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COMPACTIFICATIONS FOR DUAL PROCESSES!

By JosepH GLOVER

University of Rochester

We develop a general theory of duality for Markov processes satisfying
Meyer’s hypothesis (L) and possessing an excessive reference measure. We make
use of a compactification introduced by Walsh which allows a right process and
its moderate dual to have strong Markov versions on an enlarged state space. The
representation theory for potentials of additive functionals due to Revuz and
Sharpe can be extended to this setting. Using this theory, we show that the
conatural additive functionals introduced by Garcia-Alvarez are natural additive
functionals in the new topology. A general version of Motoo’s theorem is given,
and the Getoor-Sharpe approach to capacities is extended to this situation.
Finally, we show that if the original process satisfies Hunt’s hypothesis (H), then
a version of the bounded maximum principle holds on the compactified space.

1. Introduction. Meyer and Garcia-Alvarez introduced a compactification in [6] in order
to develop a theory of duality for processes satisfying hypothesis (L) and possessing an
excessive reference measure. Garcia-Alvarez studied this duality in a subsequent paper [5].
We discuss an alternate compactification in order to simplify and complete some of their work.

In particular, we make use of a compactification introduced by Walsh [18], which allows
a right process and its moderate dual to have strong Markov versions on an enlarged state
space. Beginning with a process having finite lifetime and a o-finite excessive reference
measure, we construct the compactification in Sections 2 through 6. We have tried to give a
“canonical” procedure for this similar to that given in [7]. Essentially, we introduce a cofine
topology, and, in Sections 6 through 12, the resulting duality theory is explored. Walsh and
Weil have used a similar compactification to represent terminal times [20]. In a slightly
different setting, Smythe and Walsh [17] have shown that a version of Hunt’s switching
identity holds. These results are valid here, and we make use of them.

One major advantage of this approach is that we may completely dispense with the difficult
theorem of Mokobodzki used by Garcia-Alvarez and Meyer, which they characterized as “un
des progres majeurs de ces dernieres années, que tout noyau de théorie du potentiel possédant
une mesure de base admet les mémes fonctions excessives qu’un noyau compact” [6]. We
discuss in Section 5 an example which illustrates the difference between the Garcia-Alvarez-
Meyer approach and the compactification presented here. In short, their approach does not
yield a complete duality on one state space: E may not embed naturally into the compactifi-
cation E. Thus, Garcia-Alavarez was unable to characterize completely the conatural additive
functionals (which we can identify with the natural additive functionals).

Section 7 is devoted to extending the work of Revuz and Sharpe to this setting. Most of
their results extend without difficulty, and we give a general version of Motoo’s theorem which
complements a result of Azéma [1] for processes satisfying hypothesis (L). In Section 8, we
complete the characterization of conatural additive functionals in the new topology of E. In
Section 9 we give a proof of a technical result in probabilistic potential theory. We use it in
Section 10 to show that if the original process X satisfies Hunt’s hypothesis (H), then a version
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of the bounded maximum principle holds. This extends a result of Smythe [16]. (In fact, the
compactification procedure may suggest why the results in [16] are true.) In Sections 11 and
12 we make some comments on capacities and representation of excessive functions. As a
general theme, we have used the Revuz measure whenever possible. This approach does not
seem to give the most general result for representation of excessive functions, however (cf. [6]).
The approach of Garcia-Alvarez based on h-path transforms seems to be more powerful for
this purpose.

The notation will be that of [2] and [7]: b& denotes the bounded Borel functions on E, (&
x &), the positive Borel functions on E X E, C(E) the continuous functions on E, etc.

2. The moderate Markov dual. A topological space E is a Lusin space if it is homeomorphic
to a Borel subset of a compact metric space. Let (E, &) be a Lusin topological space (containing
an isolated point A to act as a cemetery for the process) together with its Borel field, and let

X= (Q, 3"-, (3"-:):20, (Px)er, (Pt)t207 (Xt)tao, (0t)>t20)

be a Borel right process on E with resolvent (U “).~0. Recall that this means that X satisfies the
following hypotheses ([7], pages 50-53):

HDI1. For each probability u on (E, &), (X, %, P") is a right continuous Markov process
with initial measure p and transition function P,: b& — bé&; that is,

2.1 PH{Xo € A} = w(A) foreach 4 € ¢
2.2) E*{f(Xers) | 55} = P f(Xs) forall ¢t,s=0 and f€bé

HD2. Let fbe an a-excessive function. For each probability u on (E, &), t — f(X,) is
right continuous almost surely P*.

It follows from HDI and HD2 that X is a strong Markov process. We assume that X
satisfies Meyer’s hypothesis (L) (i.., X has a reference measure) and that the lifetime { is finite
P* as. for all x in E. Without loss of generality, we assume U(x, E) < 1 for all x in E [6].

If (Ye¢)e=0 is a Markov process with Borel transition semigroup (Q:):=o and filtration (%;):=o,
then Y is said to be a moderate Markov process if the following statement is true.

If T is a previsible stopping time for the filtration
(9)=0, then E{f(Yr:)| %9r-} = Q:fXr-) foreach f€E bé

We now recall the Smythe-Walsh construction of the moderate Markov dual for X [17]. Fix
A a reference probability measure for X. Define X# for ¢ > 0 by

= Xiw-dw) 0<t={(w)
= A‘ 1> {w)

@2.3)

X¥(w)

and set % = o(X¥:s < 1). Then there is a transition semigroup Q.:b& — bé& so that X* = (L,
(%)e>0, P, (X¥)i>0) is a left continuous moderate Markov process [10, 17]. We denote by X
the canonical moderate Markov realization of (Q;)o on the space of left continuous paths in
E [10]. Since U(x, E) < 1, Theorem (1.1) in [17] states that the measure » = AU is a o-finite
excessive reference measure on (E, &). Moreover, X and X are in weak duality with respect to
v: for all f, g € b& and for all ¢ > 0.

f SX)P.g(x) v(dx) =f Q:f(x) g(x) v(dx)
E E
or, by integrating,
ff(x) Urg(x) v(dx) = f Vef(x) g(x) v(dx),
E E

where (V) o denotes the resolvent associated with the semigroup Q.. More generally, Smythe
and Walsh construct in [17] a moderate Markov dual for any process having a o-finite excessive
reference measure.
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It will often be convenient to discuss X* governed by the measure P”. For statements true
about X7 under P* imply results about X; under P” (after all, X?* is just the reverse of X;), and
one can often argue that the statement must then be true for X, P* a.s. for all x (see, e.g.,
Proposition (4.1)).

3. The double Ray cone. We now construct the double Ray cone of functions on E
introduced by Walsh [18]. We use the cone to define a new metric on E. After completing E
in the new metric, we extend the resolvents U* and ¥* to be Ray resolvents on the completion.

Our construction of the double Ray cone is slightly different from the one given by Walsh,
in that we do not pass to a quotient topology to recover the processes. We avoid it by adding
enough 1-supermedian functions to the cone to separate points in E. This ensures that V*
extends to be a Ray resolvent on the completion.

The result of the double Ray cone may be disconcerting to the expert at first. The
compactification obtained is by no means a “minimal” one. Degenerate branch points are, in
fact, frequently introduced. (Recall that a point x is a degenerate branch point for a semigroup
(Ro)e=o0 if RAx, dz) = €,(dz) where x # y.) We shall try to point these out with some examples
after the construction.

We shall refer to the notes of Getoor [7] whenever arguments are similar.

If H is any convex cone contained in b8, define %(H), ¥{H) and A(H) by

M) = (U1 + -+ + U >0, fEH, 1< j=nn=1)}
YH) = (Vfi+ oo + V9 >0, fEH 1< j=nn=1)
AM)={fiN---Nfu; fEH, 1 =n}.

The following facts are collected in [7].

(3.1). LEMMAa.
(i) A(H) is closed under pointwise minima.
(ii) %(H), ¥(H) and A(H)are convex cones contained in b&,.
(ii)) If H is separable for the uniform topology on E, then so are %(H), ¥TH) and A(H).

The state space E is a Borel subset of a compact metric space (E, d). Let C, denote the
restrictions to E of the continuous functions on E which vanish at A. Since (Q:)wo is a
moderate Markov semigroup, we can find a sequence (h,) of bounded Borel measurable 1-
supermedian functions for the resolvent (¥*),>0 which separate points in E and which are
such that h,(X?) is left continuous P* a.s. for each 7 [19]. Since e *h,(X?*) is a P” supermartin-
gale for each n, h,(X?) has right limits P” a.s. We take h; = 1g; it is excessive for X in addition
to being supermedian for X.

Let H be the smallest positive cone containing the functions (%.) and define

R_; = %(C}) + ¥(C})
Ro = R_l + H
R: = A(%Ro) + ¥ (Ro) + Ro)

R,i1= A( %(Rn) + “V(Rn) + Rn)

R = U,=o R..

The following proposition is easily derived from Lemma (3.1) and the fact that (U?) and (V)
are Borel resolvents ([7], pages 57-59).

(3.2). PrOPOSITION. R is a convex cone of bounded positive functions on E such that
(i) RCbs, ‘
(ii) U'RCR, V*"RCR  Va>0.
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(iii) f, g € R implies f\ g€ R.
(iv) R is separable in the uniform topology.
(v) R separates points in E.

We briefly sketch the construction of the Ray-Knight compactification of E with respect to
R. See [7], pages 59-62.

Fix a countable dense subset (g;);=1 in R. These separate points in E. Let X be the compact
metrizable space II[0, | g, |I] (g, || = sup{|gj(x)| : x € E}) together with the metric d
(compatible with the product topology) defined by

7 51—yl
=y, 2V H

d(x7 y) 21—1 1+|x,—y,|
for x = (x;) € K, y = () € K. Since the (g,) separate points, we may define an injective map
@ : E— Kby ®(x) = (g(x))=1. For x, y € E, p(x, y) = d[®(x), ®( )] is a metric on E, and
® is an isometry of (E, p) onto (®(E), d). ® then extends to an isometry from the completion
E of E onto F, the closure of ®(E) in K. The space E is therefore densely embedded in the
compact metric space (E, p). The topology induced by p on E will be called the D-Ray
topology.

Each g, on E has a uniformly continuous extension g; to E. In general, the extension of a
p-uniformly continuous function g to E is denoted by g. The following are simple.consequences
of the construction.

(3.3). PrOPOSITION.
(@) If %,y € E, p(X, y) = 3= 27(1 g(X) = (M) /(1 + | g(*) = &(N]))-
(ii) Let f € C(E). Then f € R if and only if f| € R.
(iii) R — R is a vector space of continuous functions on E dense in C(E).

We now extend the resolvents (U*).>0 and (V*)aso to E. If f€ R and a > 0, then U°f and
Vefare in R, so U°fand V°fare in R. Define U* and 7* on R by
Uf=U%fs f=]ls
V=V f=/ls
(U*) and (7*) extend to well-defined positive linear maps from C(E) to C(E). By the Riesz

representation theorem, for each a > 0, there are kernels U(x, -) and V*(x, -) on (E, &) such
that for all f € C(E),

U°f(x) = j U(x, ay)f(y)
Vof(x) = J Ve(x, dy)f().

Also, aU* and a7* are sub-Markov kernels for each a > 0.

If (R*)a>0 is a resolvent on a compact metric space F, let S*(F) be the cone of continuous
a-supermedian functions on F. Recall that (R*).>0 is said to be a Ray resolvent if R*C(F) C
C(F) for each @ > 0 and if S = U, S* separates points in F. Such a resolvent has a right
continuous strong Markov process (called a Ray process) associated with it ([7], Chapters 3-
5).

(3.4). PrOPOSITION. The families (U)o and (V)0 are Ray resolvents on the compact metric
space E.

ReMARK. The proof for (U)o is as in [7]. We sketch it here.

PROOF. (U%)as0 and (V*)a>0 map C(E) into C(E) by construction. First, we check that
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(U)as0 and (V*).>o satisfy the resolvent equation. If fE R, f = f] &,
Uf=Uf=Uf-Uf=(B-aUUY.
But U*f € R and so by definition,
UU’f = U(U") = U~(T*).

The same holds for (V*). This extends to R — R by linearity and then to C(E) by continuity.
Thus (T%)a>0 and (7)ao are sub-Markov resolvents on (E, &).

Since aU°f(x) — f(x) for each finC;, %(CY) separates points in E. Furthermore, each
element g of %(Cy) is B-U excessive for some f. By continuity, aU?**g < g. Therefore,
(U*)as0 is a Ray resolvent on E. )

The (h,) C R are V'-supermedian. By continuity again, « aV'**h, < h, implies that a7'**h,

< hn. The h, are continuous and separate points in E. Therefore, (7)o is also a Ray
resolvent on E. O

ReMARK. The collection () is necessary in the construction of R only when ¥(C;) does
not separate points in E. If #{C;;) does separate points, R may be constructed as follows, and
all results remain valid.

Ro = %(C) + ¥(C)

Rovi =A(%R,) + R,) +R,)
R = Unzl Rn.

4. Comparison of processes. Let P, and Q: denote the strong Markov semigroups with
resolvents (U Ja0 and ( VYas0 respectlvely ([7], Section 3). Let W be the set of right continuous
maps w:R* — E with left limits in E. Set X(w) = Yw) = w(t). Let ° = o(X::1 = 0),%) =
o(X,:s < 1), and let 9* and & (resp. 4" and 9%) denote their P*-completions (resp. Q"
completions) in %°. If p is a probability measure on (E, é") P* (resp. Q") denotes the
probability on (W, ") (resp. (W, ")) under which X (resp. Y) is a strong Markov process
with initial measure uPo and transition function P, (resp. with initial measure uQ, and
transition function Q,).

To compare X and X, we need to examine the sample paths of A.(X;) and V°f(X,).
But h.(X?*) and Vf(X?) are left continuous with right limits P” a.s. [19, 10]. Therefore, by
reversing time, we find that 4,(X;) and V°f(X,) are right continuous with left limits P” a.s. (see,
e.g., [17], Theorem (3.1)).

(4.1). PROPOSITION. Let h € b&. If h(X,) is right continuous with left limits on [0, ©) P’ a.s.,
then h(X:) is right continuous with left limits on [0, ©) P* a.s. for all x except in a polar set.

PrOOF. A standard argument shows that P* {h(X,) is right continuous with left limits on
(0, )} =1 for all x. To get right continuity of (X;) at 0, let

Qo = {w:lim Sups|0;5€Q h(Xs) = lim ]'.nfsuo;seo h(Xs) = h(XO)}7

where s || 0 means s decreases to zero and is strictly positive. Then , € #§, and hence has
P*-measure 0 or 1 by the Blumenthal 0-1 law. Furthermore, x — P*(Q) is Borel. Let 4 = {x:
P*(S%) =0} € & and let I" = {(¢, w): Xy(w) € A} N ((0, ] X Q). Then I'is an optional set. Fix
x € E. Then, given € > 0, there is a stopping time T such that [[T]] C T and P*{IIT"} = P*{T
< o} + € where Il denotes projection on Q. But P*{T < w} =E*{lg, ° fr} =
E*{E*™(lg,)]. But X7 € A P* a.s. on [T < }. Therefore, T = o a.s. P*. Since e is arbitrary
and we may do this for each x € E, we conclude 4 is polar. 0

It follows easily by induction that if # € R, then A(X;) is right continuous P* a.s. for all x
except in a polar set. This holds, therefore, for all of the ( g;) simultaneously except for one
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polar set N = U; N, where each N; is the exceptional polar set for g;. If u is a measure not
charging N, we have from the definition of p and E that, almost surely P*, t — X, is right D-
Ray continuous with left p-limits in E. We may state the following proposition analogous to
[71, (11.2).

(4.2). PROPOSITION.  Let o denote the set of those w in § such that t — w(t) is right D-Ray
continuous with left p-limits in E. Then Qo € Fand P*(Q) = 1 for each p. on (E, &) not charging
N.

Only minor changes are needed in the proof of Proposition (11.3) in [7] to state the
following result.

(4.3). PROPOSITION.  Because P, and Q, are Borel, E € &. & is the trace of & on E and ®:E —
F C K is 6/ #(F) measurable, where %(F) is the o-algebra of Borel subsets of F.

Then a careful examination of the arguments in [7], pages 70-72, reveals that we may state
the following. Let * = {maps w:R™ — E such that w is right continuous in the original and
D-Ray topologies with left limits in E in the p-topology}. Set Wiw) = w(?), #™* = o(W,:s =
0), #* = o(W,:s < t) where W, is regarded as a map from Q* to (E, &*).

(4.4). THEOREM. For each probability u on (E, &) not charging N, let P* be the measure on
(92*, #°*) constructed from p. and (P,), and let P* be the measure on (2*, #°*) constructed from
w and (P,). Then P* = P* and (W,, $2*, P*) is a Markov process with initial measure ju and
having (P;) (resp. (P.)) as transition semigroup if one takes (E, &*) (resp. (E, £*)) as state space.

An extremely important corollary is the following.

(4.5). COROLLARY. Ifx € E— N, P(x, -) = P(x, )V t=0and U%x, -) = U%x, )V a>
0. In particular, P(x, -) and U*(x, -) are carried by E if x € E — N.

We shall now discuss the analogous situation for the reverse. To avoid measure theoretic
difficulties with left continuous path spaces, we prefer to work with X* under P”. Recall from
Section 2 that it has moderate semigroup Q.. Again following the discussion on pages 70-71
of [7] (and replacing “right continuous” with “left continuous™), it is easy to see that the
following are true.

(i) Almost surely P, X# is left D-Ray continuous with right D-Ray limits on (0, ).

(i) X¥ is P* Markov with transition semigroup Q.- on (0, ) (Q,- denotes the moderate

version of the semigroup Q,).
Note that we restrict the “initial measure” to »; the statements are not true for arbitrary initial
measures. Define a map Z}:Q* — E by Z¥(w) = w({ — ). Let Q* denote the probability on
Q* making Z# Markovian with moderate semigroup Q.- and entrance law the same as that of
X* under P’. Then the same arguments show that Q* = P”.

5. Examples. We shall give three examples here to illustrate what happens to the topology.
The first example is given by Garcia-Alvarez [5] (but is due originally to Blumenthal and
Getoor: consult the discussion in [17], Section 3). It is the “lazy crotch:”

The process X is simply uniform motion to the right with speed one. It is a simple matter to
compute the reverse semigroup. Since the resolvent for the reverse process does separate points
in this instance, it is not necessary to add the sequence (h.) of bounded Il-supermedian
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functions to the double Ray cone. The resolvent U* of X maps bounded Borel functions to
continuous functions. The resolvent of the reverse, V%, maps bounded Borel functions to
functions which are continuous except at the point 0. Moreover, lim._,;xex Vf(x), liMms—o;xep
Vef(x), and lim, .o;ze, V°f(x) = V°f(0), exist. This is easy to understand since the reverse
process “splits” at 0. Thus the double Ray cone changes the topology of the lazy crotch only
in the neighborhood of zero, and after compactification we get

Note that we have introduced two degenerate branch points for the forward process, @ and b.
The point 0 is attached to y rather than to « or B since lim,—.0;xe, Vf(x) = V°f(0).

On the other hand, the original process might have been uniform motion to the right, which
upon reaching 0 jumps to the points @ and b with probability % each:

d//
I;\

In the Garcia-Alvarez and Meyer formulation, the compactified space would be the lazy
crotch again:

The original state space does not embed nicely in the lazy crotch (the points a and b are joined
at 0), and the forward process is no longer strong Markov on E. To construct a double Ray
cone, we first choose functions to separate points. In this case, it is easy to choose one
continuous function separating points which is 1-supermedian for V. It is a simple matter to
check that both U* and V* map bC(E) into bounded continuous functions on E having a limit
at 0, and E is therefore the following;

b
Thus the Garcia-Alvarez and Meyer compactification is a “smaller” space (i.e., we can arrange
it so that their cone of functions is actually contained in our cone). One disadvantage of this
smaller space, as illustrated above, is that the forward process X may no longer be strong
Markov on it.

Finally, we give an example of a less trivial nature. Let B, be Brownian motion on the line,
and let T = inf{t > 0 : B, = 0}. Set Y, = B,\r, and let X; be Y, killed at an independent
exponential time. Then X, possesses a o-finite excessive reference measure ([17], Theorem
(1.1)), and its resolvent U* : bC(E) — bC(E). The resolvent of the reverse process, V*,
separates points in this case. If f€ bC(E), then V°fis continuous on the complement of {0},
lim.110 V°f(x) exists, and lim, o V*f(x) exists. Thus, E takes the following form.

0— 0 0+

Notice that 0— and 0+ are degenerate branch points for the forward process: P.f(0+) = e”f(0)
= P,f(0—). Thus the compactifications obtained from the double Ray cone may at first seem
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strange because of the presence of degenerate branch points. These are, of course, present in
a general Ray process (only when a right process is compactified is the set of degenerate
branch points empty ([7] (10.9)). Thus all of the results of Sections 1 through 7 of [7] are valid
for these processes.

6. Strong duality. The processes X and ¥ have the following property.

(6.1). PROPOSITION. X and Y have the moderate Markov property; i.e., if T is a previsible
stopping time relative to the filtration ( 9%) (tesp. %%)), then for t > 0, f € b8,

PH{f(Xrer)| 94} = Pf(Xr-)
0" {f(Yre0)| 94} = Quf (¥r-).

ProoOF. By a theorem due to Chung [4], we need only show that if (7,) is a sequence of
stopping times announcing T and f € C(E), then for a > 0,

lim, U%(Xr,) = U*f(Xr-)  as. P*
for each x on {T < «}. But U°f(x) is continuous, and so this follows immediately (similarly
for (Y,)). O
Now define
P(x,-)=P(x,-) if xEE-N
= ea(+) if xg@E—N.
Since U%(x, -) = U%(x, -) < vforx €E — N and N is polar, (P,) is the semigroup of a right

process on E — N. If (U*).»0 is the resolvent corresponding to (P,), U%(x, -) << » for each x
EE.

REMARK. The above statement is, of course, not true when taken literally. We make the
convention that all functions vanish at A. Thus the above statement of absolute continuity
may be interpreted as a statement about measures on E. Since A is an isolated point in E
(recall the function ), this causes no difficulties even when dealing with continuous functions
on E.

For fand g in R and for all « > 0,

f UTf(x)g(x)v(dx) = f S(x)Vg(x)r(dx).
E E
Because » does not charge E — E, we may rewrite this as

f Usf(x)g(x)v(dx) = f Jx)Veg(xw(dx).
E E

This extends by linearity and continuity to f and g in C(E) and then via the monotone class
theorem to f and g in b&. Therefore, U* and V* are in weak duality with respect to the
excessive reference measure ». Hence, U® and V* are in weak duality.

DEFINITION. A set B € & is stable for a process Z if P*{Z,€ BUAVY ¢t=0} =1 for all
X € B.

The following lemma, due to Smythe and Walsh ([17] Lemma (2.1)), in the case of a
moderate Markov process in weak duality with a strong Markov process applies also in this

situation of two strong Markov processes in weak duality with no change in proof.

(6.2). LeMMA.  The set B of x in E for which V°(x, -) < v is a stable Borel set such that W(E —
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B)=0.

More precisely, the proof shows that B is stable for the process Y;-. A simple modification of
the proof shows that B is also stable for the process Y.
Then we define

Qux, ) =Qdx, +) if xXEB
€a(+) if x€&B.

(~Q~,),30 is the transition semigroup of a strong Markov process, and the corresponding resolvent
V¥(x, -) < ». Thus (U*) and (V*) are in strong duality. Furthermore,

Ux, )= U%x,-) if x€E-N,
and
Vix, -)=V%x, ) if x€B.

As an immediate corollary of Proposition (6.1) we have the following.

(6.3). CorOLLARY. If X and Y are the canonical realizations of (P,) and (Q,), then they have
the moderate Markov property.

REMARK. In the examples given in Section 5, there is no need to go through these
modifications: the processes are in strong duality immediately after compactifying.

Thus, at the cost of introducing (possibly degenerate) branch points, we have produced two
strong Markov processes in strong duality. Note that X remains a P*-right process for each x
€ E — N, indistinguishable from the original process X on E. Thus, we may study X on E.

7. Representation and absolute continuity of additive functionals. We revise the notation to
be used henceforth. Let P, (resp. P;) be the semigroup P, (resp. Q:) of the last section. We
denote the canonical strong Markov realization of P, and P, on the space of right continuous
paths with left limits in £ by X and X respectively. Then X and X are strong Markov processes
in strong duality on E with respect to the o-finite excessive reference measure ». The processes
may have branch points, but X is a right process when restricted to £ — N.

The rest of this section is devoted to showing that a good part of the work of Revuz [12, 13]
and Sharpe [14] extends to our setting with little or no change in proof. A major benefit of the
compactification procedure is that the absolute continuity theorem for additive functionals
(Theorem 7.8) is valid. This theorem is well known in the case of two standard processes in
duality [14]. All functions which appear below are assumed to vanish at A.

DEFINITION. Let <7 be the collection of finite additive functionals of X.

If A4 is an additive functional (abbreviated as AF) of X and F € b(& X &), f € bé&., we
define

va(F) = supe»ot 'E’ f F(X._, X.) dA,

(0, £]

vA(f) =supot 'E* | f(X.o) dA.

©, ¢1

vi(f) =supot 'E* | f(X,) dAs.

©, ¢1

Then »4, v4, and v} are measures ([12], page 507). The AF 4 is said to be integrable if v4(1)
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< ®; it is said to be o-integrable if there is a decomposition of £ X E into a countable union
of Borel sets (F,) with va(F;) < « for each i.
We also define potential operators for a = 0.

MSF(x) = E f e F(X,—, X,) dA,
0

Usf(x) = E* f e f(X:) dA,
0

W5 f(x) = E* j e™ f(X.-) dA,.

0

DEFINITION. An AF A4 is said to be natural if, as., t > A4,(w) and ¢t - X;(w) have no

discontinuities in common. Of course, the path ¢t — X, is understood to be in the topology of
E.

Let D be the diagnonal in £ X E: D = {(x, x): x € E}. Then Sharpe’s proof of the next
result is valid here ([14], Proposition (3.3)).

(7.1). PROPOSITION. Let A be o-integrable. Then A is natural if and only if va is carried by D in
E X E, and in this case vl = v}. The same result holds if A € o.

Fix densities u*(x, y) for each a = 0 such that
(@) U*(x, dy) = u*(x, y)v(dy)
(i) U(dx, y) = u*(x, y)v(dx)
(iii) x — u®(x, y) is a-excessive for X
(iv) y — u®(x, y) is a-excessive for X.
Given an additive functional 4, define uz = U4 1.

(7.2). PROPOSITION. Let A be an integrable AF. Then ui = U4l < o ae. (v) if a > 0 and
us(x) = U vh(x) = [ u*(x, pwa(dy).

Proor. We indicate only the changes necessary in the proof of Revuz. If ® € b&, N L'(dv),
then ® U(X# ) is right continuous P’ a.s. (the right limit taken in the topology of E). But then,
by time reversal, ®U(X-) is left continuous P” a.s. Therefore, one may follow the proof to
find that U%v4 < u4 a.e. (v). But both functions are a-excessive and applying the resolvent to
both sides gives the inequality everywhere. (Note that this is really a fact about the right
process of E — N) The rest follows as in Revuz [12], page 157. 0

The reader should consult [11] for an alternate proof of Proposition (7.2) under hypotheses
which are slightly weaker than the classical duality hypotheses.

(7.3). THEOREM. If A € o/ and F € (& X &), then

M4iF(x) = f J’ u*(x, YF(y, z)va(dy, dz).
In particular, if f € &.,

Waf(x) = j u® (x, f(y)va(dy)

Uif(x) = f Ju“(x’ W (@wa(dy, dz).
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Another time reversal argument gives an extremely useful result. Let B be the set of
cobranch points; i.e., B = {x: Po(+, X) 5 €}.

(7.4). PROPOSITION. If A is integrable, then
va(B X E) = 0.

Proor. If va(B x E) > 0, then P*{ X,- € B, some t} > 0. But then by reversing we have
P*{X? € B, some t} > 0. This cannot happen. [
The following three results hold here without change in proof ([14], page 83).

(7.5). PROPOSITION. Let A, B € o/, and suppose that for some fixed a = 0,u = Uil < » ae.
(v) and that U4f = Ugf for all f € b&+. Then A and B are equivalent; i.e., A, = B, a.s. on (¢
<{).

From (7.5) and (7.3) follows the next result.
(7.6). PROPOSITION. If A € o amd ui < o a.e. (v), then v4 determines A uniquely.
(7.7). PROPOSITION. If A € o/ is o-integrable, then va determines A uniquely.

Let 4 and B be additive functionals of X.

DEFINITION. 4 is said to be absolutely continuous with respect to B (written 4 < B) if
M%F = 0 implies M4F = 0 for all F € (& X &)..

If A and B are o-integrable and in &/, it follows that 4 << B implies v4 << vp. Thus dvs =
F dvg for some F € (& X &), which may be chosen to be everywhere finite. Set C; = [§ F(X;-,
X,) dB,. Then the Revuz measure for C is F dvg = dv4. Thus, by Proposition (7.7), C, = A,.

(7.8). THEOREM. If A << B are o-integrable, then A = F * B, for some finite F € (E X E),..

Theorem (7.8) is not true in the Garcia-Alvarez topology. When 4 and B are continuous
additive functionals, Theorem (7.8) is due to Motoo in the case of standard processes in
duality. For comparison, Azema [1] had obtained the following absolute continuity theorem
for processes satisfying hypothesis (L).

THEOREM. Let A and B be natural additive functionals (in the original topology) such that U,
<< Ug. Then there exists a previsible process (Zs), 0 < s < ®, Z < 1, such that A, = [4 Z(w, s)
dB,. Moreover, Z is adapted to the o-algebra generated by the measurable left continuous
processes with right limits which are zero on (§, ©) and which are homogeneous.

Thus passing to the D-Ray topology allows the left and right limits of the process “to
contain enough information” so that Z may be taken to be a function of the process, Z, =
F(X.-, Xb).

8. Conatural additive functionals. The aim of this section is to identify the conatural
additive functionals with more familiar objects, namely, the natural additive functionals.

DEFINITION. Let A € /. Then A4 is said to be conatural if Ua(x, -) = Wa(x, -) for all x €
E.

This definition was first given by Garcia-Alvarez [5], page 968. These additive functionals
form a convenient class to study since they ignore the discontinuities in the Ray topology.
Note that the topology of the state space does determine which additive functionals are called
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conatural. In Garcia-Alvarez’s case, the class of conatural additive functionals could not be
identified with the natural additive functionals. This section shows that the topology we have
introduced is a “natural” one in that an additive functional is conatural if and only if it is
natural.

DEFINITION. Let A € «7. Then A4 is said to be Ray discontinuous if A4 is purely discontinuous,
and, a.s., the jumps of the sample paths t — A, occur at jump times of X;.

We shall require the following modification of [2], VI-1.15.

(8.1). PROPOSITION. Let p, and p, be measures not charging B. Assume Uy, < » a.e. (v) and
U1 = Uy everywhere.Then i, = ps.

Proor. Following [2], let / be a strictly positive bounded function on E with (h, U ),
< o, Set g = h U*. Let f be continuous on E with 0 < f < 1. Then for y > 0,

ply(f U1 = (yfg, U m) = (yfg, U w2, = pel y(f2) U7 1.

Since g is coexcessive, fg is cofinely continuous. Thus, letting y — =, y(fg)U"** — fg off B.
Moreover, y(fg)U**" < ygU"** < g. Thus, by the dominated convergence theorem (since
pa(g) < ), w(fg) = pe( fg) for all bounded continuous f since p.( B) = p(B) = 0. Thus g dus
= g du,. But g > 0 off B. Therefore p; = . 0

If A € o, it can be decomposed as 4" + A” + A°, where A4', 4%, 4> € o/, A* is continuous,
A? is natural and purely discontinuous, and 4° is Ray discontinuous. Since natural additive
functionals are clearly conatural, it suffices to examine functionals 4 € & which are Ray
discontinuous.

By the work of Walsh and Weil [20], on the representation of terminal times, a Ray
discontinuous additive functional A may be written as 4, = Ys<: F(Xs—, X;) for some F € (E
X E)., null on the diagnoal. If a is conatural and integrable, then for f € bé,,

E* YL f(X)F(Xom, X,) = E* § f(Xo- ) F(Xo-, Xo).

But if these expressions are finite everywhere, then by the representation theorem (7.3),

j j u(x, y)f(y)va(dy, dz) = j j u(x, y)f(z)pa(dy, dz).

By Proposition (7.4), v does not charge B X E. Therefore, by Proposition (8.1),

f J_ _8Nf(Y)rady, dz) = j gNf(@pa(dy, dz).

EXE

Taking f= Ir, g = 1o with I' N A = &, we see that »4 = 0. To summarize, we may state the
following result.

(8.2). THEOREM. Let A € o/ be integrable. Then A is natural if and only if A is conatural.

9. A result from potential theory. The real power of dual processes lies in Hunt’s switching
identity. In our setting, there is a switching identity for dual terminal times, given by Smythe
and Walsh. It is not nearly as useful as in the case of standard processes in duality. This is due
to the fact that one cannot say

Pa u(x, y) = uPa(x, y)

for general processes. It is this form, of course, which is most profitable for standard processes.

We present a new proof of a result useful in potential theory which was originally proved
using the switching identity. We make additional rather restrictive hypotheses. These can be
removed [9], but we shall not do that here.
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(9.1). PROPOSITION. Let o = 0 and assume

(i) U*l > ¢ > 0 for each a (c may depend on o).

(ii) The excessive reference measure v is finite.

Let p be a finite measure not charging B. If U°u(x) is bounded, then p. does not charge copolar
sets.

PrOOF. Let a > 0. Suppose U‘u(x) is bounded, and p charges a copolar set M C E — B.
Then, since X is a right process on E — B, we may find a coexcessive function f such that »( i3]
<o and M C {f = «}. Take a sequence of bounded Borel functions (h,) such that h,U* 1 f.
Then p(h, U*) 1 0. But p(hn U%) = [ [ u(x, p)u(dy)ha(x)»(dx). Therefore, Uu bounded
implies that [ h.(x)r(dx) increases to . However,

> (f, 1), = limp(hy U 1), = limu(ha, U°1),.

But »(h, U1) > c v(hy,) T . Thus we have a contradiction, and, therefore, U is unbounded.
In the case @ = 0, if Up(x) is bounded, then U'u(x) is bounded, and p, therefore, does not
charge a copolar set. 0

10. The bounded maximum principle. In this section, we assume the hypothesis of Propo-
sition (9.1):

(i) U*1 > ¢> 0 for each a > 0.

(ii) » is a finite measure.
Again, these assumptions may be removed (which we shall not do here).

Let u be a finite measure on E with compact support K. We define the bounded maximum
principle:

(M%) If Uu is bounded, then || Uk || = sup{ Un(x): x € K},
where || f|| = sup{f(x):x € E}.

We also state Hunt’s hypothesis (H).
H) Every semipolar set is polar.

In the case of standard processes in duality, (H) implies (M ¥) [3, 9]. We shall prove a version
of this here. Since the proof in the standard case involves the switching identity, we may
expect some slight difficulty.

Let 4 be a Borel set in E, and let S4 = inf{¢> 0: (X,—, X;) EA X A}, Sa = inf{¢ > 0: (X,—,
X:) € A X A}. We define the collection of strongly regular points for 4, denoted 4%, as {x:
E*{exp(—=Sa)} = 1}.

(10.1). PrROPOSITION. A — A® is semipolar.

PrOOF. Set W4(x) = E¥{e™5*}. Then ¥, is l-excessive. Set 4, = (V4(x) < 1 — (1/n)} N
A. Then A — A® = U A4,,. Note that ¥4, (x) =1 — (1/n) on 4, U A4}, Define a sequence of
hitting times by setting S1 = S4,, and Sk+1 = Sk + Sa, + s, for k = 1. Then

E*{(e™S1} = E*{e™% ¥4 (Xs,)).

An argument analogous to the one given in [2] I-11.4 shows that X5, € A, U 4. Therefore,

Ex{e—sk ‘I'A,.(Xsk)} = <l - %) Ex{e_sk}.

It follows by induction that E (e~} < (1 — (1/n))%, and the sequence (.Sx) must increase to
. In particular, {t: (X;-, X;) € Ar X A,} is a countable set. Since {#: X,- # X,} is countable,
it follows that {#: X; € 4,} is countable, and we conclude that 4, is semipolar by Dellacherie’s
theorem on semipolar sets. Therefore, 4 = U A4, is semipolar.
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We define the hitting operators P4 and P4 by
Pf(x) = EX(e™S4f(Xs,))
SPa(x) = EX{(e™54f(X3,)}.

These are not the usual hitting operators of [2].

Let 1 be a measure on E not charging semipolar sets. Since semipolar is the same as
cosemipolar ([16], Proposition (5.2)), u does not charge B or B. Thus, once we have Proposition
(10.1), we may follow the proof of [3] (2.1). O

(10.2). PROPOSITION. If . does not charge semipolar sets, then | U | = sup{U°w(x): x € K}
where K is the support of p.

PROOF. Sk and Sk are dual terminal times. Thus by the version of the switching identity
proved by Smythe and Walsh, P% Uy = U*Pkp. If we let *K denote the strongly coregular
points of K, then K — EK is semlpolar Thus, if C is Borel,

Pgu(C) = f P%(C, x)u(dx) = j P%(C, x)u(dx)

KnRK

since, by hypothesis, u does not charge semipolars. As observed above, p does not charge B.
Thus, if x € *K N (B)°, P%(C, x) = lc(x). Therefore, P& u(B) = w(B N K N FK) = u(B). Thus
U°u = P%U°u. But Pk(x, -)is carried by K, and the result follows. O

(10.3). THEOREM. Hypothesis (H) implies (M ¥) for measures p not charging B.

Proor. If Uy is bounded, then u does not charge semipolar sets by (H) and Proposition
(9.1). Thus, | Uk || = sup{ Uu(x): x € K}.0O

REMARK. Note that this theorem can be interpreted on the original space E.

11. Capacities. In this section we extend the Getoor-Sharpe approach to capacities [8].
Since they relied primarily on the Revuz measure, their results go through with little or no
difficulty, and the results in this section, therefore, originate with them.

We now introduce an extremely useful technical device. Unfortunately, it requires another
examination of the original compactification. Being originally given a right process X on E,
we constructed a moderate Markov dual X with respect to a o-finite excessive reference
measure » = A U, where A is a reference probability measure. Adjoin an isolated point I" to E
and set

Prf(x) = Pfix) + f(T)E*{e“¥IV°) for xEE
B¥f(T) = e 'A(T).

That is, the process X* lives on E until it “dies” at # = {(w). Then it goes to I and is killed
from there exponentially We have simply “tacked on” some time at the death time { of X.
Then (A + er) is a reference measure for X*. As we remarked mltlally, there is no loss in
generality in assuming U* a bounded kernel [6]. Thus, »* = A + er)U* is a finite measure.
Reversing, we compute the adjoint semigroup P# in duality with respect to »* with P¥ . Note
that »* = » +Ker for some constant K. Then

prg(x) = Pig(x) for x €E

Prg(I) = e g(I) | J E* {5V e (x)p(dx).
e
K
We denote by X* and X* the strong Markov versions of X* and X* on the new compactifi-
cation Er. This trivial procedure has the pleasant property that certain excessive functions
which are not natural potentials for X on E become natural potentials for X* on Er.
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For example, let D € & and let {* be the death time of X™*. The last exit time of X™* from
D is defined to be

Lp = sup{s: X} € D}.
Since I' € D, Lp < {* as. It is also easy to check that
MD(X) = Px{ Tp < 00}

is a natural potential; i.e. for each x, if (T5) is an increasing sequence of stopping times with
limit greater than or equal to {*, lim, .. P¥,Mp(x) = 0. Notice that if { is previsible, then
there is an increasing sequence of stopping times (.S») announcing {, so that it may happen
that lim,_,. Ps, M p(x) > 0 (e.g., take D = E). Thus I" is a necessary artifice to prolong the life
of the process enough to make Mp(x) a natural potential. Since Mp(x) is a natural potential
for X*, Mp(x) is the potential of a previsible additive functional 4p [15]. Note that Mp(x) =
Uapl(x) = P{Tp < o} = PX*{L > 0}. Then, in our situation, we may state the fundamental
result of Getoor and Sharpe [8] as follows.

(11.1). PROPOSITION. Let D € & L= Lp, A = Ap. Then for each x € E, s >0, and A € &,
(i) P*{Xt- € A; L >0} = Ui(x, A);
(i) P*{X?- € A; L> s} = [ P¥(x, dp)UX(y, A);
(iii) E*{e™*"; Xt~ € A; L> 0} = Us(x, A).

ProoF. Fix x € E, and set B, = 1 p<1<¢ . Then
E*{B. — B.| %} = P{L>t| %) = P*{L°8,>0|%} = ua(X?),
since L < o a.s. But
E*{Aw — A| F} = E¥{Aw © 0| F1} = ua(XT).

Thus, for every nonnegative previsible process Y,
Exf YtdA1=ExJ' Y[dBt=Ex{YL,L>O}
0 0

To get (i), (ii) and (iii), let Y, = 1a(X%), Y = IA(X2) L, w(?), and Y, = e 15(XX).

Let D € &, and let A be the previsible additive functional associated with Mp by Mp =
U 4,1. Then by our extension of the work of Revuz, there exists a capacitary measure 7p with

Uaf(x) = J u(x, Y y)mo(dy).

By (11.1(i)), we may write
P X;- € dy, L >0} = u(x, y)mp(dy)

and the measure 7 therefore charges only E U B (but not B).

12. Representation of excessive functions. We assume the framework and notation of
Section 11. Let f be a finite excessive function on E for X, and assume f(X,) is a uniformly
integrable supermartingale P* for each x. We extend f by setting f(I') = 0 and note that f'is
now a natural potential for X*. Therefore, let A4 be the previsible additive functional with
potential . If u* is the potential density for X* on Er,

flx) = j u*(x, ywa(dy).

This is less satisfying than the result of Garcia-Alvarez (he represents integrable excessive
functions) but points out the close relationship between Revuz representation and Martin
boundary theory. Of course, the A-path technique used by Garcia-Alvarez may be used here
to get his result, so nothing is lost.
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