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ON THE EFFECT OF COLLISIONS ON THE MOTION OF AN
ATOM IN R!

By PETER MAJOR AND DOMOKOS SzAsz!

Mathematical Institute of the Hungarian Academy of Sciences

A joint generalization of Harris-Spitzer’s and Szatzschneider’s one-dimen-
sional collision models is given and for the path of a given particle an
approximation is obtained.

0. Introduction. One major aim of nonequilibrium statistical mechanics is the
derivation of the main physical processes from microscopic assumptions. A very important
example of such processes is the Brownian motion. For the one-dimensional case, Spitzer
[7] proved in 1969 that if

(a) at time 0 a system of atoms, i.e., particles with equal masses, is given in R' according
to a stationary Poisson process;

(b) and independently of the positions the atoms are given i.i.d. velocities;

(c) and the atoms collide or, in other words, they exchange velocities when they meet;
then, under the same normalization as used in the Wiener process approximation of the
random walk, the path of a single particle tends to the Wiener process in C[0, 1]. This
model was introduced in 1965 by Harris [4], who also proved the existence of the motion
and obtained a Gaussian approximation for the position of the particle after a long time.

In 1975 Szatzschneider [8] investigated this motion with the modification that he
supposed that at time O the particles were situated in an almost deterministic way (almost)
on the lattice of integers. He obtained the surprising result that in this case, in general, a
non-Wiener Gaussian process approximates the motion of a single particle.

We give a joint generalization of the two results. Namely, we suppose that at time O the
atoms are situated in points of a two-sided renewal process and we obtain that at a given
initial velocity distribution the approximating Gaussian process depends on the first two
moments of the renewal times (Theorem 1). The limit process can also be obtained for a
wider class of initial positions. In Theorem 2 we only require that, roughly speaking, the
process of initial positions, when suitably normalized, converges weakly to a C(— o, + )
process.

In Section 1 we describe our model and state the results. They are proven in Section 2.
Section 3 contains additional remarks and comments.

1. Results. Suppose that the family x,:i € Z(Z = Z' is the lattice of integers) of
functions x,:[0, ©) — R’ satisfies the following conditions:

(i) x, is continuous on [0, ) (i € Z);

(i) x,(0) = x,41(0);

(iii) for every t =0

liHlL_,—oomaXre[O,t]xt(T) = — %
].im;-—.-f-wminfe[O,l]xl(T) = .

Then, by a suitable modification of the existence theoreni of Harris [4], there exists a
unique family y,:i € Z of functions y,:[0, ®) — R’ such that
(1) y, is continuous on [0, x) (I € Z);
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(2) .(0) = x.(0) i€ 2Z);
(3) y.(t) = yir1(t);
(4) for every t =0

lim,_,_omaxejo,1Yi(t) = —%
lim,_,min,eo, yi(1) = 0;
(5) U::ioo Gr(y;) = U::O—oo Gr(xt))

where Gr(z) denotes the graph of the function z, i.e., Gr(z) = {(u, ¢):2(t) = u for some ¢
= 0}, and the equality of the unions is understood in the strong sense, that is we require
for every (u, t) that

card{i:y,(t) = u} = card{i:x.(¢) = u}.

The content of this theorem is the following: if the x/’s denote the motions of atoms in the
absence of collision, then the y/s describe the motions of the same particles under collision
since under collision the order of particles remains invariant.

(A) Suppose that the x;(0)’s form a renewal process, i.e., the nonnegative rv’s x:,1(0) —
x:(0) are i.i.d. with some common distribution K, and x0(0) = 0;

(B) xi(t) = x:(0) + vit(i € Z) where the v/’s are i.i.d. rv’s with a common distribution F;
they are also independent of the initial positions X(0) = {x:(0):i € Z};

(C) Ev; = 0.

It is easy to see that conditions (A), (B), (C) imply that (i), (i) and (iii) hold with
probability 1 and consequently we can give the motion yi(t), ¢ = 0, i € Z of the system with
collisions with probability 1. We will be interested in the path of the atom with label 0 so
we denote y(t) = yo(f).

THEOREM 1. If E(xi41(0) — x:(0)) = p, (0 < p < o), D% (%41 — x;) = 0% < o then the
processes Y (t) = A7%y(At) tend to a Gaussian process y(t), as A — « in the sense of
weak convergence in C[0, ©), where vy is determined by

Evy(s)y(t) = p'E | v| min(s, t)
+ 1 3(0% — u?) E min(s|v|, ¢] v’ |)x{vv’ > 0},
Ey(s) = 0.

(s, t = 0) and v and v’ are iid. rv's with common distribution F. (x{ } denotes the
indicator variable of the event in brackets.)

Theorem 1 will be proven as a consequence of a more general theorem. Denote

v(x) = card{i:x:(0) € (0, x)} if x>0
= —card{i:x;(0) € [x, 0]} if x=0

and define the processes
Sa(t) = A2 (v(AL) — plAY)

for A > 1, —o0 < t < o, Instead of assumption (A), we need the following ones:

(A1) limyn|—on"'x,(0) = p with probability 1, where p is a positive rv.

(A2) There exists a process S(£), —» < t < « with trajectories in C(—, +) such that
S4(t) converges to S(t) in the sense of weak convergence in D(—, +x).

(A3) sup,[(1 + | £])7"| Sa(#)|] is stochastically bounded in A.

As in the previous case, it is not difficult to see that (A1), (B) and (C) imply the
existence of the collision model with probability 1 and we shall keep denoting y(f) = yo(t)
and Ya(t) = A™2y(A#). Also, conditions (A2) and (A3) involve that

(1.1) sup (1 + [ £])7!|S(®)|] < = as.
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Hence, by (C), the integral [*. S(¢)F(d¢) exists and is finite with probability 1.

In the proof of the tightness we shall also need an additional assumption.

(D) For every positive T, the processes¢X(t) = S(t+r), -T<t=< T are tight in C[ -T,
T] uniformly in r, —0 < r < 4oo. This condition obviously holds in the most important
particular case when S has stationary increments.

Denote by ®s(y)(y € RY) the N-dimensional normal distribution function with expec-
tation vector 0 and covariance matrix . Now we can formulate our

THEOREM 2. If conditions (A1)-(A3), (B) and (C) are satisfied, then the finite
dimensional distributions of the process ya(t) converge, as A — «, to the finite dimen-
sional distributions of a process (t), given as follows

PBE)<w,j=1,---,N) = E®s(u, ---, un)
where the covariance matrix £ = (0,,),,-1,....n is determined by
o;; = min(t;, ) E |v| —E[min(&:| v, ¢ | v’ |)x{vv’ > 0}]
and

uj = J’ S(—vt))F(dv) + w,.

The random variables v and v’ in this expression are i.i.d. with common distribution
function F.

If, moreover, (D) holds, too, then the processes ¥ 4(t) converge to B(t) in C[0, ) in the
weak sense.

The limit process B, in general, is not Gaussian. However, if S is a Gaussian process,
then so is B. If p = const. and S(f) = cW(t) with ¢ a positive constant, then the limit
process reduces to that of Theorem 1.

An interesting question is when the limit process is Markovian. If 8 is Gaussian, then
the results of Timoszyk [9] can be used to answer this question. For example, it can be
shown similarly as it is done in [8] that the limit process y of Theorem 1 is Markovian if
and only if either u = o or for some a > 0 F = %[8_, + §,] where 8, denotes the degenerate
distribution at point a.

2. Proofs. Let us recall that a sequence of probability measures given on D(I) (C(I)),
where I is a finite or infinite interval (I C R") converges weakly if and only if, for some
sequence of compact intervals I, such that I, C I,.;, UL, = I the projections of the
measures onto D(I,)(C(I,)) converge weakly for every n.

We shall need the following simple consequences of condition (Al):

(2.1) sup,(1+ |y )7 | »(y) | < Cup™"
(2.2) lima A w(Ays) = yu™*

where C; is a constant and lims_.y4 = y # 0. For y > 0, these relations follow from the
inequality X,(,) <y = X,(;)+1 and (Al).
Let us introduce the notations

Ba(t, w) = card{k, k< 0, X + tAv, = AV w)
Calt, w) = card{k, k>0,  x + tAv, < AY?w}
za(t, w) = A72[Ba(t, w) — Ca(t, w)]

where x, = x:(0), 0 = ¢t = 1, w € R". The following observation (cf. Harris [4]) is very
important: the events z4(¢, w) < 0 and y4(f) < w agree. This means in particular that

(2.3) Palt) <w;,j=1,2, .-+, N) = P(zalt),, w;)) <0,j=1,2, ..+, N).
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We shall investigate the right-hand side of the identity (2.3).

Denote by % the o-algebra generated by the random variables x,,, n € Z. Let us observe
that, because of the independence of the random sequences {x,, n € Z} and {v,, n € VAR
we can write

PQza(t, w) <a,j=1,---,N| %)

= P(A—I/Z’[z(,;_°° X {v, zm}

At;
" AVw, — x, )
(2.4) “Lhxyu<——— (<@, j=1--,N)
J

for arbitrary real numbers aj, - - -, ax. We also have

A2y — 12, _
25)  E(zalt, w)| 7) = A'“"’{E&L_w [1 -F (#)] — e F (%ﬁ)}

Here

e o o
Yo F (%) - f Y{x; + vAt < AY?w)} F(dv)v(dx)"
0

—00

w/AV%
= f v(AY*w — vAt)F(dv)

and similarly

1/2,., ©
- [1 -F <w>] =— f (AW — vAt)F (dv).

At w/AV2

Consequently, by (2.5)

E(zat, w)| ) =—-A""? f v(A"?w — vAt)F (dv)
(2.6)

=- f Sa(—vt + A™?w)F (dv) — w,

where we need that Ev = 0.
To prove the theorem we need several lemmas. We can and do assume that u =1 a.s.

LemMA 1. Under the assumptions (Al), (B) and (C), the conditional distribution of
the multidimensional random variable

(2.7) zalt, w;)) — E(za(t, w) | Z) Jj=.2,..-.,N

with respect to the o-algebra % is asymptotically normal with the covariance matrix
3 =(o,),1,J=1, ---, N, where

(2.8) o, = E|v|min(¢t, t,) — E[min(¢|v]|, t,|v’|) x {vv’ > 0}].

Lemma 1 says, in particular, that the conditional distribution of the expression in (2.7)
has a limit independent of the condition.

Proor. Because of (2.4), (2.5) and the independence of the v,’s the multidimensional
central limit theorem implies that the conditional distribution of the expression in (2.7) is
asymptotically normal with expeptation zero and covariance matrix(o%,) i,j=1,2, .-, N,
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where

AV — 5 AV, -
ofj=A" Yiw [F(mm ( At; g Ajti k

AV w; — xp AV w; — xp,
-F F d .
< At; ) ( At )

In order to prove Lemma 1, it remains to show thato?; — 0., given by (2.8). Consider,

for example, the sum
1 AVw; — xp AVw, — xy,
Yo F F .
Az ( At ) < Ay,

It is equal to

1 (7 (AW, —x AV w; — x
Zfo F( At, )F( At; )V(dx)

= %f f f x{x + vAt < AVw) x{x + v At; < AVw;} F(dv) F (dv')v(dx)
0 —o0 o —00

(2.9)

WAVY,  rW A2, : —1/2 -1/2 ,
A r— LU, A ]
j J v(A min{ w, — tv w;— tu'}) F(dv) F(dv')

A

where we changed the order of integration. By (2.2) and the Lebesgue convergence
theorem, the last integral tends to

0 0
f f min{¢|v|, t;|v’'|} F(dv) F (dv’)
= E[min(|v], & | v’ ])x{v, v’ < 0}].

Taking the limit is legitimate since, by (2.1), the integrand is less than A™! | »(AYw; —
Atv) | = Ci(t:| v| + 1). Similarly, the same sum for %2 < 0 tends to

E[min(t|v]|, t|v'])x{v, v’ > 0}].

Analogously,

| . [AVw — x AVwy; —
a2l F<mm{ At, Ag

J, A V’min {(w./t,w,/t)

Y v(A min{A"?w, — tp, A72w, — t,v}) F (dv)

—00

— min(t;, t)Ev™

and, again, the same sum for £ < 0 tends to min(¢,, ¢,)Ev"*.

LEMMA 2. Under the assumptions of Theorem 2,

(a) The realizations of the process ©(t) = [ S(—vt)F(dv), —» < t < ® are continuous
a.s.

(b) For every w, the process ©4(t) = [ Sa(—vt + A™2w)F(dv), — © < t < % converges
to O(t) in the sense of the weak convergence in D(—wx, ©), as A — o,

(c) The conditional expectation vector E(za(t,, w)| ¥),j =1, -+, N of the random
variables za(t,, w;),j =1, - - -, N tends in distribution to the vector — u = — (uy, - - -, un)
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where
u, = J' S(—vt)) F(dv) + w;.

REMARK. Similar statements as (a) and (b) hold for the processes ©*(t) = [§
S(—vt)F(dv) and ©%(f) = [§ Sa(—vt) F(dv) (and for the processes O (¢) =[2.. S(—vt) F(dv)
and ©4(t) = [%. Sa(—vt)F(dv) respectively).

Proor.

_ S(—=vt) 1+ |v|t
e(t)_j[lﬂvlt 1+|Ul](1+|v|)F(dv).

The expression in square brackets is bounded and continuous in ¢ a.s. and, since E|v| <
o, the assertion follows from the Lebesgue theorem.

(b) We prove the weak convergence in [T, T']. Let ¢, n > 0. By (A2), for every positive
€ a number K, can be chosen such that on a set H, of measure exceeding 1 — € we have

[Sa®)| |S@)|
L+t 1+ |¢] ¢

for any ¢t and A. Thus, if vo is large enough, then, by E | v| < o, everywhere on H,

j S (—vt + %) Fdv) <7
|v|>vy

f S(—vt)F(dv) <n
|v|>v,

for every | t| = T. Finally, by (A2), Sa(t + w/A"?) tends weakly to S(¢) in D[—veT — 1, v T
+ 1] implying that [|,|=v, Sa(—vt + w/A"?) F(dv) converges weakly to [|,|=,, S(—v) F(dv).
In fact, the continuous mapping theorem (cf. [1], Theorem 5.1) applies, since the functional
¥ defined on D[—voT — 1, voT + 1] by Y(x) = [ju=0, 2(—vt) F(dv) is continuous on C[—voT
— 1, voT + 1]. Hence the statement.

(c) By using the representation (2.6), a proof similar to the previous one gives this
statement, too.

ProOOF OF THEOREM 2. The convergence of the finite dimensional distributions easily
follows from Lemmas 1 and 2. It is sufficient to observe that if € > 0, then for sufficiently
large A, we have

IP(ZA(tj, Wj) < 0,j= 1., N) — Eq)z(—EZA(tJ, wj), j= 1 ..., NI .%’)l <€
by Lemma 1 and the continuity of the normal distribution, and also
|E(@=(—Eza(t, wy),j =1, -+, N)| &) — E®@s(w, -+, un)| <€

by Lemma 2. Now (2.3) yields the desired statement.

Now we turn to the proof of the tightness of the y.4’s. For simplicity, it will be proven in
C[0, 1]. For f € D[0, «) and 0 < § < 1 denote w( f, §) = supo=t=s<t+s=1 | f(s) — f(t)|, which is
the well-known modulus of continuity of the function f, taken on the interval [0, 1]. The
tightness will be verified if we show that, for every positive € and 7, there exists a positive
§ and a number A, such that

P(w(ya, 8) >€) <, A= A,
Introduce the processes
Qi) = A [Year x{xi + VAE>T) — Tanr x {x:i + 0.+ At < 1}],

which is the normed difference.of the number of left crossings and the number of right
crossings of the level r. First we reduce the proof of the tightness of Y to the proof of the



1074 PETER MAJOR AND DOMOKOS SZASZ

tightness of @%. Since this reduction uses elements of a similar reduction given by
Szatzschneider, our proof here will be concise, and the reader is referred to [8] for more
details. Let 0 < 8 < 1 and denote by M the maximal integer less than §~'. By denoting ¢,
=k6if 0 < k<M and ty+1 = 1 we can write

P(w(\[/A, ) >e€) = P(U}ﬁo {supse[lk,gm] |y(As) y(Atk)| > - AI/2})

Let G = {|y(Aty)| < f()AV%, k=0, 1, ..., M + 1}, where f(8) is a function satisfying
lim;s_.of (8) = o and it will be specified later. Then

P(w(Ya, 8) > €) = P(Uy {supsersy .1y (As) — y(Aty)) > § A%}, G)

+ P(Ui‘io {infsep,,,tm](y(As) —y(At)) < — § Al/z}, G) + P(GY).
Now
{supse[t,,,t,m]( y(As) — y(Aty) > § A1/2}

1/2 172
I {Supse[lk,lkﬂ](Q,y‘l(Alk)+(€/3)A (S) _ Q%(Atk)+(e/3)A (tk))

> A7 Ny, yag)+e/na12)
where Nys,),ym4)+e/3412 denotes the number of particles being in the interval [y(At),
y(Aty) + (e/3)AY?] at the time At;.
LEMMA 3. Lett € [0, 1] and I = [a, b) be given and fixed and denote pa = @a(t, I) =
Sx {x(ADATV? € I}. Then
lima A" %pa = |I|

in probability.

Proor. The statement is a straightforward consequence of Lemma 2, since A™'/%p,
za(t, @) — za(¢, b).

Set p = [f(6)]'AY% h, = Ip and gr = max{hsh; < y(Aty)}. Further we restrict
our attention to trajectories in G° = G N {for every & <= M at time At
min|1|5f(3)2 N[he,h,+l]>[f(8)]_l/2Al/2}~ Then, by Lemma 3 (Cf [8] page 164)

{Supse[‘k»‘k-o—l](y(As) — y(Aty)) > § Al 2} C {suPsertys.,1 (@4 (s) — @ (tx)) > (e/12)}
and | k| =< [f(8)]*. Consequently
P<U1ﬁ‘io {SuPse[tk,tM](y(AS) y(AL)) > < Al/ 2 )

=P (UI1I<[f(8)]2 UiLosupsery,, t,,m{(QA’(S) QY () > })

= P(U|z|5[f(,s)]z{w(ij, 8 >— € })
0> 12)

= [f®) supi=tron-P <w(Qﬁ" )
Next we show that for any positive € and 7 there exist a positive § and an A, such that
(2.10) Pw(@,8) >e)<n A=A,
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By assumption (D), our proof will work for any @ uniformly in r. Since (2.10) implies the
existence of a function f(8), defined for 8 € (0, 1) and satisfying lims .o f(8) = o such that
for every positive € and 7 there exist a positive é and an A, for which

[FOPPw(RS, ) >e)<n A=A

(2.10) will also give the desired tightness of the y4’s.
Put L(t) = S.cox.{x. + v:it > 0} and R(f) = 250 xi{x: + vit < 0} and also Qa(t) = Q4%(b).
Clearly

P(w(Q4, 8) > €) = EP(w(Qa4, 8) > €| Z).
We also have the decomposition
Qa(t) = ATV[L(AY) — E(L(AY)| 2)] — A7/[R(A?) — E(R(A1)| 2)]
+ ATV E(L(At)| &) — AtEv*] — A"V [E(R(AY)| ) — AtEvT]

where v* = max{0, v} and v~ = (—v)* and we used that, by (C), Ev* = Ev™. Now it is easy
to see that

A7V [E(L(At)| #) — AtEv*] = 64(0)
and
ATVAE(L(At)| Z) — AtEv™] = ©4(b).

Denote the first (and the second) term in the decomposition by La(¢) (and R4(t) respec-
tively).
Then

P(w(Q4, 8) > €) = EP(w(LA, 8) > §| g{)

+ EP(w(RA, 8) >§ | 9r> + P<w(e:;, 8) > 2) + P(w(e;, 8) > 2)

The third and fourth summands on the right-hand side are small only if 8 is small and A
is large. This follows from our remark after Lemma 2. Thus it is sufficient to show that, for
every positive € and 7 there exist a positive § and an A such that

EP(w(La, 8) >€| X)=1n,A=A,.

For simplicity suppose Ev* = 1.
An easy calculation yields the inequality

(2.11) E((La(t) — La(s))*| &) = Ki[A*Sicop, + A*(Zic0p)’]
where s < t and p, = p.(s, ) = P(—(A®)'x, < v < (—As)'x,), i < 0. Also we have
(2.12) AT'Sop, = ATVHOL(H) — O4(s)) + (£ —3).

Put p = m™'8 where § is a positive number and m is a natural number to be chosen later.

If
(213) €= Zt<0[’1(s’ s+ P)

for any s € [0, 1 — p], then (2.11) gives
2K
E((La(®) — La(s))*| %) < Tl (A7'Sp)*

whenever 0 = s < s + p = t < 1. Consequently

. K
P(max,<m | La(s + ip) — La(s)|>A| &) = }\—42 (A7 Zpi(s, s + §))*
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(cf. Theorem 12.2 in [1]). On the other hand, if 0 = s < ¢ =< s + p = 1, then we have

(2.14) | La(t) — La(s)|<|La(s + p) — La(s)| + A% + w(®1, p).

By our remark after Lemma 2, for every positive € and 7 there exist a §, and Ao such that
P(w(Of, 6) <e€/4)>1—1.

Denote = {w(©}, 8) < €/4}. Restrict our attention to the set £ If § < &, is fixed then, by
(2.12),
2pi(s, s + 6)
A

which is less than 2§ for A large. thus, on ¢

=s+A2E
4

P(max,=m|La(s + ip) — La(s)| > €| Z) = 5; 482,
€

If (K./€®) 48% < 16 and A% p < €/2, then (2.14) and (2.15) imply that
P (supeegs,s,+6) | La(t) — LA(S)I > 4e | X)) <nb

on ¢ Of course, we should not forget condition (2.13). By (2.12) it will be satisfied if e < Ap
— AV2w(0OF, 8) or if e = Ap — A'*(¢/4). But it is an easy matter to check that, if 8 is fixed,
then, to any A large, there exists a natural number m such that

422 ¢ and e=al_ans
m 2 m 4

This completes the proof of (2.16) involving that on ¢
P(w(La, 8) > 4e| ) <,
and, also, that
P (w(La, 8) > 4€) = EP(w(La, 8) > 4€) < 21.

Hence the theorem.

ProoF oF THEOREM 1. First we show that the conditions of Theorem 1 imply (A1),
(A2), (A3).

Relations (A1) and (A2) obviously hold with S(¢) = ¢ W(¢), where W (¢) is a standard
Wiener process on — < ¢ < . In order to prove (A3) we need the following result of
Heyde (see [5]).

THEOREM A. Consider a sequence X, Xs, - -+, of i.i.d. rv’s and its partial sums S, =
S".X,. Let EX; = 0, EX? = 1, G(x) = P(X; < x) and G.(x) = P(S, < xo.n"?), where

2
o2 = J x2dG(x) — [f xdG(x)] .
|x|<nl/2 |x|<nl/2

Yo 1sup; | Gan(x) — @(x)| < oo.

We will apply Theorem A to the sequence x.(0) — nu = Y- (x£(0) — x4-1(0) — p). The
sequence Xx;(0) — x,-1(0) — pu, 2 = 1, 2, --- is a sequence of i.i.d. random variables with
expectation 0 and finite variance o. We may assume that o > 0 since the case 0 = 0 is
trivial. In the following estimations we shall apply Theorem A and a well-known estimate
on the maximum of partial sums of independent random variables (see, e.g., [6] page 248.)
Given any € > 0, the constants ¢ > 0 and A > 0 can be chosen in such a way that the
following relations hold

Then we have
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Sa(u k
P(supu>1 a(u) > c) = P(|xk(0) — ku|> Acm, for some k EA)
o 9l+1 c 21
= 2 Y nogatP | supaicr<ar | Y j=2t41(2;(0) — x;-1(0) — p)| > A

= 2 YipogalP (l Y51, (0) — x,-1(0) — )| > %W)
= 21=l'108-4] 1-9 gal/_z + 4 ZI=D°gA] sup | Galx) — <I>(x)| <e€

where G (x) is the distribution of (1/0)[x:1(0) — pn].

The quantity sup|Sa(¢)/¢| can similarly be estimated. Thus (A3) is also satisfied. Now
we can apply Theorem 2. It remains to prove that the process y(¢) has the form given in
Theorem 1.

Since S(¢) = oW (¢), the random variable (1, ---, un) is Gaussian with expectation
(wy, -+, wn) and covariance

Cov(u;, u;) = o’E W(—tu) dF (u) j W(—tju) dF (u)

—00

= ¢* J J min(t;u, t;v) dF(u) dF (v)
0 0

0 [0
+J f min (& | ul, | v|) dF (w) dF(v)

= ¢’E min(s, | v |, s | v’ |)x {vv’ > 0}.
Let 2y = (Cov(u, ) i,j=1,2, ---, N.
Next we show that
E®s(uy, - -+, un) = Oz, (w1, -+, wn)

which completes the proof of Theorem 1 via Theorem 2.
Let V = (vy, -+, Ux) be a normal random variable with expectation 0 variance £ and
independent of u = (i, - - -, un). Introducing the notation w = (w;, - - -, wn) we obtain that

(Dz.;.sz) = P(V— (u — W) < ZU) = P(V< u)
=EP(V<u|u)=E®s(u)

as we claimed.

3. Remarks.

(a) Our methods seem to be applicable in a variety of one-dimensional generalizations,
namely

1. If we allow interdependence among the velocities but their dependence is weak, then,
by applying multidimensional central limit theorems and weak-convergence results for
weakly dependent sequences, we can get easily the finite dimensional convergence of Ya
while the proof of the tightness will be more elaborate. If there exists interdependence
between the initial positions and velocities, the proof of a similar result seems to be more
difficult.

2. As Harris’ approach was not restricted to uniform motion neither is ours. For
example, if p = 1 and S(¢) = 6 W(t), and the motion of each particle (in case of no collision)
is not uniform but rather is 8W(¢), t > 0 with B a positive parameter and W(¢) the
standard Wiener-process, then by denoting the path of the 0 labelled atom by y(t) we
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obtain that
A"y (At) > 8(t) when A — o

where 6(t) is a Gaussian process with E§(t) = 0 and
E§(s)é(t) = 2 j P(W(s) > B7'x) dx

0
+2(6%—1) J P(W(s) > B~ %) P(W(t) > B'%) dx.
0

Here the convergence is that of the finite dimensional distributions only. In the problem
of tightness we encounter principal difficulties (cf. [3]).

(b) If instead of pointwise particles, we have hard rods, i.e., the particles are intervals
of equal length (and of equal masses), the distances between the intervals are the same as
the distances in the previous point particle model and the velocities also agree in the two
models, then, except for a shift, the path of any fixed rod particle in the collision model
will be the same as the path of the corresponding particle in the point particle model. This
means that our theorems apply to this case as well.

(c) The fact that in a natural collision model we obtain a non-Wiener limit process for
the path of a particle is unexpected. However, it may be the consequence of the invariance
of the order of points in a one-dimensional collision model. Dobrushin has proposed to
investigate a model in which the particles only collide with some positive probability
7(<1) if they meet, and with probability 1 — 7 they continue their motion without collision.

The one-dimensional character of this unexpected phenomenon is supported by a result
for two dimensions, where the atoms start from a lattice configuration, as in Szatzschnei-
der’s case, and nevertheless the path of a given atom tends to the Wiener process [2].

Acknowledgment. The original version of this paper contained only Theorem 1
with a more complicated proof. We thank the referee for pointing out that, by using the
conditioning argument, this result can be generalized and the proof can be simplified at
the same time.

Added in proof. Szatzschneider could drop a condition on the initial velocities, which
was used by him in [8], in his 1978 paper “A version of the Harris-Spitzer random constant
velocity model for infinite systems of particles,” Studia Math. 63 171-187.
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