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THE ASYMPTOTIC BEHAVIOR OF SPACINGS UNDER
KAKUTANI'S MODEL FOR INTERVAL SUBDIVISION

By RONALD PYKE

University of Washington
If X;, X,,- - - are random variables with values in (0, 1), let
D, - -, D, ,4 denote the n + 1 spacings given by the first n observations,
Xy, - -+, X,. If G} denotes the empirical distribution function of the normal-

ized spacings {(n + 1)D,;}, it is proved in this paper that under the Kakutani
model in which X,, is a uniform random variable over the largest spacing
determined by X, - - -, X,,_,, with probability one G* — G uniformly , where
G is the uniform distribution function on (0, 2). This is in sharp contrast to the
known exponential limiting distribution when the X; are independent uniform
random variables on (0, 1).

1. Introduction. Let {X,:n > 1} be a sequence of random variables (rv’s)
taking values in (0, 1) and let X, < - - - < X, represent the ordered values of
{X,, - - -, X,}. Define the spacings

Dy=Xy—X,,_, 1<i<n+1, withX,=0, X, =1,

n

and let Dy, < - - - <Dy, ., denote the ordered spacings.

We are interested in two probability models for {X,: n > 1}. The first is the
usual model for the random subdivision of the unit interval, namely that in which
the X,’s are independent U(0, 1) rv’s. We will refer to this as the U-model (for usual
or uniform). The second model will be referred to as the K-model (for Kakutani) in
which X, is a U(0, 1) rv, and conditionally given {X,, - - -, X,_,}, X, is uniformly
distributed over the largest subinterval formed by X, - - - , X,_,, namely the one
whose length is DY, ,. Although in [3], Kakutani does not specifically consider
this probabilistic context, the K-model is clearly motivated by his ‘a-maximal
refinements’.

If F, denotes the empirical df of {X,,- - -, X,}, Van Zwet [9] established that
the Glivenko-Cantelli result (F, — F uniformly, with probability one) holds in the
K-model, with F equal to the U(0, 1) distribution function (df), as was conjectured
by Kakutani. For the U-model, this result is the classical one proved by Glivenko
[2] and Cantelli [1] in 1933. Unfortunately, these results fail to exhibit any
distinguishability between the two models.

The K-method of random division of the interval [0, 1] should, by its nature,
result in ‘more uniform’ spacings than those of the U-method. This is intuitively
clear since the largest spacings are always broken down in the former, whereas in
the latter, the largest interval may remain untouched for several iterations while at
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the same time, the smaller intervals are consequently being divided into even
smaller intervals. In this paper, we consider the empirical df of the normalized
spacings {(n + 1)D,;} rather than of the subdivision points {X,} and show that
the corresponding Glivenko-Cantelli results manifest the greater uniformity of the
spacings under the K-model.

In 1955, Blum (cf. the appended note to [10] in which convergence in probability
was established) showed that under the U-model, the empirical df’s of the normal-
ized spacings converge uniformly, with probability 1, to the Exp(1) df, H(x) = 1 —
e™*, x > 0. Under the K-model, we show below that these empirical df’s again
converge uniformly, but to a U(0, 2) df. These limits are quite different. In
particular, the one limit has an unbounded support while the other has the
bounded support, (0, 2).

The proof given by Van Zwet introduces the brilliant idea of focusing attention
on the subdivision process at the random times N,, defined in (1.1) below. The
reader of this paper will quickly observe the author’s dependence upon this idea
and the general method of Van Zwet’s proof.

Before stating the main result, we introduce further notation as follows. For
s>0and I* ={0,1,2,- - - }, define

(1.1) N,=min{n €I*: D}, ., <s}
where for n = 0, we set D§; = Dy, = 1. Interpret min & = + oo0. The empirical df
of the spacings {D,, - - + , D, ,,} is denoted by

(1.2) G,(x) = (n + 1)7'Srtle(x — D)

where e(#) = 1 or 0 according as ¥ > 0 or u < 0. In what follows, it is simpler to
work at first with the counting function

(13) K,(x) = (n + 1)G,(x) =*{D,: D,; < x}.
We shall study these functions at the random sample sizes N,, and so introduce
(1.4) G(x,5) = Gy(x) and K(x,s) = Ky(x).

In the construction of the sequence {X;} write U for X, to emphasize its U(0, 1) df
and observe that K (-) assigns unit mass to the values U and 1 — U. It is then
straightforwardly checked that the following recursion relation holds:

(1.5) K(x,s) = [oK(x/y, s/y) dK\(y)
=KDx/U,s/U)+ KP(x/ (1 — U),s/ (1 — U))

where the superscripts on K indicate that the two functions are different indepen-
dent versions of the rv’s indicated by the notation (cf. Lootgieter [4]). To check
(1.5), note that the two intervals (0, ] and (u, 1] will be divided independently by
the same scheme until all spacings in each are less than s. But the division of (0, ]
until all spacings are less than s is the same as performing a division of (0, 1] until
all spacings are less than s/u. A similar observation holds for (u, 1]. The boundary
conditions on K are K(x,s) = N, + 1if x > s.
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The empirical df we wish to study is that of the normalized spacings, (n + 1)D,;
it is defined by

(1.6) Gr(») = G(»/ (n+ 1) =(n+ )7T'K,(y/ (n + 1).
If one takes n = N, and writes G*(y, s) = G} (») then
(1.7) G*(y,8) = (N, + D™'K(y/ (N, + 1), 5).

A key result in [9] relative to our study is the fact that
(1.8) sN,—>2 as.  assconverges to zero.

(cf. [7], (2.8) in which sN, is shown to converge a.s. over the sequence {n~% n >
1}. Since N, 7 as s \i , one has for (m + 1)™2 < s < m~? that

(m + 1)_2Nm—2 < SN, S m™ Ny 4 1y2
which yields the convergence of sN,.) An immediate consequence of this result is
the possibly surprising result that the limit of G}, if it exists, will have its support

contained in the bounded interval, (0, 2]. To see this, let M, := Dy ., denote the
maximum spacing at the nth stage. )

LeEmMA 1.

nM,—>2 as.

ProoF. Notice that M, > s if and only if N, > n. Thus, M is the inverse of N.
In particular, N, = n so that nM, = M,N,, —2 as. by (1.8). ]

2. The main result. The first preliminary step in the proof of Theorem 1 below
is the evaluation of the mean and variance of K(x, s). First of all, set u(x, s) =
E[K(x, s)]. Notice that all moments of K are finite since K(x, s) < N, + 1 and N,
was shown to have finite moments by Van Zwet [9]. From (1.5) and the fact that X,
is a U(0, 1) rv, we obtain

2.1) p(x, s) = 2fgu(x/u, s/u) du.
According to Van Zwet ([9], (2.5)),
2.2) E(N,+1)=2/s, 0<s<1.

But K(x,s) = N, + 1 for x > s. Moreover, for s > 1, N, = 0 so that u(x, s) =
e(x — 1), where e(¥) = 1 or according as # > 0 or u < 0. Substitution of these
values into (2.1) yields for 0 < x < s < 1,

w(x, s) =2 u(x/u, s/u) du + 2f3e(x/u — 1) du.
In the second integral, the integrand is 0 on (x, s] and 1 on (0, x]. Hence
(2.3) w(x, s) =2f u(x/u, s/u) du + 2x.
Let r = x /s and introduce the new function

g(x, r) = x 'u(x, x/r), 0<x<1l x<r<lL
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Then (2.3) transforms into

g(x,r) =2fL ,u"'g(x/u,r)dy + 2 =2f 0" 'g(v,r) do + 2.
Differentiation of this with respect to x yields
(2.4) gi(x,r) = = (2/x)g(x, r)

whose solution is g(x, r) = x ™ “c(r) for some function ¢ depending only on r. This
translates back into the solution for y;

p(x, s) = xg(x, x/s) = x"'e(x/s).
For x < 1, K(x,5) \y Ki(x) as s » 1. Hence lim,_,, _ p(x, s) = E[K;(x)] by the
monotone convergence theorem. Now {D,,, D,,}, the spacings after the first stage,
have the same distribution as {U, 1 — U} where U is U(0, 1). Hence P[D,, < x]
= P[D,;, < x] = x for 0 <x < 1 so that E[K,(x)] = 2x if 0 < x < 1. Therefore,

lim,_,_ p(x,s) =lim,_,_x"'e(x/s) = x " 'e(x +) = 2x,
and hence c(x + ) = 2x?, for 0 < x < 1. This implies that ¢(x) = 2x? and so
(2.5) p(x, ) = x~'2(x/s)* = 2x/s?

for 0 < x < s < 1. This checks with (2.2) for x = s.
Consider now the variance of K(x, s), denoted by

o(x, s) = E[ K(x, s) — 2x/s2]2, 0<x<s<l
For convenience, we restrict out attention to s < % By (1.5)
o(x,5) = [oE[K(x/u,s/u) + K(x/ (1 = u),s/ (1 — u)) — 2x/.92]2 du
= 2f3[o(x/u, s/u) + o(x/ (1 = u), s/ (1 — u))] du

+203[ p(x/u, s/u) + p(x/ (1= u), s/ (1 = w) — 2x/s*]" du.

But, for 0 <x <s < 1, p(x, s) = 2x /5% Thus for s <5 and u > s the intergrand
in the second integral is zero. For u <s, u(x/u, s/u) = e(x/u — 1) = e(x — u)
and u(x/(1 = u),s/(1 — u)) = 2x(1 — u)/s* since s <1—u when u,s<3.
Thus,
o(x, 5) = 2fSo(x/u, s/u) du + 25(2xu/s?)? du + 2[5(1 — 2xu/s*)* du

= 2x /2w %(w, sw/x) dw + 8x*(s® — x%) /35 + 2x — 4x3/s* + 8x° /3s5*

= 2x[2w %(w, sw/x) dw + 2x + 8x2/3s — 4x3/s%.
Set r = x/s and B(x, r) = x " 'o(x, x/r) so that
(2.6) B(x,r)=2[2w~'1B(w,r) + 2 + 8r/3 — 412

Observe now that v(x, s) = 0 if s > 1, or equivalently, B(x, r) = 0 if x > r. Thus
(2.6) reduces to

B(x,r) =2["w 'B(w,r)dw + 2 + 8r/3 — 412,
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Differentiation with respect to x yields
Bi(x, r) = (=2/x)B(x, )
whose solution, as for (2.4), is
B(x, r) = x"(r), 0<x<r/2<3,
for some value b(r) independent of x. Therefore,

2.7 o(x, ) = xB(x, x/s) = x7b(x/s).
Although the evaluation of b(-) is of importance for a study of the limiting df of
G,, it is only necessary at this point to know the order of magnitude of the variance
as s —0.

Consider the approximate empirical df

(2.8) G(y,5) = (s/2)K(ys/2,s)
obtained from G(y, s) by substituting s/2 for N, + 1 therein. (Recall (1.8).) For
0<y <2and0<s <3, it follows from (2.5) and (2.7) that

E[C_}(y, s)] =y/2, Var(@(y,s))= c,s
where ¢

y, = (¥/2)b(y/2) is constant in s. By Chebychev’s inequality and the
Borel-Cantelli lemma, G(y, s) —» y/2 a.s. when s converges to 0 over a convergent
sequence, such as {m“zz m > 2} as used by Van Zwet [9]. For s’ <s < s” one
obtains

(s'/5")G(ys'/5",s") < G(»,5) < (s"/5)G (ys" /5, 8')

directly from the definition of G and the monotoneity properties, K(-,s) » and
K(x, )N.For s =(m+1)"%2 and 5" = m™2, §'/s" = m*/(m + 1)> > 1. This
completes the proof of

LEMMA 2. For 0<y <2, G(y,s) >y/2 as. as s > 0.

This brings us to the main result concerning the uniform convergence of the
empirical df’s G¥ of the normalized spacings.

THEOREM 1. With probability 1, G} converges uniformly, as n — oo, to the U(0, 2)
df G; G(y) =y/2 for 0 <y < 2.

Proor. By Pglya’s result (cf. [6], page 120), Lemma 2 implies the uniform
convergence of G(-, s) to G as s — 0. It remains to observe that because of (1.6)
and (2.8)

Gy (»)

G*(5,9) = Sy /DK@ /s, + 1)(s/2), 9)

- ﬁ@(y@/s(]vs + 1), 5)
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and this has the same limit as G since as s — 0, sN; — 2 as.. Since N, — oo a.s. over
all the integers the proof is complete. []

3. Remarks. By considering the empirical df of the spacings rather than the
points of subdivision, we have indicated the differences that exist between the two
models of subdivision. Another indication of the increased uniformity of the
K-model is seen as follows. Define density functions

L(x)=1/(n+1)D,, if X,, <x<X,

These are the density functions of the df obtained by making F, piecewise linear.
Consider the L,-distance between f, and the uniform density,

di= JAG) - 1 dx = 2 £00) — 1]* de
=2(*(i:(n+1)D, <1}/(n+1)=Z{D,: (n+1) D, < 1})

= 2f(1 = ) dGX(»).
Thus for the Kakutani model

d, =21 = ») dG(y) = [((1 = y) &y =5 as,
while for the usual model
d,—>2f§(1 —y)dH(y) =2f (1 —y)e ™ dy =2/e~.736 as.

Although much more could be attempted for the normalized spacings under the
K-model, in parallel for example to the extensive literature for the U-model (cf. the
survey [5]), it is not clear that this would be the best direction. Of greater
importance might be a search for general methods which would facilitate the study
of the vast spectrum of models ‘between’ the two studied here. A general model
might be defined by probabilities { p,;: 1 <i < n + 1} which after the nth stage
would give the probability of choosing the next observation, X, , ;, uniformly from
the ith interval (X, ;_,, X,;]. For example, p,, = p, ,+, =3 would determine the
model in which the largest and the second largest are equally likely to be
subdivided. It would be of interest to characterize those models which are ‘more
uniform’ than the usual U-model.

Since this paper was submitted, the paper [7] by Slud appeared. In this paper
another proof of Kakutani’s conjecture is given by a combinatorial method that
extends to the generalization in which the dividing measure of the largest spacing is
arbitrary and not necessarily uniform. In addition, rates of convergence are
considered. Relative to the spacings of the subdivision, Slud shows also (Proposi-
tion 3.2 of [7]) that their entropy —27X1D,, log D,, is stochastically larger under

i=

the K-model than under the U-model. A related paper by Slud is [8].
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