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SPEEDS OF CONVERGENCE AND ASYMPTOTIC EXPANSIONS
IN THE CENTRAL LIMIT THEOREM:
A TREATMENT BY OPERATORS.

By T. J. SWEETING
University of Surrey

Speeds of convergence to normality and asymptotic expansions for sums of
independent random vectors in R¥, k > 1 are investigated using the method of
operators. Existing results are improved and some new results obtained. In
particular, asymptotic expansions for smooth functions are derived.

1. Introduction. Let X, X,, - -, X, be independent random vectors in R¥
with distributions F,, F,, - - - , F,. Assume that EX, = 0, n~'2%_, Cov(X)) = I,
the identity matrix of order k. Let Q, be the distribution of S, = n _%27_ X; and N
be the standard normal distribution in R*. In Sweeting (1977) the error in
approximating @, by N was investigated in the case of a common summand
distribution using the method of operators. The main theorem improved and
extended a result in Bhattacharya (1975) by removing a logarithmic term in » in the
error bound, and by treating more general moment conditions. In this paper, a
series of results in Bhattacharya and Rao (1976) and elsewhere are derived by the
above method and improved in a similar manner.

After some preliminary definitions and results in Section 2, an expansion of the
operator Q,, associated with the normalized sum of the suitably truncated variables
is obtained in Section 3. This is used to obtain the main lemma (Lemma 7)
regarding the smoothed distribution of S,. In Section 4 a general result is obtained
(Theorem 1) applicable for summand distributions and functions subject only to
certain moment and boundedness conditions respectively. A sharper form of this
result (Theorem 2) is obtained in Section 5 when Cramér’s condition holds, leading
to known asymptotic expansions for a large class of functions. Under certain
smoothness conditions on the functions, a sharper form of Theorem 1 is obtained
in Section 6 (Theorem 3) not requiring Cramér’s condition; this leads to asymptotic
expansions, which were also obtained independently by Gotze and Hipp (1978).
Finally, the bounds occurring in Theorems 1-3 are investigated further; in particu-
lar conditions are given under which o(-) rates may be deduced.

For a general review of the work on rates of convergence and asymptotic
expansions in the central limit theorem see Bhattacharya and Rao (1976).

2. Definitions and preliminaries. If x = (x;, - -, x) €R%j= (i, - - )
€ (Z*)* write x/ = x{' - + - xf, ||x|| = (x} + - - - +xD)3. If |x/| is integrable with
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respect to F;, the jth moment y; ; of X; is g, ; = EX/ and the jth cumulant is X, i

(defined in Section 3); the rth absolute moment of X, is B..= E|X]|" (r > 0).

Note that |y ;| < B);,; where we write | j| = Zf_, ). Define x;, = n~'S7_ x. , B, =
—1sn

n= 2B,

LemMma 1. If B, < w0 and 2 < j < r then
(B/K) 72 < (B/KY T2

Proor. The function j — (B ,/ ,82%1,1)'/ U= is nondecreasing on (2, r] for each i
(Lemma 6.2 in [2], or on application of Holder’s inequality). Thus for j > 2

B/k = (R T1B,
< S0 \(B, o/ k)T By i) I D

< (B/R)TH/C

using Holder’s inequality and 8, = tr(1,) = k. The case j = 2 is trivial.

Let M* be the space of finite signed measures on the Borel o-field of R, B* the
class of real Borel measurable functions on R* and B the subclass of bounded
functions. As in [6], define the scaled measure P by dP(x) = dP(n %x) where
P € M*. Define the operator ¢ on B} associated with P to be the function whose
values at v € Bf are given by

Po(x) = fo(x — ») dP(y).
Let Cf be the class of functions in B* having continuous partial derivatives of
order m > 1 and let D; be the partial differential operator with respect to the ith
variable. If D = (D, - -, Dy) and j €(Z*)* write D/ = D} - - - D}. If v €
Ck, x, h € R¥, Taylor’s theorem in R* asserts that

(1) o(x + h) = EMY(G) T WDIu(x) + 20 ( D)W Dio(x + 6h)
where j!=j!- - - ji!,0 <8 < 1. Let %, N be the operators associated with the

E‘j-l...ﬁ‘fn

distributions F;, N given in Section 1; then 2,
associated with the distribution Q, of S,.

Define X, , = X,I{|X,| < n1} and let u® = EX,,, p=n"'S1_ 40 3 =
n~'27_, Cov(X; ,). Define

Ar,i = f||x||>n§”x”r dE(X), Ar = n_l T=1A

i=1

is the operator

It is not hard to show that

@) n2|u®) < Ay

3) 0<x'(I, — 2)x < (k+ 1A,

where ||x|| = 1. Assume A, < p < (k + 1)7'; then = is nonsingular and one

can define X; = T(X;, — p¥) where T is a positive definite matrix satisfying
T? =X2"'. Thus EX, =0,n"'S}_,G = I, where G, = Cov(X). Let i, X, be
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the jth moment and cumulant (j J € (Z*)Y*) and, for r > 0, ,B, ; the rth absolute

moment of X;; %, = n™'24_,%; ;» B, = n'Z7., B, ;. Asin [6] we have | T|| < (1 —
1

(k + 1)p)” 2 where || - || is the norm of the lmear operator 7, and so

@ RARYNE

() Br,i < (NEIX,,|I"

Also one may show (extending the proof of Lemma 14.1 in [2] for example) that for
ljl>2

(6) Iﬁji" il <C'3A|j|i
Let F, , , F, be the distributions of X, »» X; TES _pectlve _y with associated operators
Fi o 6',. and let 2, , = %, , GJ',,,,,, 5’2,, =G .- ; thus @, is the operator

associated with 0, the distribution of §, = n~ %2’}_ lX i From the identity (1) in [6]
we have

@) (2, - Q’n,n)v(x) = 2’;-lf||y||>l[@iv(x -y) - @iv(x)] dﬁi()’)
where @, =% - F_1Fisrn** Tnern and §=9,,, , =9, the identity
operator.

3. Expansion of 2, and main lemma. LetY,,- - -, Y, be independent random
vectors with distributions G,, - - - , G, where G, is the normal distribution in R*
with zero mean and covariance matrix C; thus 9 = &, - - - §,. If j € (Z*)~, r >
0, then », ,, a, ; denote the jth moment and rth absolute moment respectively of Y.
Write C; = U?; then || U,|? is the largest eigenvalue of C; and so for some unit
vector x, ||Uj||* = x'Cx = Var(x'X,) < ,éz ;- Thus if Z is standard normal we have
o, =E|UZ| <|UIEIZ| <c,(r),8’/2 and so from the standard moment

inequality
(8) Q, < l(r)Br,t

We first give expansions for the operators %; and Q
LEMMA 2. Letp € Z* and ¢ € C),,. Suppose
) max|j|-p+1(1 + [|x[)|D/¢(x)| < Ap+|,s <o
for some s > 0. Then
(10) U+ 151)(& = 21m0U) ™', in 2= DY Jo(0)
<o

Furthermore the above inequality holds on replaczng . by Q and [, ; by v,

Proor. From the Taylor expanswn D), (1 + ||x|*)~" times the left-hand side in
(10) equals

S mpe 1) (=Y DIs(x — 8y) dF(y).
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Using the bound (4) we have n~ %||/\7,.|| < 3|1x|| if ||x|| > c; for sufficiently large c,,
and for this range of x the result follows from (9); for ||x|| < c; the bound follows
immediately from (9). The proof of the second statement is similar except that we
split the integration over the regions ||y|| <3[lx|, [l¥|l > 3llx|l. This gives the
bound in the lemma with ﬁp +1,; Teplaced by a, ., ; and the assertion follows from
(8).

A real continuous even function v on R is positive definite (p.d.) if it is the
Fourier-Stieltjes transform of a finite measure 4 on R¥; that is

o(x) = [e™ dA().

A p.d. function is h-smooth if its associated measure A vanishes outside the closed
sphere of radius A > O centered at zero (see [6]). Let V' be a distribution on R¥
having moments of all orders and possessing a p.d. l-smooth density v, and
V,(x) = V(hx) where h = x,é;' (x to be determined). Lemma 3 below may be
proved via operators, but it is simpler to use characteristic functions here; in
addition, this approach will be required in Section 5. Define M, = J, * - - - xJ,
with operator O, = ¢, - - - ¢, where g of the ¢, are identity operators (0 < g <r
— 1) and the remaining §; equal to either ":7, or §,; let Y be the characteristic
function (c.f.) of M,. Let A be the measure with Fourier-Stieltjes transform v; for
all m € (Z*)* we have

(11) D™, 5,11 < [IE™|1W(S)] dA(x " e,8)

where ¢, = B;n7 2.

LEMMA 3. There exist constants k < 1, c,, c5 such that if €, < c4(k, q) then

D™ M, 04| < es(k, |ml, q).

PrROOF. Suppose without loss of generality that §,,- - -, §, are the identities
and let y; be the c.f. corresponding to J; (¢ + 1 < i < n). By expanding the c.f. AL
(see [2], Theorem 8.9)

()] < exp(— 388 + cllSIBs,,)

and so
W) = T, ¥i(n78)] < exp(— LIS 12 + cgll¢IPe, + RISIP)

where R = c7n"2‘,1,,[§2, ;- By splitting the integral over | y| < ([§3n)§, x>
~ 1 ~ 2

(B3n)3 it may be shown that B3, ;n~' < 2¢3 for all i. Thus by appropriate choice of

¢, we have R < 1/8; thus, for suitable k and c,, if ||{|| < xe, ' one has

[W($)| < exp(—5lISI2{1 — 4R}) < exp( =3¢ 1)

The assertion now follows from (11).

If v € B* and ||x|[v(x) is bounded (s > 0) define the function !l € Bf by
oll(x) = (¢’x)’v(x) where ¢ is some fixed unit vector. Similarly, if P € M* and
[lx|Fd|P|(x) < oo, define dP¥)(x) = (¢'x)’ dP(x). Some properties of these func-
tions are given in [6]. Let U = V¥¢*D and u be the density of U; the following
result is a generalized version of Lemma 2 in [6].
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LEMMA 4. Under the condition of Lemma 3, there exists a constant cg such that for
any s EZY and m € (Z*)*
(1 + ||x|[*)| D™ M, u(x)| < cg(k, |m], r).
Proor. In view of Lemma 3, it suffices to prove that
(12) I(D™ M, @) < c
where ¢, is independent of the vector ¢ since, taking ¢ = ||x|| ~'x, (12) implies that
[lx|I°| D™, #(x)| < co. We indicate the slight modifications required to the proof

of Lemma 2 in [6]; the moment condition given in the statement of that lemma is
satisfied from (5). With notation as in [6] we find by an identical argument that

(13) I1D2(W, @) < €05-on'Q(a, b, 1)
where Q(a, b, ) = Supaeaa(l)”%‘fl'] <o - el@ (D*,)| and §;, - - -, %, are taken
to be the identities. We show that
(14) Q(a, b, 1) < c;n~".
If f € C¥ then for allj > 0, |V || < ¢yl f|| and
I Vif) < @,i"'%jllfll < cin YAl Jj>1
<cpn”! Sy =1/l DS I, j=1

Furthermore, from (8) these bounds hold with ?}: replaced by é,.. Suppose a €
2,()) and let ” be the number of g; equal to 1 (0 < /" </). Iterating the above

bounds we have
(¢ - - - §51@,(D%,)I| < €157~ SUPpmmps I DS

_ where f is 9N, ¥, omitting the / terms for which g; > 0. Thus from Lemma 3 (14)
holds and (12) follows from (13) and an application of an equivalent form of the
identity (19) in [6] with D notation.

Define the formal power series f() in ¢ = (¢, - - -, ) by f(it) = j|>0(j!)"p,jtj
= E exp(¢’X) where { i} is the moment sequence of a random vector X; call f the
moment series. If f, g are the moment series of independent random vectors X and
Y then fg is the moment series of X + Y. The coefficient of #/;! in the formal
expansion of log f(?) is the jth cumulant x;; that is

' =1 L _ oo - L
(15) BN T = S, (=) 1[2|j|>l(./!) I.Uy'tj] .
It is easily seen that x; is a function of p, for 1 < |i] < |/j|; the familiar additive
property of cumulants is easily deduced. In the next lemma x; = n~'sn_ X0 X =
n~'27_X; ;; the proof of this lemma will be omitted as it follows from Lemmas 6.3

and 14.5 in [2] on taking m = 1, s = || in the latter result. Alternatively it may be
deduced from (15) and the estimates (5), (6) given here.

LEMMA 5. Suppose |j| > 3; then
@ 3
x| < 6B X1 < c168
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@ If
then n_%(V"z)Bljl <c¢yy

b — X1 < cishhyyp
Following Bhattacharya and Rao (1976) define the formal polynomials
P(t, {x;})int = (¢}, - - -, 1) by the following identity between two formal power
series in u:

(16) S0Pt {x;})u' = 2Q»t:-o(m!)_l[Eljl>3(ﬂ)_l?(jtjuljl_z]m-
The following facts are immediate: the degree of P,(z, {x;}) is 3i and each term in
P; involves a product x; - - - x; where / <i and [j, + -« +jj|=i+2L It
follows from (i) of Lemma 5 that the coefficients of all terms in Pz, {x;}) are
<epByy o By < €Bis, in absolute value (using Lemma 1), with a similar
result for Pz, {X;})- B

Consider the cumulant series of 37_,X;; for~| J| > 3 the jth cumulant is 37_,%; ;
= n¥; so that if §,(¢) is the moment series of S, we have

log 4,(1) = 255/~ f¢n =TV + 4112
since Cov(S,) = I,. From the definition of the polynomials P; we therefore have
the formal identity

(17) a(0) = Szon TPt (%,})2()
where z(¢) = exp(3]|#||?) is the moment series of N. In Lemma 6 we estimate the
error involved when the first few terms in (17) evaluated at ¢ = — D are used to
approximate 9~Z,, when operating on the function .

Let E = {0, 1}. Suppose g;, b, (i = 1, - - - , n) are elements of some commutative
ring and write a = (a;,- - - ,a,), b= (b, - ,b,),a'=alr---akl @)

The following binomial expansion may be established by induction on n. Let
l € E't €ZY; then
(18) (a + b)l = 2i<l|i|<taib[_i + 2i<l|i|-tai(a + b)dbl_i_d

where d; = [ if j < m(i), d; = 0 otherwise, and m(i) = min(j : i, = 1) (taken to be
n + 1if i = 0). We shall also use the following identity, which follows on repeated
application of (18) to (1 — a + a)’, assuming there is an identity element. Let
/ € E", 0 <i</and ¢ p be positive integers; then

(19) ' =3, (1-a%a "t +3,_(1-a)a'"h%
where the summations are over 0 <i, < - -- <i; <i,m, =i+ - +i, and
p = max(j : i; > 0). |
~ 1. ~
Write T, , = 32_on"3P(~ D, (%)) and y, = B, ;n 3¢V,
LEMMA 6. Under the conditions of Lemma 3,
(1 + 152y = T s R0 < (s 7, 5),
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PROOF. Let e =:(1,_~ -, 1) € E". Writt ¥=(5,---,%)86 =
Sy, --,8) D — §. Then from (18) we have

(20) ) =G = (D + é)e = Em<r_]@iée—i + 2|il=r—16Di6:jdée_i_d

n

where the summations are over i'€ E”. Suppose r > 3; applying (19) witha = §, /
= ¢,p = t > 2 and noting that /, = 0 necessarily in the first sum we have, writing

I=(g’. . .,g),
ée—i = 2*(1 _ é)m’—l% + 2**(1 _ é)m‘ée_if'_dp

where the summation is over 0 <i,_, < - - - <i; <i,|m,_,| <t in =* and over
0<i<---<i<i|m|=tin Z** We therefore write

(21) 9, =aN+%B, +C,
where
@, = 2y Z*V( - gy
B, = Zocjar 12V — G)"Ge=in=d

Cp = Zpyay_ D FIGemind
and 7= [3(r — 1)/2). Consider C,u. Applying Lemma 2 with p =2 to each
P, = gfj — §; occurring in the sum and noting that i, , = », , for | j| < 2 it follows
on iteration from Lemma 4 that

(1 + [|x[)IC,a(x)| < cpn™C~D2E B, Wt Es, iy

_ where the summation is over all choices of iy < - - <i._, from {l,- - -, n}.
Thus

(22) A+ Ix)ICEX)] < epn VAT B )T < ek,

from Lemma 1. Consider next B, . Applying Lemma 2 with p = 1 to each %), and
a-g, ;) occurring in the sum it follows on iteration from Lemma 4 that

(1 + 1 x])|D, @(x)| < €21 E o n= OB - Byt

where the summation in X’ is over all choices of i; < - - <i, and s =
(s, * + -, 5). Thus

(1 + 11X B, @(x)| < exZi2in I8y, L IT_ [ 31, 8)17]
< enSizhn ™Ry T[S By,
(23)' = 0232’1;1”_’2|s|=rnj-1,Bz+2s,
< cpqn B

— 2t/(r—1
= 02471:/(' ) < Ca25Yn
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since 2¢/(r — 1) > 1 and vy, < c,6. Let S, denote the expression obtained by
replacing each 6}: and éj occurring in &, by the expansion given in Lemma 2 with
p = 3(r — 2). By repeated application of Lemma 2 along with Lemma 4 and
8, ,.n‘%f < ¢5;()) it may be shown that

(24) (1 + xI)N(@, = $,)Na(x)| < c38Bsr-pp+1n~20C DY
< C29Yp
In view of (22), (23) and (24) it remains to prove that
(25) A+ XIS, = T,s ) Rit(x)] < €307,
Let f,g be the moment series of X, Y. Write f=(f, - ,f) g=
(&, ,g)d=f— g where f:(t) = f(n‘ilt) etc. The identity (21) remains valid

when the operators are replaced by their corresponding moment series; that is
g,=a,z+ b, + c,

where a,, b,, ¢, are the expressions &,, ®,, G, with f, g, d replacing %, §, D
respectively. Let s, be the expression obtained by replacing each 15, g in a, by the
terms of order not greater than 3(r — 2). Noting that ' = exp(—1n~'¢'C¢) it is
seen that all terms in §,/z of order not greater than 3(r — 2) are contained in s,.
Since S, is the expression s, evaluated at t = — D it follows from (17) and the fact
that the degree of P, is 37 that one has

Sn = 7M1r—2,n + Rn

where R, consists of a finite number of terms of order > 3(r —2) in §,/z,
evaluated at t= — D. But for i >r — 2 the coefficients of all terms in
P(1, {)“g.})n‘%" are < fi,,n"3 < 3,7, Operating R, on i, (25) follows and the
result follows for » > 3. If r = 2, the result follows immediately from (22) since the
first sum in (20) is simply 9C.

The alternative approach adopted by Bhattacharya and Rao (1976) involves
expansions of derivatives of characteristic functions; see Chapter 2, Section 9 in [2].
Lemma 6 follows from Fourier inversion and the estimates (15.37)—(15.47) in [2],
along with the estimate for || 7'|| given here in Section 2.

Define the class I' of functions on [0, c0) as in [6] and let B, , =
n~'37_ E||X,|'8(| X,|)) where g € T. Assume B, , < oo and define

=]
—lr n -1 r+1 r -1
M= 07T [ 173 gt X AE(X) + Sl (n 11 x1) dF() .
When k£ = 1 the bound
(26) E|S,1'8(ISAl) < esa(k, r)(1 + m,)

is a consequence of the inequality proved in Sazonov (1974); that (26) is true for all
k > 1 may be deduced as in [6] for the i.i.d. case. Note that

(27) Yo =B ™70 <oy(r + D,
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from (5) and that forj < r
(28) Bn~197D < B+ m, = k + 7,
Write () = 1 + t'g(¢),t > 0.
LEMMA 7. Suppose B, , < co. Under the conditions of Lemma 3, for all n > 1
Th(IXID2, = T,—5 s R)E(x)| dx < c3y(k; 7Y,
Proor. Taking s = k + r + 2 in Lemma 6 we find (cf. Lemma 4 in [6])

(29) AU 2y = T, s R)H(x)ldx < esq,.
Again, as in [6], it follows from (7) and (26) that

(30) fh(”x”)l(g)‘n - Q’n,n)ﬁ(x)ldx < 035"7;.‘
We use

(31) |(Qn,n - f-'r—2,n%)ﬁ(x)l

<2, = T,op 2 Na(a())| + [AT, 5 ;m(a(x)) — VT, ;n(x)]
where a(x) = T(x — n%p,) and n is the density of N. Applying the change of
variable y = a(x) and using the fact that the determinant of a symmetric matrix is
the product of its eigenvalues we find that

Th(IxIDNZ, = T,—p s ) #(a(x))]dx < 361,
Using |D™n(x)| < c35(m)(1 + ||x||"™)n(x) one can show that the second term on
the right-hand side in (31) is less than c;g(1 + [|x|[¥*"*%) "'y, (cf. [6], Lemma 4).
The result follows from (30), (31).

4. Speeds of convergence for general summand distributions. In this section
‘speeds of convergence are derived for expectations of all N-continuous functions,
F-integrable under prescribed moment conditions. Theorem 1 extends and im-
proves some results in Bhattacharya and Rao (1976) (Section 3.15). Define wg(x) =
sup{|p(y) — ¢(2)| : ¥, z € S(x, £)} where ¢ € B* and S(x, ¢) is the open sphere
centered at x radius ¢ and, following Bhattacharya and Rao (1976),

54,(8 tp) = fw;(x) dp(x),
the average modulus of oscillation of ¢ with respect to the measure p. Define

M, (¢) = sup,[A(llx])] " |e(x)|

where A(t) = 1 + t'g(?), g € . We need a slight generalization of Lemma 5 in [6]
to cover the case where Q is a finite signed measure on R*. With the notation in [6]
we have

2% %(x) = 2e(x), 2¢(x) — 2" *(x) < 2% w3®(x)
and an identical proof yields the result of Lemma 5 in [6] with 2 replaced by 2%,
and the constants 4,, 4, depending on the integrals of A(]|x||) with respect to P and
|Q|. Write § = 7,_, ,N.
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LEMMA 8. Let h < 1, ||x|| < ¢,&!/? (p > 1). There exists a constant c, such that
if €, < c, one has
wp(x = ) 47 (y) < e[ Rag(x) + M, (), ]
PROOF. Let ¢ be the density of ¢; then g(y) = (1 + S,(¥))n(y) where

1
1S, < €231 + ([ Y1) Bysan 2.

Suppose || YIP"D < ¢5y,7"; then by suitable choice of ¢, and c5; we have
~ 1 ~ 1

IS,(»)| <3, since B,,,n77° < cge, and ||y[* < e’V B, "] Let 4, =

(coyy }/50=D; then

f‘*’.;'(x =) d‘p+()’) < %f||y||<A,,w¢’:(x —ym(y) &
+C7Mr,g(¢)f||y||>A,,[l + |lx = }’”]rﬂ[l + ||Y||3(r_2)]"(.)’) dy

< %%w;‘(X) + CSMr, g(¢)nn

and the result follows.
Applying (35) in [6] with ||x|| < c,¢!/” and using the moment inequality ¢/~ <
Y, < con, We have
(32) Nwg(x) < o] Nwp(0) + M, (¢)n, ]-
Write
¥ =327 P(= D, {x})N.

We now give the main result of this section.

THEOREM 1. Suppose B, , < oo where g € I and r > 2 is an integer. Then for all
& € B* with M, () < oo and all n > 1

/6d(Q, — ¥)| < C(k, )[ M, (¢)1, + &,(C’¢, : N)]
where ¢, = :éa"_% < 5'2(3)”_3/22';-1f||x||<n=||"||3 dF(x).
ProoF. Note that g, < v)/C™D < ¢y(r + 1)3}/¢~D from (27); choose ¢,; such

that if 9, < ¢;; then ¢, satisfies the requirements of Lemma 3 and 8. If 9, > ¢;; we
have

[/6d(Q, — V)| < cio(k, )M, ($)m,

using (28). We may therefore assume that 7, < i In the modified verswn of
Lemma 5 of [6] take P=Q,, Q=49,K, = U where de=c¢,¢ =3, ¢ =
[(ae")~ 2]. Applying Lemma 8 with p = 4 and (32) for the estimation of (¢), it
follows from Lemma 7 that

[/9d(Q, — ¥)| < ci3[ M, (®)n, + &,(C’e, : N)].

Finally, each coefficient in [P(¢, {x;}) — P, {X j})]n"‘ is less in absolute value
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than a constant times a sum of terms

n Ty, = %l Byt v By < ey, I, 01 0nl=2g
Xjy ™ X, Byl Ll S €14Mnt tm=2 m]

< €15Mn
since |j, + - - - +j)| =i + 2/, using Lemma 1 and 7, < ¢,. Thus
(33) ALY DAY = ¥)] < eien,

and the result follows.

Suppose B, < oo for some integer r > 3; then ¢, < ,B3n‘%. Taking g(x) = 1,
Theorem 15.1 in [2] follows from Theorem 2 on application of Lemma 11 in
Section 7, with the removal of a moment condition. Theorem 15.1 in [2] applies
when the translates of ¢ form an N-uniformity class; our result applies for arbitrary
¢ and hence improves Theorem 15.4 in [2] by removing a logarithmic term from the
error bound. Gétze and Hipp (1978) prove a similar result (Theorem 3.13) to
Theorem 1 with g(x) = x’ (again, assuming the translates of ¢ form an N-uniform-
ity class). For various consequences and applications of these results see [2];
evidently some of these results may now be improved.

In the case r = 2, we have ¢ = N and from (27) ¢, < ¢,(3),. By applying the
result to g(x) = x*, 0 < ¢ < 1, we have an extension of Theorem 18.1 in [2] since in
that theorem (a) for ¢t < 1, ¢ must satisfy |¢p(x)| < cjg(1 + ||x|*), and (b) the
translates of ¢ must form an N-uniformity class.

For the form of error bound in Theorem 1 for arbitrary g € I, see Section 7.

5. Speeds of convergence and asymptotic expansions under Cramér’s condition.
One is able to considerably improve the speed of convergence in Theorem 1 when
the summand distributions satisfy a Cramér condition. Under certain circum-
- stances the result gives rise to asymptotic expansions. The main result (Theorem 2)
improves results in [2]. Define

b = suP||§||>x§,"|0i(§)|’ p= n_lz';-lpi

where 0, is the characteristic function of X, and « is the constant in Lemma 3.
Assume that p < 1; in the ii.d. case this is equivalent to assuming that Cramér’s
condition is satisfied (see [2], Chapter 4, for example). For all { we have |§,({)| > 1
— 1§’ Cov(X))$; taking ||| = 1 (noting that kB; ' < 1) it follows that p > 1
— 3|¢|1> =3. Let T = p; " where p, = p'/“~D; we use the smoothing distribution
V where V is the distribution defined in Section 3. Let |m| < r — 1; we have
(34) D™ 207l < SIS™I16CS)|dA(T )

where 2, is 2, omitting an arbitrary ¢ < s @',.’s, and 4 is the ch.f. of ?2,’,. Assume
that kp; < ¢,. By the argument in Lemma 3 the integral in (34) over the region

€1l < ke !is less than c,(k, |m]|, ). Consider the integral over ||| > ke, ". If §, is
the ch.f. of X, then

16.8) — 63| = Jisgsnt( — e*™) dFy(x) < 2B, n7 1
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thus p, = supp||§">,‘,;3-1|0:.(§‘ )| < p; + 2B, ;n~". Assuming without loss of generality
that the first g €:£.’s are omitted one has
Tignss 1S ™10CO] dA(T =) <TI0 ] TSI dA(S)
<en/n = g [n" "B ]'T™
< cpe/PTIm < ¢,
by definition of T and using p > 3. It follows that if kp]' < ¢, then
(35) ID™3; 07| < cq
LeMMA 9. If kp] < ¢, then Lemma 6 holds with u replaced by ur.

Proor. We use the identity
(36) § =SNG - WA+ (§ - W) = QU +DB,.
Suppose that max,,,_ (1 + ||x||*)|D"f(x)| < 4, where I=0or 1, f € B*. By split-

ting the range of integration over || y|| < 1B, ||y|| >3B where B = max(||x||, 1) it
is easily seen that

(37 (1 + I[P — WAx)| < esAe,

We operate (36) with 1 =r—1 on Au, where A =9, — _2,, 9. We have
UAu, = Ai, where U, = V¢*D and V, is p.d. 1-smooth havmg moments of all
orders. Thus, from Lemma 6, (1 + || x||*)|A#,(x)| < csv, and it follows from (37)
with / = 0 that

(38) (1 + 11x])|@, - UBur(x)| < e7¥,

In view of (35) it is easily verified that with 9N, = 9 the proof of Lemma 4
applies without change on replacing # by u,, and so (1 + ||x||’)|D"’E’2 ur(x)| < cg;
thus on repeated application of (37) with / = 1 one has

(39) (1 + [|x[1)|B,_ 1 Aur(x)| < cot ™" < €197,

from Lemma 1 and using the fact that the coefficients of P,(¢, {x;})n"?2
than ,é,.“n‘%" < ¢;,(#). The result follows from (36), (38) and (39).

By using Lemma 9, the proof of Lemma 7 is easily seen to apply on replacing u
by u,, and with the notation of Section 4 we have the following result.

_._,

are less

THEOREM 2. Suppose B, , < oo where g € T,r > 2 is an integer, and suppose
that p < 1. Then for all € B* with M, (¢) < o0 and alln > 1

|f6d(Q, — V)| < C(k, )[ M, ($)m, + &,(Cp{ : N)].

PROOF. Assume kp]' < ¢,. Replacing ¢, by p{ in the proof of Theorem 1 and
using Lemma 7 with & replaced by u;, the proof applies without change. If kp{’ > ¢,
the result follows directly from Theorem 1.

The above result is a more general version of Theorem 20.6 in [2] (when the
latter is specialized to the case n~'S7_; Cov(X;) = I,). Under certain conditions,
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Theorem 2 yields asymptotic expansions for a large class of functions. Suppose
r > 3 and

C1: (8,) is uniformly bounded in n;

C2: Foralle > 0, n7'27_ | sentll XII” dFy(x) >0 as n— oo;

C3: lim sup,_,,, supy¢;,|0($)| < 1 for all b > 0.
Let @ be a class of ¢ € B* satisfying sup, e eM,(¢) < co where M, (¢) = sup,(1 +
X1~ |é(x)|, and sup,ce@,(k : N) = o[ —log h]=2¢=2). Corollary 1 below is
proved in [2] (Theorem 20.6 along with (20.45)).

COROLLARY 1.  Suppose C1-C3 hold. Then

sup, el [6d(Q, — ¥)| = o(n~3¢D),

ProoF. Taking g(x) = 1 conditions Cl and C2 ensure that n, = o(n‘%(”z))
(see Lemma 11 and the remark following Lemma 10 in Section 7). We have
Bs < ¢, B¢ < ¢y for all n from Cl, and it follows from C3 that lim sup,_, p
< 1. Therefore, from the definition of the class @, SUpy e gy (pr 1 N) = o(n‘%"‘z))
and the result follows from Theorem 2.

6. Speeds of convergence and asymptotic expansions for smooth functions. We
now restrict our attention to smooth functions and obtain bounds applicable for
arbitrary summand distributions; in particular, asymptotic expansions not requir-
ing Cramér’s condition will be deduced. Theorem 3 below includes known results
in this area in [2], [4] and more recently [3]. The proof uses the main lemma in
Section 3 (Lemma 7) and Theorem 1 applied to D¢ for |i| = s.

THEOREM 3.  Suppose B, , < oo where g € T and r > 3 is an integer. Then for all
G ECK1<s<r =2, with M, ((¢) < o and max,.,M, (D'¢) < o and all
n>1
If‘bd(Qn - \P)I < C(k’ r)[Arfg(‘i))nn + erf ma’x|i|=sz‘_"D’¢(Clen : N)]
where A;) (¢) = M, ,(¢) + max;_, M, (D’).

PROOF. As in the proof of Theorem 1 we may assume that n, < ¢, and hence
&, < c;. We operate (36) with = s on Ap where A= 2, — T,_, 9, so that

(40) Ap = @(UAP) + B (A¢).
Note that M, ,(¢,) < c5(1 + ||x||"“)M,’ ¢(®) where ¢,(y) = ¢(x — y). We have
(41) |UA(x)| < M,, (6.)/ k(| DIAE(y)| B

<c(1+ [IxI"" )M, ($)n,

on application of Lemma 7 along with (33). If | f(x)| < A(L + ||x|I"*h), f € B, itis
easily verified that |(§ — W)f(x)| < csA(1 + ||x|"*"). It follows from (41) that

(42) |@, UAS(0)] < csM,, ($)1,-
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Suppose that there exists a function f’ such that
maXy,y | D"f(x)] < A[(1+ x| )M, ((f)n, + Nwf(x)] = H(x)
say. Then
I($ = W()| < K217 ]| maxjyyar| D"f(x = 8)] dT ()

< crd[ (1 + %I+ )M, ((f)m, + [17119w(~ ) dU(y) .
Let I, J be the integrals over the regions ||y| < e,,%, Iyl > e,,%. Using (32) with
p = 2 gives

I < cge,[ Nwf(0) + M, (S, ]

< coea[ Mapi(x) + (1 + IIxI* )M, ,(f)m,]

and, omitting details,

T < 1M, (f] eI+ 117+ aU ()
< cll(l + ”x”r+l)Mr, g(fl)en’
< cppey(1 + X1 M, (f ),
from Lemma 1, ¢, < ¢, and (27). We therefore have
(43) (9 = WA < erze, H(x).
But applying Theorem 1 to D’¢ for |i| = s gives
|D'A¢(x)| < 1yl + [Ix|I )M, (D'¢)n, + Nwpig(x)
and it follows on s applications of (43) that
(44) I%SA‘P(O)l < Cis max|i|-s[Mr,g(Di¢)nn + G:ED‘¢(C,€’! : N)]
using ¢, < c¢,. The result follows from (42), (44) and (40).
Note in particular that if maxy_,_,&p,(h : N) < B,(¢)h then
/6d(Q, = ¥)| < C(k, N[ 4]5%(9) + B,(9)]n,
since & ~! < ¢,(r + 1), from (27). Let @ be a class of functions ¢ € CX,
satisfying sup,eq A4, ;2(¢) < oo with g(f) =1 and sup,cq @piy(h: N)—>0 as
h—0 for |i| = r — 2. Conditions Cl and C2 in Section 5 ensure that 7, =
1
o(n~2¢~?) and we can deduce the following result.

COROLLARY 2. Suppose C1 and C2 are satisfied. Then

sup, e |/0d(Q, — ¥)| = o(n~3¢~).

‘Bhattacharya and Rao (1976) derive asymptotic expansions in the i.i.d. case for
bounded functions f which are Fourier-Stieltjes transforms of finite signed
measures y satisfying [||x||"~2%d| p|(x) < oo. Since this condition implies that D’f
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exists for [i| = r — 2 we have lim,_, @p,(h : N) = 0 for |i| = r — 2. Thus Theo-
rem 20.7 in [2] follows from Corollary 2. In the i.i.d. case when k = 1, Hipp (1977)
obtained the above asymptotic expansion with r = 4 for functions possessing a
bounded uniformly continuous derivative of order 4. Very recently Gé6tze and Hipp
(1978) have obtained asymptotic expansions for smooth functions. Their result
(Theorem 3.6) follows from our Theorem 3 with g(x) = x* (0 < ¢ < 1). In particu-
lar, they prove Corollary 2 with C1, C2 replaced by n*"~2/%; 0.

The functions ¢,(x) = x’ (¢ € (Z*)*) are infinitely differentiable; in fact D’¢,(x)
=¢ x' ~Jif j <t and D/¢, =0 otherwise. We may therefore apply Corollary 2
with r = |¢|. In fact the expansions here are exact as may be shown directly from
the arguments preceding Lemma 6 applied to the original variables. In the case

=1 this result is due to Von Bahr (1965). Note that for s € Z*, ||x||* =
2=t/ iNx%¥ and so the even-order moments of ||S,| also have an exact
expansion (in powers of n~'). The functions x — ||x|| for i € (r — 2, r] are r — 2
times differentiable and form an appropriate class &, for application of Corollary
2. In the case k = 1 Von Bahr (1967) proved that for this class of functions the

error in Corollary 2 is O(n~2¢~2).

7. On the form of the error bound. In this section the bounds in the preceding
theorems are investigated further. Let

(u) f||x||>u||x”g(”x”) dF(x)
T, o (u) = n7'2_\ T, (u)
and define
eg(n%)

g(en%

1
B, (n) = infy,c, IS <ot | KB AE() + T, (en) |.

The rates of convergence in the preceding theorems may te: formulated in terms of
B, z(n); it is then possible to deduce error bounds or o(-) rates, as may be seen
from the following lemma.

LemMA 10. (i) B, ,(n) < B, , for all n > 1. (ii) Suppose that u/g(u) — oo and
sup, T, (4) >0 as u — co. Then B, ,(n) -0 as n — .

ProoF. (i) Take e = 1. (ii) The uniform integrability condition ensures that (a)
B, is uniformly bounded for all n, and (b) 7, ,(4,) >0 as n— oo for every
sequence #, —> c0. Suppose first that g(x) -4 oo so that g(#)1/, 1 </ < oo. The
result follows in this case on taking e = n~'/4. Suppose then that g(x) — co. Take
¢ = [g(n?)]""; since [g(n7)] " 'ni— o0 as n — oo the result follows.

ReMARK. If g(x) = x* (0 < ¢ < 1) then (11) holds if we assume B, , < K for all
n and the Lindeberg-type condition 7, (en 2) — 0 for every ¢ > 0. For then we
have lim sup,_,, B, ;(n) < Ke'~* for every 5,0<e< .
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Define g’(x) = inf,,, (( )) ifx>1,g(x)=x,x<1.Theng’ €Tand g’ < g.
Let

8, = {n%(r—Z)g(n%)}_lBr’ (n)

8 =8 + {,,éo-z)g'(,,%)}"Tr’g(,,%),
Let 7, be defined as in Section 3 and 7, be 7, with g replaced by g’.
Lemma 11. 9, < 8,, 1, <6,
PrOOF. We have

Lo, _ 1 1 _1 1
n2¢ =g, = n 127-1{” 2 <entl X7 AE(X) + 173 [t g <mtll %17 AF(x)

_1
+ [y ntllx1g(n = 21| x[l) dF(x).
Using propertles of g €T and the fact that g(n™ 2||x||) <[gn 2)] 'g(]|x||) when
Ix]| > n? establishes the first inequality. The second mequallty follows in a s1m11ar
way, using properties of g € " and g'(n~ 2||x||) < [g(n 2)] g(||x|)) when || x| > n.

REMARK. Since §, < §; a bound involving 8, will be preferred whenever Theo-
rems 1-3 may be applied with g’ € T'; this will be the case whenever M, ,(¢) <
in Theorems 1 and 2 and in addition max,_,_, M, g,(D"(p) < oo in Theorem 3.
Note that if g(x) = x* (0 < ¢ < 1) then g’ = g. In particular Theorem 15.1 in [2]
follows from Theorem 1 on taking ¢ = 0.

ExampLE. If g(x) = x’log(l + x)/log2,0 <t < 1, then g'(x) = x* (x > 1).
Suppose E || X,||* log(1 + || X;||) < o0, 1 <i < n. If ¢ € B* satisfies |p(x)] < A(1 +
[|x]|>) and w,(e : N) < ¢\(k)e, then applying Lemmas 10 and 11 to Theorem 1 gives
the rate of convergence .

|E§(S,) — EH(Z)| < c(k)A[(n log 1)~ 'S; E|IX;|P log(1 + 1%, ]-
However, if ¢(x) = ||x|* log(l + ||x||) for example, to the quantity in square

brackets must be added the term

n 7 S gyt log(1 + [1x]1) dF(x).
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