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A STRONG LAW FOR SOME
GENERALIZED URN PROCESSES!

By BRUCE M. HiLL, DAVID LANE AND WILLIAM SUDDERTH
University of Michigan and University of Minnesota

Let f be a continuous function from the unit interval to itself and let
Xg, X}, - - - be the successive proportions of red balls in an urn to which at the
nth stage a red ball is added with probability f(X,) and a black ball with
probability 1 — f(X,). Then X, converges almost surely to a random variable X
with support contained in the set C = {p: f(p) = p}. If, in addition, 0 < f(p)
< 1 for all p, then, for each r in C, P[X = r] > O(= 0) when f'(r) < 1(> 1).
These results are extended to more general functions f.

1. Introduction. Let X, = x be the proportion of red balls in an urn contain-
ing m balls altogether and let f be a mapping from the unit interval into itself.
Suppose that a red ball is added to the urn with probability f(x) and a black ball is
added with probability 1 — f(x). Let X, be the new proportion of red balls and
iterate the procedure to generate an wrn process X,;, X,,--- . This paper is
concerned with two questions about the asymptotic behavior of such urn processes.
Does X, converge almost surely? And, if so, what is the support of the limit
variable?

The distribution of {X,} is determined by the urn function f and the initial urn
composition (x, m). The process {X,} is, of course, Markov, with nonstationary
transition probabilities. Only the values of f on the rationals play a role in the
transitions of {X,} but it is convenient to think of f as defined on the whole unit
interval.

Here are three cxamples of urn processes whose asymptotic behavior is already
well understood.

ExaMpLE 1.1. Bernoulli urns. Let 0 < p, < 1 and suppose f(p) = p, for all p
in [0, 1]. Then
X, =(mx + S,)(m+ n)~!

where S, = Y, + -+ + 7Y, for each n and Y, Y,, - - - is a sequence of indepen-
dent variables each being Bernoulli (p,); that is, each equalling 1 and 0 with
probabilities p, and 1 — p, respectively. By the strong law of large numbers, X,
converges to p, almost surely.

ExaMmPLE 1.2. A Bernard Friedman urn. If f(p) = 1 — p, then X, converges to
3 almost surely (Freedman, 1965).
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In both Examples 1.1 and 1.2, the limiting distribution is independent of the
initial urn composition. This is not always true, as the next example shows.

ExampLE 1.3. Polya urns. If f(p) = p for all p, then {X,} is a Polya process
(Johnson and Kotz (1977), Chapter 4) and converges almost surely to a random
variable X whose distribution is absolutely continuous with respect to Lebesgue
measure. Indeed X has a beta distribution with parameters s = mx and m — s, and
has the density
(1.1) Pom—s(P) = € msp* {1 =p)" "7,
where ¢, ,,_,=(m —1!/(s — D{(m — s — 1)! and 0 <p < 1. (For a proof of
convergence, see Freedman (1965).)

In all the examples, the urn process converges almost surely to a limit variable X.
This is a quite general phenomenon: in particular, it happens whenever the set of
discontinuities of the urn function f is nowhere dense in [0, 1] (Corollary 2.1;
Theorem 2.1 gives a more general result). However, there exist discontinuous urn
functions whose associated urn processes almost surely do not converge (Example
2.1).

In the three examples above, the limit variable X has support equal to the
crossing set C = {p: f(p) = p}. For continuous urn functions, the support of X is
always contained in C (Corollary 3.1), but need not in general be equal to C.

ExaMPLE 1.4. Suppose 0 < p, < 1, fis continuous, f(p) < p for 0 <p < p,, and
f(p) >p for py<p < 1. Then C = {0, p,, 1}, but p, is not contained in the
support of X as follows from Theorem 5.1.

The essential difference between p, in the first and last examples is that between
a downcrossing and an upcrossing by f of the diagonal. A point p, in [0, 1] is an
upcrossing (downcrossing) if, for all p in some neighborhood of p,, p < p, implies
f(p) <p(f(p) >p) and p > p, implies f(p) >p(f(p) <p). In particular, if f is
differentiable at a point p, in C, then p, is an upcrossing (downcrossing) point if
and only if f'(py) > 1(f'(po) < 1). In general, downcrossing points are limit points
for urn processes (Theorem 4.2), but urn prc/>cesses never converge to an upcrossing
point (Theorem 5.1). Indeed, in the special case when the crossing set consists only
of upcrossings and downcrossings and the urn function is continuous and does not
assume the values 0 and 1, the limit distribution of the urn process has support
precisely equal to the set of downcrossings (Theorem 6.1).

2. A convergence theorem. Suppose f is an urn function. Define the diagonal
oscillation set O = { p: in every neighborhood of p there exist points p,, p, such that
f(p)) <p, and f(p,) > p,}. The following result will be proved in this section.

THEOREM 2.1. If O N C¢ is nowhere dense in [0, 1], then X, converges almost
surely.

Throughout the paper {X,} has urn function f and initial urn composition (x, m)
unless explicitly stated otherwise.
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The proof of the theorem will follow five lemmas. The first lemma is just a
statement of the strong Markov property for urn processes. As usual, a stopping
time T for {X,} is a random variable with valuesin {0, 1,- - - } U {oo} such that,
for every n, the event [T < n] is in the o-field ¥, generated by {X o .X,}. The
o-field ¥, consists of those events 4 such that 4 N [T < n] € ¥, for all n.

LemMMA 2.1. If T is an almost surely finite stopping time for {X,}, then the
conditional distribution of {Xy, Xy, +* } given % is the distribution of an urn
process which has initial composition (X. pm+ T') and the same urn function f.

The Markov property will often be used without reference to Lemma 2.1.

The next lemma makes possible the pathwise comparison of two urn processes.
For its statement, let {Y,} be an urn process with urn function g and initial
composition (y, m).

LemMA 22. If f< g and x <y, then {X,} and {Y,} can be realized on a
common probability space in such a way that X, < Y, for all n.

PrOOF. Let n > 0 and suppose {X,, - - -, X,} and {Y,,- - -, ¥,} have been
constructed so that X; <Y, for 0<i<n. To define (X,,, ¥,,,), introduce
random variables (4,, B,) satisfying:

(i) 4, is Bernoulli (f(X,)) and B, is Bernoulli (g(Y,)).

(ii) The pair (4,, B,) is conditionally independent of (X, ---, X,_,,
YO’ ) Yn—l) given (Xn’ Yn)

(iii) If X, = Y,, then 4, < B,

It is easy to verify that such variables exist. (For part (iii), use the fact that, if
X, = Y, then f(X,) = (¥,) < g(¥,).

Now set
¥ = (m+ n)X, + A4,
n+l m+n+1 ~
vy = (m+ n)Y,+ B,
n+l m+n+1
Then X,,, < Y,,,,and {Xy - - -, X} and { ¥y, - - -, ¥, ,} have the desired

joint distributions. [

The next lemma shows that, in the case when the initial urn size m is large, a Polya
process is unhkely to venture far from its initial position. In the sequel, P, ,, is
sometimes used to denote the distribution of the urn process with initial urn
composition (x, m) and fixed urn function f.

LemMMa 2.3. Suppose fix)=x for all x. Then, for every ¢ >0 and initial
composition (x, m),

2.1) Pl my[SUP,IX, — x| > €] < s+ Dm-s+1)

e(m + 2)%(m + l)

where s = mx.
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PrOOF. As mentioned in Example 1.3, the martingale X, converges almost
surely to a random variable X which has a beta (s, m — s) distribution. The
right-hand side of (2.1) is just E(X — x)?/¢? and (2.1) is the familiar Kolmogorov
inequality for the submartingale {(X, — x)?}. []

Let I = (a, b) and J = (¢, d) where a < ¢ <d < b. Let E be the event that {X,}
upcrosses I infinitely often, that is, the event that X, < a for infinitely many » and
X, > b for infinitely many n.

Lemma 24. If P, ,.(E) > O, then, for every € > 0 and positive integer N, there

existy € J and n > N such that P, ,(E) > 1 — e.

Proor. By Levy’s martingale convergence theorem,
P(x,m)(E|Xl, c oty Xn)-—) lE

almost surely. By the Markov property,
P(x,m)(EIXl =Xttt Xn = xn) = P(x,,,m+n)(E)'

Now use the fact that any path in £ must visit J infinitely often because the
increments of {X,} go uniformly to zero. []

LemMa 2.5. If f(p) = p for all p € I, then

(2.2) lim,_, sup,c; P, n[ X, visits I°] =0,
and
(2.3) Pi,m(E) =0

for every initial composition (x, m).

Proor. The first equality follows from Lemma 2.3. The second is a con-
sequence of the first together with Lemma 2.4. []

PROOF OF THEOREM 2.1. By a familiar argument, it suffices to show P, ,.(E)
= 0. Suppose, to the contrary, that P, . (E) > 0. Consider two cases.

Cast 1. There is a nondegenerate interval I' C I such that f(p) = p for all
peEI.

Let E' be the event that {X,} upcrosses I infinitely often. Clearly, E C E'.
But, by Lemma 2.5, P, ,(E") = 0. i

Cast 2. For every nondegenerate interval I' C I, there exists p € I' such that
f(p) #p.

There must exist a nondegenerate subinterval /' C I such that either f(p) <p
forallp € I' or f(p) > p for all p € I' because otherwise O would be dense in the
interval 1. To be specific, suppose that f(p) <p for all p € I'. (The other case is
similar.) Define S to be the supremum of the X,’s. The event [.S > b] contains E so
that, by Lemma 2.4, '

(2.4) lim, , sup,c ;P (S >b] =1

where J is a proper subinterval of I'.
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Next consider the urn function g given by

g(p) =flp)iftp & I'
=pifp eI
Then f < g and, by Lemma 2.2, the supremum of an f-process is stochastically
smaller than that of a g-process with the same initial composition. Thus (2.4) holds
also for g-processes. But, by Lemma 2.5, the contradictory equality (2.2) also holds
for g-processes. []

COROLLARY 2.1. If the set of discontinuities of f is nowhere dense, then X,
converges almost surely.

Proor. Each pointin O N C¢ is a discontinuity point of f. []
Here is an example of an urn process which does not converge.

ExaMpLE 2.1. Define
S={@+)2*+,)" i k=01---3j=01---,2" 1}
and
T= {2214+ 2*+ /)7 i k=0,1,---35j=01---,2"—1}.
It can be shown that S and T are disjoint so that there can be unambiguously
defined an urn function f which equals 1 at each point of S and equals 0 at each

point of 7. The corresponding urn process with initial composition Q71 2%+
moves deterministically as indicated below:

. 2K 2 +1 2k 42,
2T Sk okrt 1 0 T gke gk 3
, ok+1 Jk+1 k1
‘5=2k+l+2k_)2k+l+2k+1_).'A'—)2k+2=.2—'

Hence the process oscillates between 3 and Z forever.

3. Convergence to the diagonal. Suppose f is an arbitrary urn function, and the
value of X, is y = s(m + n)~!. Then the conditional expectation of X, ,, given
[X,, = y] is calculated as follows:

(B.1)  E(X, X, =y)=(m+n+ D)7 [f)s+ 1)+ (1= A»)s]

=y + (m+ 0+ D7) - ).
That is, the conditional mean of the increment X, ., — X, is positive, zero, or
negative depending on whether the graph of the urn function at X, is above, on, or
below the diagonal. Proposition 3.1 establishes an important consequence of this
fact. To state the proposition, define, for every ¢ > 0, the sets
A, = {x: f(x) — x >¢}
B = {x: f(x) — x < —¢}.
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ProPOSITION 3.1.
(@) If X, € A,, then P[{X,} exits from A,] = 1.
(b) If X, € B., then P[{X,)} exits from B,] = 1.

Proor. To prove (a), let T be the time of first exit of {X,} from A, (or oo if the
process never leaves A4,). Let T, be the minimum of T and n. T and T, are stopping
times for {X,}. In particular, the event [T, > k] is %, _,-measurable. Thus

(3'2) 1> E(XT,,) > E(2’11(=I(Xk - Xk—l)l[T,,>k])
= E(EZ=1E(Xk - Xk—llgk~l)1[T,,>k])
> E(Z%o E(X — Xl Fi— ) (1= c0)-
Using Lemma 2.1 and (3.1),

(3.3) E(X, — Xo_i|%—1) = E(X — Xp_i|Xe_)
> e[m + k]'l,
for X,_,in A,.
Combining (3.2) and (3.3), for every n,
(34) 1>e3%_(m+ k) 'P(T = ).

Since =,(m + k)~ ' diverges to co, the probability that 7 = oo must be zero. This
completes the proof of (a). The proof of (b) is similar. []

COROLLARY 3.1 Suppose X is the almost sure limit of an urn process correspond-
ing to a continuous urn function f. Then X = f(X) almost surely.

ProoF. For each e > 0,
P(X in A,) = P({X,} eventually in 4,)
= 0.
The first equality is due to the fact that X, converges to X and A, is open. The

second follows from Proposition 3.1 and the Markov property. Similarly, P(X in
B.)) = 0. Thus, for each e > 0, P((X — f(X)| <e)=1,s0 A(X = (X)) =1 []

4. Downcrossings. Suppose the urn function f is continuous and {p,} =
{p: f(p) = p}, so p, must be a downcrossing. Special cases of processes with such
urn functions include the Bernoulli process and the urn of Bernard Friedman.
Theorem 2.1 and Corollary 3.1 together show that such urn processes must
converge to p, almost surely. In this section, this result is generalized in two
directions. Theorem 4.1 concerns a class of urn functions which are not necessarily
continuous, but for which the associated urn processes converge to a single point
almost surely. Theorem 4.2 refines Corollary 3.1 by showing that downcrossings
must be in the support of the limit variable X, at least for urn functions which are
continuous near the downcrossing and which map the open interval (0, 1) into
itself.
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THEOREM 4.1. Suppose f is an urn function, and there exists a point p, in (0, 1)
and a continuous urn function g satisfying:

® {po} = {p: 8(p) = P}

(i) for p <po, f(p) > g(p) and for p > py, f(p) < g(p).
Then X, converges to p, almost surely

Proor. Fix § > 0 and let g5 be a continuous function satisfying:

(a) gs = g on [0, py — &];

(b) g5 < gon[py— 8, pol;

(©) 8 = 0on[pg 1];

(d) g; has a single downcrossing, say ps, which is in the interval (p, — 8, p,).
Then, g < fon [0, 1]. Now let { Y,,} be an urn process with urn function gz and the
same initial composition as {X),}. As discussed above, Y, converges to p, almost
surely. By Lemma 2.2 it may be assumed that X, > Y, for all n, so X, is eventually
greater than p, — § almost surely. Similarly, it can be shown that X, is eventually
less than p, + & almost surely. Since & is arbitrary, X, converges to p, almost
surely. []

ExaMPLE 4.1. A simple example of an urn function satisfying the conditions of
Theorem 4.1 is the following step function:

f(p) =% forp <3

1forp >1
The following localization lemma prepares the way for Theorem 4.2. To state the
lemma, define y in (0, 1) to be attainable at time k if P[X, = y] > 0. Suppose the
. urn function maps (0, 1) into itself. Then for an initial urn composition (x, m) with

0 < x < 1, the set of states attainable at time k is just {(mx + j)(m + k)™':j =
0,- - -, k}, and does not depend on the urn function.

LemMa 4.1.  Suppose {X,} and {Y,} are urn processes with urn functions f and g
respectively, and suppose f and g agree on a neighborhood N of the point p, in [0, 1].
(a) Suppose Y, does not converge to p, with positive probability for any initial urn
composition (x, m). Then the same is true for X,,.
(b) Suppose f and g map (0, 1) into itself, and {X,)} and {Y,} have the same initial
urn composition (x, m) with 0 < x < 1. Then X,, converges to p, with positive
probability if and only if Y, does.

PrROOF. Suppose P, ,,[X, converges to py] > 0. Then there exists k such that
4.1) Py, my[ X, converges to pyand X, in N for all/ > k] > 0.

Since there are only a finite number of states attainable at time k, there must also

exist j such that
(4.2)

P, m)[X,. converges to p,, X, in N for all/ > k, and X, = j(m + k)—l] > 0.



GENERALIZED URN PROCESSES 221

Hence,

(43) P, ,,,)[X,, converges to po, X; in N for all/ > k|X, = j(m + k)—l] > 0.

and
(4.4) P m| X = j(m + K)™'] > 0.
To prove (a), note that (4.3) is equivalent to
(4.5) P, m+x)(X, converges to py, X, in N for all/ > 0) > 0.

Since f and g agree on N, (4.5) remains true when ‘X’ is replaced by ‘Y’, a
contradiction to the assumption in (a).

To prove (b), note that inequality (4.4) just means that j(m + k)~! is attainable
at time k for {X,}, and hence for {Y,}, since they share the same initial urn
composition. Thus (4.4) holds when ‘X" is replaced by ‘Y’; (4.3) does also, since
the urn functions f and g agree on N. Thus (4.2) holds with ‘X’ replaced by ‘Y’. In
particular, Y, converges to p, with positive probability. []

THEOREM 4.2. Suppose f is an urn function which maps (0, 1) into itself, and f is
continuous in a neighborhood of p,, a downcrossing of f. Let {X,} be an urn process
with urn function f and initial urn composition (x, m), 0 < x < 1. Then X, converges
to p, with positive probability.

Proor. Choose a neighborhood N of p, in which f is continuous, and such that
{Po} = N n C. Construct a continuous urn function g such that g agrees with f in
N, and {p,} = {p: g(p) = p}. Then if {Y,} is an urn process with urn function g
and initial urn composition (x, m), Y, converges to p, almost surely. By Lemma

4.1, then, X, converges to p, with positive probability. []

5. Upcrossings. The following result is proved in this section.

THEOREM 5.1. If p, is an upcrossing point, then P[X, — p,] = 0.
It is sufficient to prove the proposition when

(5.1) f(p) < pforp <py,
>p fqr P > Py
The reason is that, if p, is an upcrossing point for an arbitrary g, then g agrees in a
neighborhood of p, with an f satisfying (5.1). By Lemma 4.1 the proposition holds
for g if and only if it holds for f. So (5.1) is assumed for the remainder of this
section. However, it need not be assumed that f is continuous.
By (3.1) and (5.1) together with the Markov property, the urn process {X,,}
associated with f satisfies
(5.2) E[XyiilXy - -+, X,] <X,as.0on[X, <p],
> X, as.on [X, > p,].

Any stochastic process { X, } satisfying (5.2) is said to be split by p,,.
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LemMA 5.1. Let {X,} be a split process such that

@) sup E|X,| < oo,

(i) lim(X,,, — X,) = 0.

Then {X,} converges almost surely.

ProoF. Suppose {X,} is split by p,, and define
(5'3) Y, = IXn —Po|-
Then sup,E|Y,| < « and

E[ Yn+l|XI’ T ’Xn]

]

E[an+| = pol | X+ - ’Xn]

> |E[X”+1|X1,- t ’Xn] = pol
> IXn _Pol

Y,

The second inequality is a consequence of (5.2). It now follows from the sub-
martingale convergence theorem that {Y,} converges almost surely. By (ii) and
(5.3), so does {X,}. ]

Neither assumption (i) nor assumption (ii) can be deleted from Lemma 5.1.
However, it seems likely that (ii) could be dropped if (i) were replaced by the
stronger assumption of uniform boundedness or even just boundedness in L,.

At this point, there is a temptation to develop further the theory of processes
split by p, in an attempt to give conditions for their nonconvergence to p, and then
to deduce Theorem 5.1 from them. We have successfully resisted this temptation. A
second possible approach to a proof of Theorem 5.1 would be to make a pathwise
comparison of {X,} with a Polya process {Y,}. If p, =3, techniques like those
used to prove Lemma 2.2 lead to the realization of {X,} and {Y,} on a common
probability space so as to satisfy

X, =31 > |Y, -3l

]

for all n. Since { Y, } converges to 3 with probability zero, the same is true of {X,,}.
Unfortunately, this simple argument does not obviously generalize when p, # 1.
Instead of pursuing the idea further, we will use the gambling theoretic methods of
Dubins and Savage (1965) to make a quite different sort of comparison of the two
processes. Some of the notation and terminology below is taken from Dubins and
Savage.

Consider a gambling problem in which the fortunes are pairs (x, m) where
0 < x < 1 and m is a nonnegative integer. To describe the.gambles available, first
let 0 < ¢ < 1 and define g to be compatible with x if

(54) 0<g<x<py or pj<x<g<1l

To each triple (¢, x, m) is associated the gamble y = y(q, x, m) which is the
distribution of

\

((mx + Y)(m+ )", m+1)
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where P[Y =1]=qg=1— P[Y = 0]. The gambles available at (x, m) are all
v(g, x, m) where q is compatible with x. In effect, the gambler is permitted, at each
stage of play, to select a ¢ compatible with the proportion of red balls in the urn
and then to add a red ball with probability ¢ and a black with probability
g=1-gq.

A strategy o at (x, m) can here be regarded as a sequence g, q;, - *+ - Where g, is
a constant compatible with x and, for every finite sequence x,, - - - , x, of elements
of (0, 1), g,(x,, - - - , x,) is compatible with x,. The strategy determines the distri-
bution of a stochastic process (X, m + 1), (X,, m + 2), - - - by specifying that the
distribution of (X;, m + 1) is y(q,, x, m) and that the conditional distribution of
Xy m+n+1)is y(g,(x, -+ -, X,), x,, m+ n) given X, = x,- -+, X, = x,.
Since the sequence of second coordinates is deterministic, only the X,’s will be
mentioned in the sequel.

Every function f satisfying (5.1) determines a strategy at (x, m) which has
qo = f(x) and g,(x;, - * - , x,) = f(x,) for all x|, - - -, x,. Under this strategy the
process { X, } obviously has the same distribution as the urn process associated with
J. In particular, the Polya strategy at (x, m) is determined by the identity function
and, under the Polya strategy, {X,} is a Polya process.

The utility function for the gambling problem is defined to be

u(x, m) = o(x)

where
(5.5) o(x) = ‘Pa+1,/3+1(x) = a+l,ﬁ+1xa(1 - x)ﬁ~
The function ¢ is a beta density with parameters a + 1, 8 + 1.
- Notice that, under every available strategy o, the process {X,} satisfies all the

hypotheses of Lemma 5.1 and, therefore, converges almost surely to a limiting
random variable X. The utility of o is set equal to the expected utility of the limit as
below.
(5.6) . u(e) = [ lim,u(X,, m + n)de

= [@(X)do.

This definition coincides with that of Dubins and Savage (1965, Formula 3.2.1) as

follows from Theorem 3.2 of Sudderth (1971).
After a simple lemma on beta distributions, it will be shown that the Polya

strategy is optimal whenever ¢ has mode p,,.

LemMA 5.2. Let {a,} and {B,} be sequences of positive numbers such that
a, + B, > o while a,(a, + B8,)”' — p. Then the corresponding sequence of beta
(a, + 1, B, + 1)-distributions converges in distribution to a point mass at p. Fur-
thermore, SUp @, .1 g 41 —> .

Proor. The mean of a beta (a, + 1, 8, + 1) is (a, + 1)(at, + B, + 2)', which

converges to p. The variance is (a, + 1)(8, + D(a, + B, + 2) (a, + B, + D7},
which converges to zero. This proves the first assertion.
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Because their variances are converging to zero, the densities cannot remain
bounded, and the second assertion follows. []

LEMMA 5.3. If the mode a(a + B)~" of @ is equal to p,, then the Polya strategy at
(x, m) is optimal in the sense that it achieves the supremum

W(x, m) = sup u(o)
taken over all strategies o at (x, m).

PROOF. Let Q(x, m) be the utility of the Polya strategy at (x, m). Then, by (5.6)
and Example 1.3,

(5.7) Q(x, m) = [o®@ar1, p41()Pe, m—,(1)dlt

= Cf(])(pa+.\',ﬁ+m—s(t)dt

=c,
where ¢ = (o1, 8416 m-sNCas, pem—s) - It suffices to show Q > W. This in-

equality will follow from Dubins and Savage (1965) (the fourth paragraph of
Section 3.3) or from Lemma 4.8 of Dubins and Sudderth (1977) once it is verified
that

(5.8) v(q, x, m)Q < Q(x, m)
for all (x, m) and all g compatible with x, and that
(59) 0(0) > u(o)

for all available strategies o, where

(5.10) Q(o) = / lim,Q(X,, m + n)do.

To prove (5.8), first calculate its left-hand side as follows:

(5.11) (g, x,m)Q = qQ((s + D(m + )™, m + 1) + GO(s(m + 1)~ m + 1)
= JoPas1, g1 4P 1, s (0) + G, g y(2) )t
= C/0@ass, prm—s(O{gmts=" + Gmi(m — 5)""}dr
= me{q(a + s)s a + B+ m)"
+3(B+m—s)(m—s5)"(a+ B+ m7'},

where the first equality is by definition of y(g, x, m), the second is by (5.7), the
third uses the definition of a beta density, and the final equality uses the formula
for the mean of a Beta density.

Let ¥(q) = v(g, x, m)Q — Q(x, m). By (5.7) and (5.11), ¢ is a linear function of
q with slope

Y(g)=mc(a+B+m {(a+s)s™' = (B+m— s)(m-— )~
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Thus
V() >0 (a+s)s™!'>(B+m—s)(m—s)"
saf™! >s(m—s)"!
sala+ B) ' >sm
Also, it is easy to check that
¥(x) = 0.
By assumption, one of the two chains of inequalities in (5.4) holds. If it is the first,
theng < x = sm™! <py = a(a + B)~". So ¢'(g) > 0. Hence, Y(q) < y(x) = 0. If,
on the other hand, p, < x < ¢, then y/(¢) < 0 and again y¥(g) < Y(x). Therefore, in
all cases, Y(g) < 0 which completes the proof of (5.8).
To prove (5.9), let o be an available strategy. Then, under o, X, _converges to X
almost surely and, by Lemma 5.2, the beta ((m + n)X,, (m + n)X,)-distributions

converge almost surely to point mass at X. Let @x, be the density for a beta
(m + n)X,, (m + n)X,). Then

Q(o) = [ lim,Q(X,, m + n)do
= /{lim, f5p(:) oy, (#)dt } do
= [p(X)do
= u(0).

This completes the proof of Lemma 5.3. []
Turn now to the proof of Theorem 5.1. Suppose, by way of contradiction, that

P[X,—>py] =¢>0.
Let o be the strategy associated with f. Then, by (5.6),
u(o) > 3‘P«+|,p+|(1’o)-

Let a + B— oo while a(a + B)™' = p,. It follows from the final assertion of
Lemma 5.2 that u(¢) approaches infinity. By (5.7) and the first assertion of Lemma
5.2,

Q(x, m) = f(l)%+1,p+1%,m—s
= @, m—s(Po)-
However, by Lemma 5.3,
u(o) < Q(x, m),
which gives the desired contradiction.

6. ' Extensions and questions. For which urn functions do the associated urn
processes converge? For convergent urn processes, what is the support of the limit
variable X? We cannot yet give complete answers to these questions.

Theorem 6.1 provides the answer to both questions for a particular class of
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continuous urn function. As before, let C = {p: f(p) = p} and let U and D be the
set of upcrossings of f and downcrossings of f respectively.

THEOREM 6.1. Suppose f is a continuous urn function which maps (0, 1) into itself,
and C = U U D. Then the urn process {X,} with urn function f and initial urn
composition (x, m), 0 < x < 1, converges almost surely to a random variable X, and
the support of X is D.

ProOF. By Theorem 2.1 X, converges to X, whose support is contained in C by
Corollary 3.1. By Theorem 4.2, each point of D is in this support, while by
Theorem 5.1 no point of U is. []

The assumption of continuity made in Theorem 6.1 can, with some effort, be
relaxed to piecewise continuity or even further. Also, if the crossing set C contains
a nondegenerate interval, it can be shown that the support of the limit variable X
must contain the interval as well.

Here is a puzzle which we have not been able to solve. Call a point P, € C a
touchpoint if, for some ¢ > 0 either f(p) > p for all p such that 0 < |p — p,| <, or
f(p) < p for all such p. Do touchpoints belong to the support of X?
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