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A MARTINGALE INEQUALITY FOR THE SQUARE
AND MAXIMAL FUNCTIONS!

By Louis H. Y. CHEN
University of Singapore and Stanford University

An inequality for certain random sequences more general than martingales
or nonnegative submartingales is proved. Three special cases are deduced, one
of which generalizes and refines a result of Austin. As an application of the
inequality, the special cases are used to give new proofs of Burkholder’s L log L
and L, (for 1 <p < 2) inequalities for the square function of a martingale or a
nonnegative submartingale.

1. Introduction and notation. An inequality involving a class of functions is
proved for random sequences (or nonnegative random sequences) f = (f}, f, * * )
whose terms are integrable and which satisfy the condition

(1.1) E(f,ilf,) =(or 2)f, asfor n>1

Three special cases (Corollary 2.1) are deduced, one of which generalizes and
refines a result of Austin (1966). As an application of the inequality, the special
cases are used to give new proofs of Burkholder’s (1966) L log L and L, (for
1 <p < 2) inequalities for the square function of a martingale or a nonnegative
submartingale.

Random sequences whose terms are integrable and which satisfy (1.1) are more
general than weak martingales (or weak submartingales) which in turn are more
general than martingales (or submartingales). Weak martingales (or weak sub-
martingales) were first defined in Nelson (1970) (see also Berman (1976)). They are
random sequences f = (f}, f,, - - - ) such that f, is integrable and E(f,|f,,) = (or
2)f,as.forl<m<nandn > 1.

Although the inequality and the special cases in this paper are proved for
random sequences (or nonnegative random sequences) satisfying (1.1), they are also
new for martingales (or nonnegative submartingales). Also, Corollary 2.1 is quite
surprising, since there exist random sequences which are L,-bounded (1 < p < ),
satisfy (1.1) and diverge a.s. (see, for example, Starr (1965)).

Throughout this paper, unless otherwise stated, f = (f}, f,, - - - ) will denote a
random sequence (or a nonnegative random sequence) defined on a probability
space such that f, is integrable for n > 1 and such that (1.1) holds. As usual f, = 0.
The difference sequence of f will be denoted by d = (d,, d,, - - - ). Also

S,(f) = (222142, S(f) = 5Py cpcaaSol( ),
= Sup1<i<n|ﬁ|sﬂ = supl<n<oof:
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and
Ifll, = supicocall ful, for 1< p < oo

2. The main results. We first derive an identity.

LEMMA 2.1. Let o be a differentiable function whose derivative ¢’ is an indefinite
integral of @” such that ¢(0) = ¢'(0) = 0, ¢” is a nonnegative and even function, and
such that for n > 1, f,@'(f,) is integrable. Define K(x) = (d, — x)* if x > 0 and
=(d, — x)" ifx <0,i > 1. Then for n > 1, (f,) is integrable, and

(2.1) Ep(f,) = (or )21 |E[® 9" (fi-; + x)K(x)dx.
Furthermore, for i > 1,
22) J2Ki(x)dx = 1d2.

PROOF.  Since the proof of (2.2) is easy, we omit it here. Since p(0) = ¢’(0) = 0,
we have ¢'(x) = [Go”()dt and @(x) = [§e'()dr. It follows that ¢’ is an odd
function and ¢ an even function. Therefore
(2.3) 0 < o(x) = [Fl¢'(t)dr = |x|o(|x]) — [ie" ()dt

< x¢'(x).
The integrability of ¢(f,) then follows from that of f,¢'(f,). We also need the
integrability of d,’(f,_,) for i > 1. Since ¢” > 0, ¢’ is nondecreasing. Therefore

LA (L= DI(fial < 1AD < [£le'(1£D
and
LAl (i DI(fial > 1AD < 1fi-il@'(Lfi i)
Hence
1@’ (f— )| = |dle’(| fi-1])
< Ao’ (Lfizil) + [ ficale'(Lfiz i)
< A9’ (A + 21 file (| fi-il)-

This implies the integrability of d9'(f,_,). We now derive (2.1). The left hand side
of (2.1) is equal to

2'}-1E[‘P(f1) - ‘P(fi-l)] .
= (or >)27=1E[‘P(f}) = o(fi-) — di(p,(f;'—])]
=S E{[3f39" (fimy + x)dxdy }1(d; > 0)
+ 31 E{[3S)9" (fioy + x)dxdy } 1(d, < 0).

Now @” > 0. So we may reverse the order of the double integration in (2.4). By this,
the extreme right hand side of (2.4) yields

I E[Z 9" (fioy + x)K(x)dx
and the lemma is proved.

(24)
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In the case where f is a martingale or a nonnegative submartingale, let r be a
stopping time. By replacing f in (2.1) by the stopped martingale or nonnegative
submartingale f”, we obtain

(2.5) E(fy) > 2o EI(r > )2 9" (fioy + x)Ki(x)dx

where equality holds in the martingale case. If the differences of f are mutually
independent with zero means, ¢(x) = x?, and 7 = inf{n : |f,| > a} where a > 0,
then (2.5) immediately yields Kolmogorov’s two inequalities in the proof of the
three series theorem.

THEOREM 2.1. Let ' be a nonnegative and even function which is nonincreasing
on [0, o), and let Y(x) = [gy/'(¢)dt. Then

(2:6) ES*(/)Y'(f*) < 2 sup, E|f[¥(I£)-

PrOOF. There is nothing to prove if the right-hand side of (2.6) is infinite. So we
assume it to be finite. Let K(x) be as in Lemma 2.1. It is not difficult to see that,
fori > 1, f,_, + x lies between f,_; and f;, on {x : K(x) > 0}. Now let ¢” = ¢/,
o'(x) = [fo"(H)dt = Y(x) and @(x) = [Go'(¢)dt. Then the integrability condition in
Lemma 2.1 is satisfied and the lemma immediately yields

ESH(NV(f) < 2E@(f,) < 2E|£[¥(L4,) < 2 sup, E|f,|[¥(£)

where the second inequality follows from (2.3). By letting » — co and applying
Fatou’s lemma, the theorem is proved.
We now deduce from (2.6) three special cases.

COROLLARY 2.1. We have

S3(f
@7) B < sl
2
(28) EIS—_'_(% < 2 sup, E|f,| log(1 + |1;));
2
(2.9) Ei;-ﬂ%) < 1%1” fl2, 1<p<2

ProOF. For (2.7), let y/(x) = (1 + x?)~!; and for (2.8), let ¢'(x) = (1 + |x|)~.
For (2.9), we first let Y/(x) = (a + |x|)”~? where a > 0 and then let a0.

The inequality (2.7) generalizes and refines a result of Austin (1966) who proved
that the square function of an L,-bounded martingale is square integrable on any
set: where the maximal function is bounded above. Also Corollary 2.1 is quite
surprising since the sequences f in (2.7)-(2.9) can diverge a.s. To construct such f,
let f, = hy and f, = hy /TI}Z] cos(f,,, — ) for n > 2, where hy, is as defined in
Starr (1965).
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3. Applications. In this section we use Corollary 2.1 to give new proofs of
Burkholder’s L log L and L, (for 1 <p < 2) inequalities for the square function of
a martingale or a nonnegative submartingale. These inequalities were first proved
by Burkholder (1966). Since then different proofs have been given (see, for
example, Gordon (1972), Burkholder (1973), Chao (1973) and Garsia (1973)).

THEOREM 3.1. Let f= (f,f5 "+ ) be a martingale or a nonnegative sub-
martingale. Then

1
e 1
3.1) ES(f) < 2( =7 )" [1 + sup, Elf,| log*|£,]]-
PrOOF. We shall use the following inequality which dates back to Young
(1913). It can also be found in Doob (1953).
(3.2) alogt*b<alog*a+be 'fora>0andb > 0.
Replacing f, by A ™Y, in (2.8) of Corollary 2.1 where A = Ef*, we obtain

S*(f) 1
(3.3) }\+f*<2sup,,E|f|log(1+>\ ¥A))

which by (3.2) is less than or equal to
2 sup,[ E|f,| log*| £,| + Ae) "'\ + E|£,)]< 2[1 + sup, E|f,] log*|£,I].
Now applying the Cauchy-Schwarz inequality to

ES(f) = (ffﬁl) O+ 7

and using (3.3) and the following inequality of Doob (1953) for submartingales,

11l < (5= )1 + sup, E1£| log*[,1],

we obtain (3.1). This proves the theorem.

THEOREM 3.2. Let f= (f, /o' * ) be a martingale or a nonnegative sub-
martingale. Then for 1 <p < 2,
gipt
(34) 1SN, < 22p24|1fll,
wherep™ '+ g ' =1.

Proor. Applying Holder’s inequality to

2 2P
ISl = ( f*f_f,,)) ()%,

we‘obtain

ISl < ( j:f_f,?) ()
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which by (2.9) of Corollary 2.1 is less than or equal to
1
2 2P -1
(52gm) a2
This together with the following inequality of Doob (1953) for submartingales,

I/, <4qllfl, for 1<p<oo,p'+gq7'=1,
imply

Hﬂﬁm<( f¢%Wﬂp<ﬁﬁﬂmu

This proves the theorem.
The absolute constants in (3.1) and (3.4) seem to be the lowest ever obtained.

p—1
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