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WEAK CONVERGENCE FOR THE MAXIMA OF STATIONARY
GAUSSIAN PROCESSES USING RANDOM NORMALIZATION

By WiLLiaM P. McCoRMICK
University of Georgia
Let {X,, k > 1) be a stationary Gaussian sequence with EX, =0, Ex}=
1, and EX\X,,, =r, Let ¢, =(2Inn):;, b, =c, — In(dnIn n)/2c, and set
M, = max, <, <, Xp» X, =13%_\X,, and 52 =13%_ (X, — X,)% If r, is not
identically one and (In n)/nZ% . |r, — r,] = o(1), it is shown that

1) lim, P { ¢, M, = X, _ b,| <x} =exp{—e ).
s

If we further assume (7, In n)~! = o(1) then it is shown that
H -1 M’l = 11—y % x -L‘.’_’)_'ff
o i) <] (5
where y = F({o0})) is the atom at zero of the spectral distribution associated
with r. A version of these results for continuous time processes is also presented.
1. Introduction. Let {X,, kK > 1} be a stationary sequence of standard normal
1
random variables. Let r, = EX,\X, ., ¢, = 2Inn)?, b, = ¢, — In(4w In n)/2c,
and set M, = max,;., X;. Under the condition r, In n = o(1), Berman [2] has
shown
(1.1) lim,  P{c,(M, —b,) <x} = A(x)=exp{—e ™}, —o0 <x < o0.
On the other hand when it is no longer true that 7, In n = o(1), a variety of
possible limit laws for M, arise. Mittal and Ylvisaker [4] have shown for suitably

smooth correlation functions that if 7, In n = O(1), M, is attracted to a mixture of
the double exponential and normal laws. Furthermore for convex correlation

functions with r, = o(1) and (7, In n)~! = o(1) and monotone for large n, they
showed

1
(1.2) lim, . P{r,3(M, = (1 - 1,)?b,) <x} = ®(x),

— o0 < x < oo where &(x) = 27)" [ e~ /2 du.

In Section 2 we will show that the double exponential weak limit can be retained
for sequences having a suitably smooth correlation function provided we allow
random normalization. It is noteworthy that this behavior is independent of mixing
conditions in that we require only the correlation function to be not identically
one. .

Basically (1.2) holds, because under the conditions for that theorem the sequence
is bound together by what we may call a binding variable. It is this binding
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484 WILLIAM P. McCORMICK

variable which effects the normal weak limit and by eliminating it at the outset, we
find that the resulting sequence is sufficiently asymptotically independent to allow
a statement like (1.1) to hold. More precisely letting X, = 1/n3%_ X, and s? =
1/n3%_ (X, — X,)% the main result of Section 2 states that for correlation
functions not identically one

Inn
Tzn-llrk = | = o(1)

M, - X,
(#——"-—bﬂ)—ﬂ\.

Sn

is sufficient for

Cn

The random normalization employed above, (M, — X,)/s,,, is referred to as the
studentized maxima and has been considered previously by several authors.
Grubbs [3] determined the exact distribution of (M, — X,)/s, when the X,’s are
identically distributed independent normal random variables and has applied this
work to the problem of testing for outlying observations. Berman [1] considered the
asymptotic theory of studentized maxima for ii.d. random variables X; with
EX, = 0, EX? = 1 and showed that (M, — b,)/ a, attracted to an extremal distri-
bution implies 1/a,((M, — X,)/s,— b,) attracted to the same distribution provided
the normalizing constants satisfy (b, /a,(n %)) = 0(1). Our Theorem 2.1 represents a
generalization of this result for dependent Gaussian variables. In Section 3 we
present versions of the main results of Section 2 for continuous time processes.

2. Limit distribution for (M, — X,)/s,. Let {X,,k > 1} be a stationary
sequence of standard normal random variables with correlation function 7, =
EX, X, . Define 7,(k) = max, ¢, |, — r,|. We will be concerned with correla-
tion functions satisfying the smoothness condition

Inn

Tzn-l e = ral = o(1)
and therefore it will be of interest to us to know that the above condition is
equivalent to the ostensibly stronger condition

Inn —

e Shoy 1, (k) = o(1).
This equivalence is contained in the following lemma which relates a rate of
convergence to zero of the average of differences in the terms of a bounded
sequence to a growth rate for the differences.

LeMMA 2.1. For any bounded sequence of real numbérs {a,, k > 1} the following

conditions are equivalent
Inn-_,
2.1) — 2kt e — g, = o(1),

n

Inn

(2.2) — Zho a, (k) =o(1), and
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Jor every € > 0 and all n sufficiently large

Inn 1
2.3) la, — ,,|<smax(1nk— m) 1<k<n
PROOF. Assume (2.1) holds. Fix any ¢ > 0 and set
Inn 1
A,=A4,(¢) = {k. 2<k<n,|a — a,| >emax (m— 1, m)}

Define
a,=a,(ec)=max {k:k€A,}, ifd,+J
=1, otherwise.
Then «, = o(n) for if not t&len there is some 8 > o such that along some sub-
sequence {n’} we have § < —'ﬁ < 1. But

Ina, man e
a ,n i lg - a,| > 2y la,, — a,] - an’" =1 la — a,
n
Ine, n(lnn _,
Tow (- S lg ~ al)
>¢/2

for n’ sufficiently large. Since this contradicts (2.1) we have a, = o(n). In particular
when a, € 4, we have for all n sufficiently large

Inn
la, — a,| > S(lna - 1).

n

Moreover, we have a, = O(1) for if along some subsequence {n’} we have a,, — o0
as n’ — oo, then for all n’ large enough so that 2a, <n’ e™!

In a, Ina, ne, _
@, Feila — ay | > 2y la,, — ay | — a, i la —a, |
-| (Ia = |a, — az«,,l)
Ina, Inn In n’
n a,
>0(1)+8 an, 2}_ (lna 1n2 )
In 2
= o(1) + slnan,lnn(lna n 2o, )
>e/2.
This contradicts (2.1) so that we actually have for all »n sufficiently large
~(Inn 1
lak— nl <emax(m— 1, l—n—r;)’l <k<n

establishing (2.3).
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Thus for n sufficiently large we have in view of (2.3)

Inn , — Inn , Inn
e R0 < S (- 1) + e

Inn 1
Se= k=g

Inng,_ . N < 1
< Ssz_zl (In(j+ 1) —1ny) 2’k=2m + e

Sin(G+1)—Inj) +e

where ¢, and ¢, are some constants. Since ¢ was arbitrary, this establishes (2.2).
Hence the lemma follows since (2.1) is now immediate.

THEOREM 2.1. Let {X,, k > 1} be a stationary sequence of standard normal
random variables having correlation function r, assumed not to be identically one
satisfying

Inn

(24) T “k=1 [re = ra| = o(1).

Then letting X, = 1 2% -1 X, we have
n = Sk=1%%
n n

r— b,| <xt=exp{—e™*},
(1-r) ] }

(2.5) lim,_, P{cn

-0 <x < 0.
PrROOF. By the spectral representation theorem we may write
X, = ", e™ Z(dN)
where Z is the random spectral measure associated with X and further
F(d\) = E(Z(d N))*

is the spectral distribution assoéiate(l with r. Now the ergodic theorem for wide
sense stationary processes [6] yields X, —;2Z({0}) so that E(X,)* — E(Z({o}))? =
F({o}). Putting y = F({o}) we have by (2.4)

(26) r—v = ol)

for

1 1
[y = r. < v "'?2:‘,/‘ ra-pl + ;321',/' (ra—jp = 1)

1
<o(l) + ;z’llc=l [re =

= o(1).
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Since r is assumed to be not identically one, we must have o <y < 1. Statlonarxty
then implies

2.7 Sup,5 |, =8 < L.
Now let 02(k) = E(X, — X,)*. Then

1
(28) max, cx <, [93(6) = (1 = 1) = o )
for

1 2
|oz(k) — (1 — )| = =121 Ta-p = 3 Zjm TGt

1 2
<32 lra-p =l + 321 Irg-ip = 7l
1 2 k-
<~ Zjon =l + 2250 gy = il
2
+ -2k Irg-n ~ 1l

1 2 Gk-1 2 o
< 0( T ) + ;Ej_, |r; — r,| + -;2]_,, |r, — 1,

- o( 1z )

Now define Y, , = ——— (X, — X), 1 <k <n and set p,(i,, i}) = EY, .Y, n

(k)
Then
. T=1) T \| _ 1
(29) max, ¢; <i <n |Pallos 1) — 1= )" o(m)
for by (2.7) and (2.8)
.. Fliy—ip) — Tn
Pa(igs i) — (l—ir,,—)
. T(i,—i)) — Tn 1 1
<p,,(1,t)—( - - )+ - T~
> on(lo)on(ll) on(lo)on(ll) 1 - rn
1
< o( Inn )
2 N 1o,
1 1=3% 2 -lzk-lr(j—k) - ;Zk-l(r(k—io) + "(k-i.)) +r,

1\ 10 e
< o(m) + (1= 8) 'Sl — 1l

- o{s5)
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Now let p,(k) = max{|p,(ig, iy)|: 1 <ip <iy < n; iy — ip > k}.
Then by (2.9) we have
1

(2.10) 5.(k) < (1= r) 'R (k) + o(m) 1<k<n.

Furthermore by (2.6), (2.7), and (2.9) we have for any fixed § <7 <1 and all n
sufficiently large

(2.11) p(1) <.

Now
M, — X, = 1

P{Cn z_"__)_:' — b, <x} = P{Xk -X,<(1- r,,);(b,, +x/c,), 1 <k < n}
1—r)?

= P{c,(Yin — b)) <x+8,(k,x), 1 <k <n}

where

0,(k, x) = (b,c, + x)((lo——(;')-)—i - 1)

is such that max, .; < ,|0,(k, x)| = o(1) so that to establish (2.5), it suffices to show
for M} = max, ;.Y , that

(2.12) lim,

n—o00

P{c,(M*—b,) <x}=exp{—e "}, —o0 <x < 0.

Fix 0 <a < (1= 1)/(1 + 1).Then for all n sufficiently large we have by Berman’s
lemma [2]

|P{c,(M¥ — b,) < x} — ®"(b, + x/c,)|

(b, + x/cn)z}

1 S N3 (i
< ziqﬂ(l —02(i, ) |pn(,,_1)|exp{ T 1+ Jo, (b))

b2
N

1+ 5,()
b? b
< opite exp{ L } ¥ an}'.[nqﬁn(j)e"p{ “Tv5.0) }
<c exp{ —5(—:;—11 - a)ln n}
b2
+Cn2;1-[n"']in(j)exP{ 1+ 7 ( j)(nl -r)"! ]
2.13) <o(l) + an}'—l"“lfn(j)exp{ 1+ r',,(i‘)lrln— S lnlnn}-
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To show that the sum in (2.13) is o(1) we introduce two sequences of integers.
First let K = K(n) be that integer for which

(2.149) Ingn > 1> Ing, n
where In; n is defined recursively by In;n =1In In,_, n. Then for any fixed
0<e <( - 3 7) y = F({0}), we define integers ¢(j) = q(J, n, €) by

(2.15) q(1) = -1
| 6e11
e90)/2 5 il iid > @) +D/2 j=2---,K
ln n b £ s
and
(2.16) ty = to(n) =[n*]
t, = t(n, €)
=[exp{(1 — ¢”/?)In n}], i=1---,9(K)
lyky+1 = 1.

Next we obtain upper bounds on quantities of interest to us. Firstly for all n
sufficiently large we have by (2.3)

(2.17) Pt —-r) ' < e(l—h’—t’i - 1)(1 r)”!
< 1237( 1 ; a)

P ()1 = 1) <e(l n_ )(l—r)"

Next note
9(2) < Inyn
and for 2 € j < K we have
¢qU+D/2  Inn
e@N+1/2 In;n

laU+D—a(D=11/2 _

so that
(2.18) 9+ 1) —q() - 1<Inn
Now the sum at (2.13) may be bounded above by

2lnn
2.19 nSKoIZ 0¥ (2 exp{— + In. n}.
(2.19) e 2 g+ 1t 1Ta(2) L+ 7md =) 2
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Consider the sum indexed by j = 1.

2Inn
nZIAt, 17, (5) exp{ - + In n}
* LR -

< 7 (1) 212 exp{(27,(£)(1 = r,) ™" = €*V/2)in n + Inyn)

2e l—a 4¢
g
<c1 ( - )2,_6exp{(1 —

- Y

Ya‘/z - a(”‘)/z)ln n+ lnzn}

1
< ce2I3) exp{(—lﬁ—)j2 - l)e(‘“)/2 Inn+ lnzn}

< ce2I2) exp{ - %e"“)/z Inn + lnzn}

< ce292) exp{ —3 Inyn + Inyn}
< ce Inyn exp{—2Inyn}
(2.20) < ¢ exp{ —Inyn}

where ¢ is a generic constant and where we have used the bounds at (2.17) and
(2.18) and the defining property at (2.15). Next consider a sum indexed by
I1<j<K-1

2Inn lnzn}
1+ 7)1 = 1)

”zx-q(;)ﬂ i+ lfn(ti)exp{ -

<7 (tq(j)+1)2,_q(])+,exp{(2f,,(t,.)(l —r) = &Y/ n + Inyn}
<celln; L nZI9E0) .1 exp{—3 I, yn}

(2.21) < ce%exp{ —In,,n}.

Finally consider the sum with index j = K — 1.

2lnn }
- - + Inyn
1 + rn(ti)(l - rn)

2 -
n? 23 k- 1)+1’n(ti)exP{ -

2Inn }

<en’ln nF,,(tq(K_l)H)exp{ -
1+ fn(tq(x—1)+1)(1 —r) '

(222) < cel.
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Therefore by our bounds at (2.20), (2.21), and (2.22) we see that (2.19) is at most
(2.23) cerSK 2o~ m,
But for j < K — 2 we have
Injn = e+ > (lnan)2 >eln,n

since In;, \n > Ing_,n > e. Iterating the above relation yields

K—-1-j K—j
Inin >e JIng_n >e"7.

Therefore we have that (2.23) is at most
ce%Ef;f exp{ —eX 7} < ceilz;";o exp{ — e’}
< ca%.
Since & was arbitrary, Theorem 2.1 now follows since ®"(b, + x/c,) —
exp{—e~*} as n — oo.

COROLLARY 2.1. Suppose the hypothesis of Theorem 2.1 holds and that (r, In n)™!
= 0o(1). Then

M 1 2
(224) lim,_ P {((— - b») < "} = (1 = y/2m) % o@D/ gy
1= 1)

where y = F({0}) is the atom at zero of the spectral distribution associated with r.

PROOF.

(LT - bn) = (rr_%cn)_lcn[Mn—X—?' - bn
(1-r)? (1-r)?
Now the first term in the sum above converges in probability to zero by Theorem
2.1 and the assumption (7, In n)~! = o(1) and since the variance of the second
term tends to (1 — y)~! by (2.6), the corollary follows.

Let us note that the above corollary contains the proposition at (1.2) as a special
case with y = o, since the conditions for that result imply o <r, —r, <
r,((In n/In k) — 1) for all sufficiently large k < » which in turn implies (2.3) and
hence (2.4).

From the preceding results it is clear that the factor 1 — r, appearing in the
normalization represents the reduction in variance of the X, variables by the
subtraction of the sample mean. Consequently, it is natural to suggest the sample
variance of X, — X, variables as an estimate for 1 — r,. That this estimate is
appropriately close to 1 — r, is the content of the next lemma.

r,

N

1 pu—
+(1- rn)—ir,,'%X,,.

LEMMA 2.2. Under the hypothesis of Theorem 2.1 if s? = %E';-l(Xk - X2

(2.25) Inn[s?—(1-r,)]—>po.
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PROOF. Let € > 0 be arbitrary. Then for n sufficiently large we have
(In n)zE{s,f -(1- r,,)}2
1 =\2 1 2
= (an?E {3 [(% = B)'~ 02(0)] + 5 35[0 - (1 - )]}

<e+(lnn)

e ZhmiB[ (%~ K) = o20)][ (% - &) - 62(0)]

(“’n") =7 1810 1202() 0 X(K)p2, &)

<e+c(’”’) n_ 52(K)

<2 +c(ln Wn)’ o 2

Inn 1)2
In k
1

(In k)?
In 1 172
< 3¢ + Ce( n) 2k-2 (l k)2 [2;-k ]
1 1

n

j
(lnk)2 ik

<€ 3¢ + ce (ln n) Ek-Z(

2
< 3e+ ce (Innn) =2 [ ToaIn(j + 1) — Inj]

<3€+CE( ) 2k=2

1 1
GBI L

< 3e + ce 3
(In k)

<ce
where ¢ is a constant that may vary from line to line. Hence the lemma follows
sifice € was arbitrary.

THEOREM 2.2. Under the hypothesis of Theorem 2.1 we have

- X,
(226) lim,_ P [ c (—s——

n

b) } = A(x) = exp{—e™*},
-0 <x < 0.

PrOOF, By Lemma 2.2 and (2 7) we have (1 — r, )2 /s, = pl and with Theorem
2,1, this implies

M - — )i
227) c,,( =X _(-n)
5, 5,

Joon
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Thus since
P — 1 1
M - X M - X 1-r)2 1-r)2
C"( ns n_ bn) = cn( n n _ ( rn) bn) + (( rn) - l)b,,c,,
n n n n

and the second term in the sum above converges in probability to zero by Lemma
2.2, the theorem follows by (2.27).

3. Limit distribution for (M; — X;)/s;. Let {X,; 0 <t < o} be a stationary
Gaussian process with EX, = o, EX? =1, and with correlation function r(f)
satisfying
(3.1 r(?) =1—= Clt* + o(|t]*)
for ¢ in a neighborhood of zero where C is a positive constant and 0 < a < 2. We
will now present statements of the preliminary res_ults needed for the proof of
Theorem 3.1. For a continuous function f, define f(¢) = max, ., 7| f(s) — AT)|.
Then with obvious modifications of the proof given for discrete time we have

LemMMA 3.1. The following conditions are equivalent

InT
(32) 2L 3150 - A dt = o(1)
InT ,—
(33) 7[5 72 (1) dt = o(1).
For any € > 0 and all T sufficiently large
InT 1
(34) If — frl <e max(l_nT -1, m), 1<t<T

In view of (3.1) we may take a version of X having continuous sample paths and
- may define random variables

= 1 1 =2
My = maxog,<rX,, Xp==[0X, dt,and s} = = 5(x, - X;)" at.

Further the spectral representation theorem allows us to write X, = [®_e™Z(dA)
where Z is the random spectral measure and the ergodic theorem for wide sense
stationary processes yields X; —,2Z({0}) so that as in the discrete case we have

(3.5) r,—y=o(1)
where y = E[Z({0}) = F({0}), the atom at zero of the spectral distribution

associated with r. By (3.1) r is not identically one so that 0 < y < 1 and stationar-
ity then implies that for any ¢ > o

(3.6) Sup,5.|r,| =8 =8(e) < L.

THEOREM 3.1. Let {X,; 0 <t < o} be a separable stationary Gaussian process
with EX, = o, EX? = 1 and EX X, = r(?) satisfying (3.1) and (3.2). Then

M,.—-X
3.7 limT_mP{cT(—Ts—T - ,BT) < x} =exp{—e *},
T
-0 <x< ™
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where c; = (21n T)% and

1/a
Br=cr+ L {(% - %)ln InT+ ln((27r)_%( I fy) Haz«z—a)/z))]

‘r

where H, is a positive finite constant that is determined in [5] and where y = F({0}),
the atom at zero of the spectral distribution associated with r.

Proofr. Define a process Y, (f) = o—l(t)—(X’ — X;), 0 <t < T where o) =
—_ T

E(X, — X1)*. Let pr(s, ©) = EY(s)Y(¢) and p(u) = max{|p(s, t)]: 0 <5 <t <
T,t — s > u)}. Then it can be shown that

r(s—;)—r(T) =0( 1 )

(38) max,gs, <1 pT(S, t) - 1— r(T) 1—117
Furthermore from (3.5), (3.6) and (3.8) it follows that for any ¢ > o
(39) pr(e) =n=mn(e) <1

for all T sufficiently large. Also it can be shown that for any ¢ > o there exists
7 = 7(¢) > o such that for all T sufficiently large
1 —_
(310) {==Cls = <1 prls, 1) < o SCls— i when |s—d <.
Setting M} = max,,7Y7(#) we have as in the discrete case, that to show (3.7)
it suffices to show

(3.11) limy o P{c/(M} — Br) <x} =exp{—e™*}, —o0 <x< o0

To prove (3.11) we follow the method established by Pickands [5]. Foro <a <t a
fixed constant define [, = [kt + a,(k + 1)7] and I = I(T) = U, I, Nn[o, T}
Then setting u; = By + x/cr we have

(3.12)

< 2’[_6 ]P{ma'xk7<t<k7+a Y(8) > “T} + P{max[éT—a)/T]T+a<I<TYT(t) > “T}~
Now let £,(?) be a separable stationary Gaussian process with correlation function
F,(?) such that for |¢| <7, Fi(£)=1— 1+ ¢ C|#|*. Then by (3.10) and Slepian’s

T—a

1—v
lemma [6] the sum appearing at (3.12) is at most
(3.13) (% + l)P{max0<,<a§l(t) >up} =0(a)as T— ©

where we have used Lemma 2.9 of [5] and the fact that
w/%(ur) ~ (CONST) . asT— o0

e~ */2,

where Y(x) = :
(27)ix
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Nextlet G = G(T,a) = {s € I: s = aku;**, k = 0, 1,2, - - - }. Then
0 < P{max,c;Y7(s) < up} — P{max,,Y7(s) < ur}
< ELT./;" #*1p { YT(ka“T_ 2/a) < Up, MAXy g m2/a g & (h+ Dauy Ve Yr(8) > “T}
(3.19) < (T/au/* + I)P{gl(o) < Uy, MAXg g, gr2/ebr (1) > ur}
= 0(@) as T— o

where we have used Slepian’s lemma and Lemma 2.8 of [5]; and where M(a) is
defined in [5] and is such that —A!‘(zi) = o(l) as a — o.

Now define a separable Gaussian process {(#) which on each interval [k7, (k +
1)7) has covariance function p; and such that the variables {(¢), ¢ € [kr, (k + 1)7)
and {(s), s € [jr, (j + 1)7) are independent if k #j. Then by Berman’s lemma we
have

|P{max,cg{(s) < up} — P{max,c¥r(s) <ur}|

2
u
< ¢Zyie6, -a>aler(s 1)l exp{ 1+ IP:(S 1| }

cTuy/® _ us
3.15 < a)exp{ - —————
( ) az pT( ) p{ l + ’—)T(a)

Tu}® ul
+c——3% _pr(k)exp{ — ————
a2 k lpT( ) p{ 1+ pT(k)
= o(1).

For T sufficiently large we have by (3.9) that p(a) < 1 so that (3.4) and (3.8) we
may follow the procedure given in discrete time to obtain that the expression at
(3.15) is o(1).

Consider now

(316) P{max,cot(s) < ur)
T—a
= HL‘; ]"P{maxsecn,kYT(s) < uT}P{maxsEGn[,[(T_a)/,]ﬂ, r1Y7(s) <ur}.

Next letting £,(f) be a separable stationary Gaussian process with correlation
function 7,(f) such that for |¢f| <7, 7(f) =1 — (1 — ¢€)/(1 — y)c|t|* and letting
£,(2) be as before, then we have by (3.10) and (3.16)

(3.17) P(T/’){maxsecn,oﬁl(s) < “T}< P{max_,ecf(s)ﬁ ur)
< PI/™"D{max,cgn €a(s) < ur}.

qu by Lemma 2.5 of [5] we have

H _
P{maxsecmoﬁ](s) > uT} ~—:151(1—‘:)(1 + e)l/a ('T Ta) ="
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and
H,(a) a(T —
P{maxxEGnIo€2(s) >uT} -~ aH (1 - )l/ ( )

Therefore by (3.17) and the above we have

exp{ - %(1 + e)l/a‘(i:’ri) ] < P{max,¢s8(s) < ur}

Ha(a) 1/a (T )
(3.18) < exp{ aH, (1-2¢)
H
Since lima_,o# = H_,, upon letting a — o at (3.18) we have

(3.19) exp{— (1 + &)'/°e~*} < P{max,c{(s) < ur}
<exp{— (1 - e)/%e~*}.

Thus by (3.12), (3.13), (3.14), (3.15) and (3.19) we have

(3.20) exp{ — (1 + e)'/"e_"}< P{c (M} — Br) < x}
<exp{—(1- e)/%~*}.
Since ¢ is arbitrary, Theorem 3.1 follows.

Finally by the same argument given in Section 2 we have

COROLLARY 3.1. Suppose the hypothesis of Theorem 3.1 holds and that
(rpIn T)™' = o(1). Then

M. — y\1 )
lim,., P r;%(—T—l - ﬁ,) <xb= (1 7)’]"_ 7 du,
(1 =rp)?

where v = F({0}) is the atom at zero of the spectral distribution associated with r.

-0 <x< o
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