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INEQUALITIES FOR B-VALUED RANDOM VECTORS WITH
APPLICATIONS TO THE STRONG LAW OF LARGE NUMBERS"

BY ALEJANDRO DE ACOSTA

Instituto Venezolano de Investigaciones Cientificas

Analogues of the Marcinkiewicz-Zygmund and Rosenthal inequalities for
Banach space valued random vectors are proved. As an application some
results on the strong law of large numbers are obtained. It is proved that the
Marcinkiewicz SLLN holds for every p-integrable, mean zero B-valued rv if
and only if B is of Rademacher type p(1 <p < 2).

1. Introduction. Let B be a separable Banach space. In this paper we prove some
inequalities for independent B-valued random vectors (rv’s) which are weak analogues of
the classical Marcinkiewicz-Zygmund inequality (see, e.g., [5], page 576) and the more
recent inequality of Rosenthal ([11], page 150). Then we apply the inequalities to obtain
some new results on the strong law of large numbers (SLLN) for B-valued random vectors.

The inequalities are proved in Section 2. Section 3 contains some SLLN for random
vectors taking values in an arbitrary Banach space; in particular, we prove an analogue of
the Marcinkiewicz SLLN. In an interesting recent paper, Kuelbs and Zinn [6] have shown
that many classical SLLN hold for random vectors taking values in a general Banach space
if one assumes S,/n — 0 in probability; this assumption often follows from appropriate
geometric conditions imposed on the space. This is the point of view adopted in Section 3.

In Section 4 we show that the class of separable Banach spaces for which the
Marcinkiewicz SLLN holds for every p-integrable, mean zero B-valued rv is precisely the
class of spaces of Rademacher type p(1 < p < 2). This result “interpolates” in a natural
way between Mourier’s SLLN [9] and the central limit theorem of Hoffmann-Jgrgensen
and Pisier [4] for spaces of type 2.

2. Some inequalities for B-valued random vectors. Theorem 2.1 presents ine-
qualities for B-valued random vectors which are weak versions of (one side of) the
Marcinkiewicz-Zygmund (see, e.g., [5], page 576) and Rosenthal [11] inequalities. Of course,
the presence of the term E || S, || makes these inequalities less effective than the classical
ones. Nevertheless, under certain conditions the inequalities can play the same role as the
one-dimensional ones. This will be the case, for instance, if the aim is to prove S,/a, — 0
as. (0 < an 1 ») and one can show previously that E| S, || /a. — 0; this idea will be
illustrated in the next section.

Let us remark that while the proof of the case p # 2 in Theorem 2.1 depends on deep
martingale inequalities, the case p = 2 can be proved in an elementary way.

THEOREM 2.1. For every p = 1 there exists a positive constant C, such that for any
separable Banach space B and any finite sequence {X;:1 < j < n} of independent B-
valued xv's with X; € LP(j = 1, - - -, n), the following inequality holds:

(1) Forl=p=<2,

El|S: ) = ENS: "= C X« EN X117
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if p = 2 then it is possible to take C; = 4.
(2) Forp > 2,

E[|S:] - EIIS:]l1” = CAZi- EN X117 + T3 E | X;117).
A key step in the proof is provided by the following:

LEMMA 2.1. (Yurinskii [13]). Let {X;:1 < j < n} be independent B-valued xv’s with
X,eL'(j=1,.-.,n). Let % be the c-algebra generated by {Xi, ---, Xx}(1 =k < n) and
let % be the trivial c-algebra.

Then for 1 <k <n,

[E{Sall 17} = EXISall | Za-1} | < | X |l + E|| Xe ||

The proof is based on elementary properties of conditional expectations.

ProorF oF THEOREM 2.1. One may assume p > 1 (the case p = 1 being trivial). Let 5,
= E{||S. 1%} — E{IISall|#-1}, j =1, --+, n. Then {n,:1 < j =< n} is a martingale
difference sequence and || S, || — E | S. || = X}-1 n;.

By Burkholder’s inequality (see [3] or [12], page 149),

E|¥)-n;1” = BuE{(5-117)"),

where B, is a positive constant depending only on p.
By Lemma 2.1, E|n;|” < 2°E || X; ||*. Hence we have for 1 <p = 2,

E| Y- m|” = BoE(Tj-1|m,|7) = 2°B, Y1 E || X |7
If p =2, thenthe rv’'sn;(j =1, - -+, n) are orthogonal; therefore
E(|S:ll = E|S:1)* = 31 En; < 4 3 E | X;|| ™
By Burkholder’s martingale-theoretic generalization of Rosenthal’s inequality (see [3],
page 40), for p > 2
E|¥)-1 /1" = Bo{E(Tj-1 E (0} | F-1))"* + ¥3=1 E| )|}

By Lemma 2.1 and the independence of (X, ---, X,.},

E{n}|F) = 4E| X;||*

Inequality (2) follows at once. [
REMARK. One may obtain the inequality

ElSll = EllSa|||” = Con™* ' T E|| X7 for p>2

either by applying Hélder’s inequality to inequality (2) or by proceeding as in the proof of
(1) and applying Hélder’s inequality and Lemma 2.1 to Burkholder’s inequality.

3. Some laws of large numbers for B-valued random vectors. Theorem 3.1
below is a version of the Marcinkiewicz law of large numbers for random vectors taking
values in an arbitrary separable Banach space. The proof is carried out by combining the
most elementary case of Theorem 2.1 (p = 2) and an integrability lemma (Lemma 3.1)
with well-known classical methods.

LEMMA 3.1. Let [X;:j = 1} be independent symmetric B-valued tv's, 0 < a, } o.
Assume

@ | Xi|=a as (j=1),

(b) S./a,—pO0.
Then for allp > 0, E || S./a.|” — 0.
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ProOF. Asin Lemma 2.3. of [6]. Another proof may be constructed using the converse
Kolmogorov inequality as in ([2], Theorem 2.3.). 0O

LEMMA 3.2. Let {X;:j =.1} be independent symmetric B-valued rv’s. Then for any r
>0,

S

n . . S n+l — S n
o 0 a.s.if and only if A N

0 as.
2"" as

This is proved just as in the real-valued case (see [12], page 158).

THEOREM 3.1. Let B be a separable Banach space, 1 < p < 2. Let {X;:j = 1} be
independent identically distributed B-valued rv's with E || X, || < ®, S, = Yj-1 X;. Then

S./n'? >p0 ifandonlyif S./n'?—0 as.

PrOOF. Assume S,/n'”” —p 0. By a standard argument, it is enough to prove the
theorem for X; symmetric (j = 1). We proceed under this additional assumption.

Let Y= X,I{| X;|| =57}, T. = Y% Y;. Since E || X1 ||* < = it follows that ;P {|| X; ||
> j!”P < w0 and the Borel-Cantelli lemma implies that P(lim sup; {X; # Y,}) = 0. Thus it is
enough to prove T,/n'” — 0 a.s.

From S,/n'? —p 0 it follows at once that T},/n'”” —p 0 and by Lemma 3.1 we have

3.1) E|T.|/n"?— 0.
A classical calculation (see, e.g., [12], page 128) shows that
(3.2) S E| Y1127 < .

Let V, = || Torri— Ton|| — E|| Tones — Tanl. By (3.1) and Lemma 3.2, the proof will
be completed if we can show that

V./2"P -0 as.

Now for any € > 0,

P Va| /2" > &) =2 EV?

6222n/p
1 2n+| 2
= €222n/p * 4 Zj=2" E " y'I"
4277

=——— Y E| Y1/

in the second step we have applied Theorem 2.1 for p = 2. Therefore,
Si P(|Val /27> &) < CI E|| Y|P/ <
by (3.2.) and an application of the Borel-Cantelli lemma ends the proof. O

In a similar vein, one may combine Theorem 2.1 (for 1 < p < ) and classical arguments
to prove Banach space versions of results due to Kolmogorov, Brunk, Chung and Prohorov
in the real-valued nonidentically distributed case. The proof of Theorem 3.2 is similar to
that of Theorem 3.1 and will be omitted. Part (a) of Theorem 3.2 has been proved by
Kuelbs and Zinn [6] by a different method (it is also possible to obtain part (b) from
Theorem 1 in [6]).

THEOREM 3.2. Let B be a separable Banach space. Let {X;:j = 1} be independent B-
valued rv’s, S, = Y3-1 X;. Assume that S,/n —p 0.
(a) If 1=p =<2, then Y E || X;||?/j? < o implies Sp/n — 0 as.
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(b) If p=2, then Y 21 E|| X;||°/j "% < » implies S,/n — 0 a.s.

4. Spaces of Rademacher type p and the Marcinkiewicz SLLN. It is well known
that if B is of Rademacher type p (1 < p < 2) then there exists a positive constant C such
that for any closed subspace F and any mean zero, p-integrable independent B-valued rv’s
X 1, *°° Xn ’

Egf (Y1 X)) = C ¥j-1 EqF (X)),

where gr is the seminorm defined by gr(x) = inf{||x — y ||:y € F}.
Let .# be the class of finite-dimensional subspaces of B, directed upward by inclusion.

THEOREM 4.1. Let B be a separable Banach space, 1 < p < 2. The following
conditions are equivalent:

(1) B is of Rademacher type p.

(2) For every independent identically distributed sequence {X;, j = 1} of B-valued
rv’s with E || X1 ||” < », EX; = 0, one has S,/n"" — 0 as.

Proor. (1) = (2). By Theorem 3.1., we only need to show that S,/n —p 0. For any
€ >0, F' € % using the above remark,

1
P{qs(S/n'?) > ) < — Eq} (S,)

1
=— - CYHi Eqp (X))

ne?
C
= p Eq&(Xy).

From E || X, ||” < « it easily follows that limpes E¢% (X1) = 0. Hence { £(S,/n'")} is
flatly concentrated ([1], page 279).

By the one-dimensional Marcinkiewicz SLLN, f(S,/n'”) — 0 a.s. for every f € B’. By
([1], Theorem 2.4) it follows that £(S./n'?) —,, 8, which implies S,/n'” —p 0.

(2) = (1). The arguments for the proof of (2) = (1) are variants of arguments
contained in Pisier [10]. We will indicate the main steps. If p = 1 there is nothing to prove,
so let us assume p > 1.

Put X = X, and define N,(X) = sup, E||S,/n*?|. Let M, = {X € L' (2, &, P; B):
N,(X) < «}. Then (M,, N,) can be shown to be a Banach space by a standard argument.

Assume E || X||” < o, EX = 0; then S,/n'”” — 0 a.s. and arguing as in [10], Proposition
2.1, one can show that N,(X) < «. Let L§ = {X € L”(Q, &, P; B):EX =0}, u: L§ — M, the
inclusion map. Then « is a closed operator and the closed graph theorem implies that « is
continuous. Therefore there exists a positive constant C such that

E|S.| = Cn'M(E| X |7

for all X € L§. Applying Proposition 5.1. of [10] we conclude that B is of Rademacher type
p. 0

REMARKs (a) Theorem 4.1. contains Mourier’s SLLN [9]. (b) Theorem 4.1. should be
compared with the following result, obtained by Mandrekar and Zinn [7] and by Marcus
and Woyczynski [8]: for 1 = p < 2, B is of the stable type p if and only if for every
symmetric X satisfying n?P{|| X || > n} > 0asn— «, S,/n'? -5 0.

Acknowledgment. Theorem 2.1.(2) was partly motivated by a question asked by V.
Mandrekar and J. Zinn.
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