,|E(X|F, 55, -+, F) €L, (Gundy’s extension).

(C) SupnlE(Xlgn’ 6‘;n+1’ te )I € LI‘

ProoOF. Apply Corollary 1, and observe that in the independent case J is
trivial, so that E(X|9) = EX.

REMARK. Gundy observes in [3] that (b) is properly weaker than (a). The
" implication by (c) appears new even in the independent case. The referee has noted
() is properly weaker than (a); take X %, measurable and in L, but not in L log L.

THEOREM 2. Let (Y,, S,, n > 1) be a submartingale with S, either increasing or
decreasing and 8, O ¥, for each n > 1, where the sequence {F,} is Markov-depen-
dent. If, in the increasing case, we have sup,|E(Y,|%,, %,, -+, F,)| € L, or, in the
decreasing case, we have

supnlE(YnIgn’ an+l’ t )I € Ll’
‘then E(Y,|%,) > Z a.s., where Z is § measurable and in L,. If, in addition, we have
sup,|Y,| € L, then Y, > Y a.s. and
E(Y,|%,) — E(Y|9) as.

PrROOF. In the increasing case §, O I, and (E( Ynlﬂtn), JC,) is seen to be a
submartingale because (Y,, §,) is. The hypothesis implies E(Y,|J(,) converges to
an L, function Z, and Theorem 1 gives

E( Ynlé‘j—'n) = E(E(Ynl%n)lgn) = E(le(‘;}-) = Z

In the decreasing case §, D 9, and (E(Y,|9,), J,) is a submartingale which
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converges, and Theorem 1 implies
E(Y,|9,) = E(E(Y,|9,)|F,) - E(Z||9) = Z.

Under the restriction sup,|Y,|€ L,, Y, — Y by the martingale theorem, and by the
lemma E(Y,|3,) - E(Y|JC), so that in the increasing case

Z = E(E(Y|X0)|9) = E(Y|9)
and in the decreasing case
E(Y,|7,) - E(Y|9)
SO
Z = E(E(Y|9)|9) = E(Y|9).
This completes the proof of Theorem 2.

As an application of the preceding, let {X,, n > 0} be a Markov process, and let
f be defined on the sample space of the variables X, with f € L log L. Then
E(f|X,) — E(f|9). In particular, if the process is ¢-recurrent and aperiodic in the
sense of [5], U is trivial, and E(f|X,) — Ef. Here we have taken ¥, to be the o-field
generated by X, and applied part (a) of Corollary 1.
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