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MULTIVARIATE INCREASING FAILURE RATE
AVERAGE DISTRIBUTIONS!

By HENRY W. BLOCK AND THOMAS H. SAvITS
University of Pittsburg

A class of multivariate distributions which is an extension of the class of
univariate distributions with increasing failure rate averages is introduced.
Properties of this class are studied and examples of distributions which are
members of this class are given.

1. Introduction. In reliability theory, the class of (univariate) increasing failure
rate average (IFRA) distributions plays a distinguished role. In particular, it is the
smallest class of life distributions containing the exponentials which is closed under
the formation of coherent systems and limits in distribution (see Barlow and
Proschan (1975)). -

Recently a new characterization of IFRA distributions was obtained by Block
and Savits (1976) in terms of an integral inequality: a life distribution F is IFRA if
and only if for every nonnegative nondecreasing function 4,

(1.1) [h(x)dF(x) < {fh*(x/a)dF(x)}"", 0<ac<l

This characterization proved very useful in establishing the fact that the class of
IFRA distributions is closed under convolution.

In this paper we investigate the natural multivariate extension of (1.1). Properties
of the class of distributions satisfying this extension are investigated in Section 2. In
Section 3, we remove a technical assumption in the definition of Section 2 and give
several characterizations of the class of multivariate IFRA distributions. Various
examples of multivariate distributions which are in the class are given in Section 4
along with a method for constructing distributions which are in the class.

2. Definition and properties. Let (7}, - -, T,) be a nonnegative random vector
with distribution function F.

(2.0) DerFINITION. (T3,- - -, T,) is said to have a multivariate IFRA distribution if
and only if

(2.1) E[h(Tl"“’I;:)] < El/a[ha(Tl/“s"'»I:z/a)]

for all continuous nonnegative nondecreasing functions # and all 0 < a < 1.
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(2.2) ReMArRK. The continuity assumption on A4 is a technical simplification.
More will be said about this in Section 3.
Any class of life distributions € which in some sense is to be designated as
multivariate IFRA should possess at least some of the following properties:
(P1) Cis closed under the formation of coherent systems.
(P2) Cis closed under limits in distribution.
(P3) If (T}, - -, T,) € C, any joint marginals belong to C.
®PHIf (Ty,:---,T,) (S, *+,S,) €C and are independent, then
(T2 T S+, S,) €C.
(P5) Cis closed under nonnegative scaling.
(P6) Cis closed under convolution (whenever the operation makes sense).
®P7) If (Ty,---,T,) € Cand 7, - -, 7, are any coherent life functions of order
n, then (ry(Ty,+ . T,),+ -, 1, (Ty- -+, T,)) € C.
See Esary and Marshall (1970) for definitions of coherent systems and life func-
tions. Several other multivariate IFRA definitions (e.g., see Esary and Marshall
(1979)) have been proposed but none of them satisfies all of the above properties. It
will now be shown that distributions satisfying Definition (2.0) have all of the
above properties.

(2.3) THEOREM. The class & of multivariate IFRA distributions possesses all of the
properties (P1)—(P7).

Before we.prove this theorem, we establish the following lemma.

(24) LemMa. Let (T,---,T,)ES and Y, - ,Vy, be any functions of
n-variables which are continuous, nondecreasing and satisfy the inequality
Yi(x /e, x, /) < (1/a)(xy,- -+ ,x,) for all (x,-++,x,) ER, and 0 < a <
1. Then, setting S; = Y(Ty,- - -, T,) fori = 1,- - - ,m, it follows that (S,,---,S,,) €
S.

PrOOF. Let & be any continuous nonnegative nondecreasing function of m-
variables. Then for 0 < a < 1,

E[h(Sy, - +,S,)]

= E[h(y(Ty,- -+ L) - (Ths- -, T)) ]
EV[h*(4(Ty/a. -+ T,/Q), s Yu(Ty /s -+, T, /)]
El/a[ha(l/a%(Tp. T, 1 e (T, - - Tn))]
= EV[h(S,/a, -, S, /a)].

N

N

PROOF OF THEOREM (2.3).

(P1) and (P7). Since (P7) reduces to (P1) when m = 1, we only need prove (P7).
So let 7, - - -, 7, be coherent life functions of order n corresponding to the coherent
structure functions ¢, - -,¢, of order n respectively. Let P,,---, P, be the
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minimum path sets for ¢,. Since 7,(x,,* - -, x,) = max, ., , Min;cp x;, the result
follows from Lemma 2.4.

(P2) Suppose that for every k, (T, - - -, T,;) €S and converges weakly to
(T,,---,T,) as k— 0. Let h be any continuous nonnegative nondecreasing
function, 0 < a < 1, and N any nonnegative real number. By abuse of notation, we
also let N denote the constant function whose value is N. Then by definition of
weak convergence we have that

E[h/\N(le” e ’T;tk)] - E[h/\N(T,,~ e ’7::)] and
E[(h AN) (Ty/a,- -+, Tu/@)] > E[(h AN)(Ty/a,- -, T,/ )]
as k — oo, where 4 A N = min(h, N). It then follows that
E[(hAN)Ty, -, T,)] < EVe[(hAN)Y(T)/a, -+, T,/a)].

Now let N — c0.

(P3) This is a special case of (P7).
(P4) Let (Ty,---,T,), (S, -+, S,) have distribution functions F and G

respectively. Let A(x,, - * -, X,; ¥1,* * * » V) be continuous, bounded, nonnega-
tive and nondecreasing. Then
E[h(Tl,- < T3 S, ’Sm)]
= ffh(xl’o .. ’xn;yl’o .. ’ym)dF(xl,o .. ’xn)dG(yl’- . ’ym)
< SR o, a sy AF(x e x,) )
XdG(yy," " 3 Ym)
< {JIR(x /0 s x5y /a0 /@) AF(xy, 0 - X,)
XdG(yl,' ° ’ym)}l/a
= EVe[hX(T\/a, -, T,/a; S/a, - -, S, /a)].
If A is not bounded, then consider # A N and let N —» oo.

(P5) Let a,,+ -+, a,>0 and set y(x;,- -+, x,) =a;x,(1 <i<n) Now
apply Lemma 2.4.

P6) If (Ty,- -+, T,) (S, -,S,) ES and are independent, then the con-
volution corresponds to (7, + S, - -, T, + S,). By (P4), (T, -,
T,; Sy v+ S,) ES. Set (X, -+ +, X5 Yoo 05 V) = Xx; + y;(1 <i <n)
and apply Lemma 2.4.

(2.5 Remark. If (T}, --,T,) €S and b,,---,b, >0, then (T} + b,,
«-+,T, + b)) €S for let Y(x,,---,x,)=x, +b. Since y,(x,/a,
ceeux,/a) = (x;/a) + b, < (1 a)(x; + b)) = A/ a)g(xy, - - ,x,) for 0 <a <1,
we can apply Lemma (2.4) again.

(2.6) Note. Using Lemma 2.4, it is easy to show that a generalized version of

(P6) holds, i.e., (T, -, T,) €S and §,,- - -, S,, nonempty subsets of {1,---,n}
implies that (2, €57, - - ’Eies,,,T;’) € 3.
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3. Equivalent criteria. In this section we will remove the continuity assump-
tion on A. Other derived results lead to alternative characterizations of multivariate
IFRA, some of which are more amenable to verification than the definition.

A subset D C R, is said to be an upper set if whenever x € D and y > x, then
y € D. When D is open, we speak of upper domains. Clearly {y:y > x} is an upper
set and {y:y > x} is an upper domain for x € R, given. The latter type is called
an upper quadrant domain. A finite union of upper quadrant domains is called a
Sfundamental upper domain. It should be noted that f = I,,, where D is an upper set,
if and only if f is a binary increasing function. Furthermore, f is a left continuous
binary increasing function if and only if f = I, where D is an upper domain. Other
characterizations are possible for the other quantities defined above.

The following results, which closely follow those of Esary, Proschan and Walkup
(1967), allow us to remove the continuity assumption on A.

(3.1) LEMMA. Let C be either an upper closed set or an upper domain in R . For
T = (T, -+, T,) multivariate IFRA, it follows that (2.1) holds for h =1, ie,

P(T €C) < PY¥T € aC), 0<acx<l
PROOF. As in the proof of Lemma 3.2 of EPW (1967), for a closed upper set C
a sequence of continuous functions <k, >,0 < A, < 1, can be constructed so that

h,lI.. Similarly if C is an upper domain, there exist continuous nondecreasing
<h; > such that 4, 1I.. The result follows from the monotone convergence theorem.

(3.2) LeMMA. Let D be any Borel measureable upper set in R,. Then if T =
(Ty,- - -, T,) is multivariate IFRA, (2.1) holds for h = I, i.e.,

P(T € D) < PY¥T € aD), 0<ac<l.

PrROOF. As in the proof of Theorem 3.3 of EPW (1967), D can be approximated
below by a closed upper set so that

P(TED) —¢ < P(TEC) < P/YT €aC) < P/%T € aD)

where the second inequality follows from Lemma 3.1 above. Let £/0 to obtain the
result.

(3.3) REMARKS.

(1). An associate editor has suggested an alternate method of obtaining the
result of Lemma 3.2. This result, due to E. Arjas and A. O. Pittenger, proceeds by
writing [, dF(x) = u(A). Then for 0 < e < 1,8 > 1 and any Borel measureable
upper set A with interior 4°, 84 C (1 — €)BA° c (1 — €)B4, so that

u(BA) < p((1 = e)Ba°) <[p(A)]" <(n()]"™”
where the second inequality follows from Lemma 3.1. Let /0 to obtain the result.
(2). It should be noticed that Lemma 3.1 gives that if (2.1) holds for continuous
nonnegative nondecreasing functions then (2.1) holds for binary nondecreasing
right continuous and nondecreasing binary left continuous functions. Similarly the
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proof of Lemma 3.2 shows that if (2.1) holds for nondecreasing binary right (or
left) continuous, then it holds for binary nondecreasing Borel measureable func-
tions. It only remains to show that if (2.1) holds for binary nondecreasing Borel
measureable functions, then it holds for arbitrary nondecreasing Borel measureable
functions. This is contained in our next result.

(3.4) THEOREM. The random vector T = (Ty,- - -, T,) is multivariate IFRA if and
only if (2.1) is valid for all Borel measureable nonnegative nondecreasing functions h.

Proor. Clearly we only need prove the necessity, i.e., the “only if” part of the
theorem. Let 4 be a Borel measureable nonnegative nondecreasing function and let
Dy ={x:h(x)>i27%,i=1,---,k25k=1,2,--- . Now set h, =
27k 2!‘;2: Ip,,. If follows from Lemma 3.2 and the Minkowski inequality that (2.1)
is valid for each h,. Since h,Th, the desired result follows from the monotone
convergence theorem.

Our next result, Theorem 3.5, gives a characterization of multivariate IFRA in
terms of indicator functions of fundamental upper domains. The technical condi-
tion F(0) = P(T, >0,---,T,>0) =1 is assumed here only because we restrict
ourselves to fundamental upper domains of R, = {x:x;, > 0 all i}. If we use
fundamental upper domains of R, instead, no such condition is necessary. The
assumption F(0) = 1 implies that no one dimensional marginal distribution has any
mass at zero. On the other hand, if (7}, -, 7,) is multivariate IFRA and we
assume that no one dimensional marginal is concentrated at zero, then F(0) = 1.
To see this, suppose F(0) 7 1. Then there exists an i such that P(T, = 0) = P(T, =
0,7, > 0 all j#i)> 0. But by property (P3), T; is univariate IFRA and so
P(T,=0)=1

(3.5) THEOREM. Assume F(0) = 1. Then (1y,- - -, T,) is multivariate IFRA if and
only if inequality (2.1) is valid for the indicator function of every fundamental upper
domain in R}, .

ProoOF. The necessity of the condition follows from Lemma 3.1. Thus we need
only prove the sufficiency. Let D C R} be any upper domain. For k = 1,2, - - and
any positive integers i}, - - ,i,_,, let

ay(iy, - yi,_y) = inf{e:(i27%,- - -,i,_,27%,¢) € D}.

If {}=¢, set ay(i,---,i,_) = +oo. We set D (i, - -,i,_;) =
{(x:x > G27% - ,i,_27% a(i, - ,i,-,)} and put D, =
Uiciyeoni,_ <k 2tDiliy e 5 i,1). Clearly Dy is a fundamental upper domain in

R, and it is not hard to show that I, 115,. It thus follows from the assumptions
and the monotone convergence theorem that P'/*(T € aD) > P(T € D) for0 < a
< 1. By the second remark of (3.3), the result follows for all Borel measureable
(and so continuous) nonnegative nondecreasing functions restricted to R . But
since F(0) = 1, we may remove this condition, so that T is multivariate IFRA.
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4. Examples of multivariate IFRA distributions.

A. Generated from univariate independent IFRA distributions. The following
theorem gives functions of independent IFRA distributions which are multivariate
IFRA.

(4.1) THEOREM. Let X,,---,X, be independent IFRA random variables and let
o# S, c{l,---,n}fori=1,---,m.

G (Xp,- -, X,) is multivariate IFRA.

(ii) If T, = min X,i=1,---,m, then (Ty,- - -, T,) is multivariate IFRA.

JES, )

@y If =,---,7, are coherent life functions of order n, then
(T](XI" . 7Xn),' . ’Tm(Xp. A ’Xn)) is multivariate IFRA.
) If T, = EjeSin,i =1,---,m, then (T, - -, T,,) is multivariate IFRA.

ProoF. All of these properties follow from Theorem 2.3 and Lemma 2.4.

(4.2) COROLLARY. The multivariate exponential distribution of Marshall and Olkin
(see Barlow and Proschan (1975), page 139) is multivariate IFRA.

Proor. Let (T}, --,T,) be MVE. Then it is of the form of Theorem 4.1, (ii),
where the X, are exponential, and so IFRA.

(4.3) CoOROLLARY. Let X,,---,X, be independent identically distributed IFRA
random variables and Y,,---,Y, be the corresponding order statistics. Then
(Y,,- - -, Y,) is multivariate IFRA.

ProoF. Let 7, be the life function corresponding to a (n — k + 1)-out-of-n
system. Then Y, = 7,(X,,---,X,). Since (X,,---,X,) is multivariate IFRA, it
follows from (4.1) (ii) that (¥}, - -, ¥,) is multivariate IFRA.

(4.4) Note. It is clear in the previous corollary that the hypothesis can be
weakened to (X, - -, X,) MIFRA.

B. Random variables having exponential scaled minimums. Esary and Marshall
(1974) have considered the following class of distributions. Let (7}, --,7,) be a
nonnegative random vector such that for every choice of nonnegative a; we have
min(a,T}) is exponential. Then (T},- - -, 7,) is multivariate IFRA. This follows by
Theorem 3.5 for let a;; be any nonnegative constants and define T;; = a,;T(1 < i
<k, 1<j<n) Then if ¢ #S C{(i,j):1 <i<k,1<j<n} letting §; =
{i:(i,j) € §}, we can see that min jcsT;; = min,;_,((min,;cga;,)T;) is ex-
ponential by assumption. Since the collection of random variables {7;;:1 < i <
k,1 < j < n} has exponential minimums, it follows from Esary and Marshall
(1974) that any coherent structure function of these random variables has a
(univariate) IFRA distribution.

C. Multivariate Weibull distributions. Multivariate Weibull distributions have
been discussed by Marshall and Olkin (1967), Arnold (1967), Moeschberger (1974),
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David (1974) and Lee and Thompson (1974). These turn out to be of two types,
both of which are multivariate IFRA. The first of these was introduced by
Marshall and Olkin and is of the form

(Ty,-+-,T)) = (Tll/al,. . 7;1/«..)

where o, > 0 for i = 1,2,- -+ ,n and (T},- - -, T,) has the MVE distribution given
in Corollary 4.2. If follows easily from Corollary 4.2 and Lemma 2.4 that
(T, - -, T;) is multivariate IFRA if o; > 1 for i = 1,- - -, n. Distributions of this
form were studied extensively by Moeschberger (1974).

The second type of multivariate Weibull distribution was introduced by David
(1974) and by Lee and Thompson (1974) and has the form (Ty,- - -, T,) where
T,=min(U,:i €J), ¢ #J C {1, +,n}, P(U; > x) = e ™, x > 0, and the U,
are independent. By Theorem 4.1, for a, > 1,(T},- -+, T,) is multivariate IFRA.
This distribution need not have Weibull marginals if the a,’s are not all equal. The
Weibull distributions of Arnold (1967) have a similar form, but the restriction that
they belong to an additive family forces a, = « for all J. This implies that these are
also of the type discussed in the preceding paragraph.

D. Multivariate gamma distributions. The multivariate distribution given on
pages 216-219 of Johnson and Kotz (1977) is a special case of the form of (iv) of
Theorem 4.1 where the X; have gamma distributions with densities

£(x) =[T(8)] 'x% e, x > 0.

Consequently, by Theorem 4.1, the distribution is multivariate IFRA if §; > 1 for
all j. Similarly the bivariate exponential distribution with moment generating
function given by (40), page 260, of the same reference is multivariate IFRA.

E. Construction of multivariate IFRA distributions. Suppose that (X}, - -,X,)
has a multivariate IFRA distribution and let Y be any nonnegative random
variable on the same probability space. In this section we investigate conditions
under which (X;,- - -, X,; Y) is also multivariate IFRA and use these conditions to
construct a multivariate IFRA distribution.

Two lemmas are first needed. Let G(»|x,- « - ,x,) = P{Y > y|X, = x;,- -,
X,=x,}for x;,- - +,x, > 0,y > 0.The random variable Y is said to be stochastically
increasing in (X, -,X,) if G—(ylx,,- -+, x,) is nondecreasing in x,,- - -, x, (see
Barlow and Proschan (1975), page 146). If G(y |x;,* -, x,) is continuous in

Xy, +,x, we will say Y is stochastically continuous in X,,- - -, X,.

(4.5) LEMMA. Assume Y is stochastically increasing and continuous in X, - - ,X,.
Then E(¢(Y)| X, = xy, -+, X, = x,,) is continuous, nonnegative and nondecreasing
in x,,* - - ,x, for every continuous, nonnegative, nondecreasing and bounded function

.
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ProoF. Nonnegativity is clear. Continuity follows from weak convergence
considerations. Suppg_se that ¢(y) = I, ,,(»)- Then by assumption E(¢(Y)| X, =
Xy, X, =x,)= G(t|x," - - ,x,) is nondecreasing in (x,,* - -,x,). Now take
nonnegative linear combinations of such ¢ and pass to the limit.

4.6). LemMa. If G(»|x;/a, - - ,x,/a) < (_;'/"‘(ay|x|,- ,x)0 < a <), then
for every nonnegative and nondecreasing ¢,

E(o(V)|X, = x/a,- -+, X, = x,/a)
< El/a(‘f’a(y/a)lxl =xp, ", X, =x,).
Proor. If ¢(y) = I, ,y(¥),t > O, then by assumption,
E(e)IX, = x /e, -+, X, = x,/a) = G(t|x,/a,++,x,/a)
< GV%(at|xy,e -, x,) = EV(¢*(Y/a)| X,
=Xy X, = 5,

Similarly, the above is true of ¢(y) = I, o,)(»), ¢ > 0. If follows from the Minkow-
ski inequality that the inequality remains valid for nonnegative linear combinations
of such ¢. Now pass to the limit using the monotone convergence theorem.

(4.7) ProrosITION. Let (X, - -, X,) be multivariate IFRA and let Y be stochasti-
cally increasing and continuous in X, - - - , X,, and satisfy the inequality in Lemma 4.6.
The (X,,- - -,X,; Y) is multivariate IFRA.

Proor. Let A(x,,---,x,;y) be any continuous, nonnegative, nondecreasing
and bounded function. Then

E[A(X, - X5 1)]

= ffH(x]" ot ’xn;y)dG(ylx]" o ,xn)dF(x,,- o ’xn)'
Since h(x,,---,x,;y) is nonnegative and nondecreasing in y, it follows from
Lemma 4.6 that
Sh(xy5 w5 X%39)dG(p] %50 2 -5 x,)
< (B (xi x50 /@) dG(ylax,, - - - ax,)) "
for all 0 < « < 1. But a slight extension of Lemma 4.5 yields that the right-hand
side is continuous, nonnegative and nondecreasing in x,,- - -, x,. Consequently,
since (X, - -, X,) is multivariate IFRA,
E[h(Xl" Y. O Y)] < {ffha(xl/a" o ’xn/a;y/a)
X dG(ylxl’. .. ’xn)dF(xl,. .. ,x”)}l/a

= E[h(X,/a, -+, X,/a; Y/a)].

If 4 is not bounded, consider 2 A\ N and let N — co.
Applying Proposition 4.7 successively, we can prove the following corollary.
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(4.8) CoroLLARY. Let (Ty,---,T,) be a nonnegative random vector such that
(1) T, is (univariate) IFRA and
@ii) for k=1,---,n—1,T, is stochastically increasing and continuous in
Ty, --,T,_, and satisfies the inequality of Lemma 4.6. Then (T\,---,T,) is
multivariate IFRA.

Corollary 4.8 can be used to construct distributions which are multivariate
IFRA. For example, let (X, Y) be a distribution constructed as follows. Take X to
be exponential with parameter A, > 0 and set

G(ylx) = exp(-Ayy), y < «x
= exp(— (A +Ap)y +Apx), ¥y > x
where A;,,A, > 0. Then (X, Y') is multivariate IFRA with joint distribution
F_X,Y(x’y) = exp(—A;x —Ayp), y <x

_ Ap
= mexp( (A, +2A)y)

A
- ———:_l———exp(— A= Ap)x = (A +Ap)y), ¥ > x
A=Ay
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