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ASYMPTOTIC DISTRIBUTION AND MOMENTS OF NORMAL
EXTREMES

By K. A1vaApPAN NAIR

Edinboro State College

Let X (n) be the largest observation in a random sample of size n from a
standard normal population. In this paper we investigate the limiting behavior
of the distribution and the moments of X (n) for large n. The results of this
paper provide rates of convergence of the distribution and the moments of
X(n).

1. Introduction. Let X(n) be the largest observation in a sample of size n from a
standard normal population. Denote by F the standard normal distribution. Then the
distribution function of X (n) is given by P[X (n) < x] = F"(x). It can be shown that, as n
— oo, F™(t + t 'x) — exp[—exp(—x)] where ¢ = ¢, is given by

1.1) 1-F(t) =1/n.

(For example, see Cramér (1946) page 374.)

Some results on the rate of convergence of F"(¢ + ¢ 'x) can be obtained from Theorem
2.10.1 in Galambos (1978) page 113. In this paper a more specific result concerning the rate
of convergence of F"(t + t 'x) is given. The results of this paper and Galambos’ are
different in the sense that Galambos’ result pertains to arbitrary F' and finite and infinite
values of n while our result is an asymptotic one for the special normal F. Galambos’ result
is in terms of n[1 — F'(a, + b,x)] for which no rate of convergence is given. It is applicable
for values of x satisfying certain restrictions which are satisfied for all but small values of
n. The results of this paper are asymptotic but in terms of explicit expressions. These
results are more useful for analytical studies than for calculations.

Recently Hall (1979) has shown that if the constants a, and b, are chosen in an optimal
way then the rate of convergence of F™(a, + b.x) to exp[—exp(—x)] is proprotional to 1/
log n.

Let, for r > 0, m,(n) and m, be the rth moments of F*(¢ + ¢ 'x) and exp[—exp(—x)]
respectively; i.e.,

m.(n) = J x"dF*(t+¢'x) and m, = j x" d exp[—exp(—x)].

Pickands (1968) has shown that m.(n) — m, as n — . In Section 3 we give a result on the
rate of convergence of m,(n). For r = 1, 2 results on the rate of convergence of the moments
can be found in Cramér (1946). McCord (1964) has given similar results for some classes
of distributions which do not include normal or gamma distributions.

2. Distribution of X(n). Let F and f stand for the distribution function and the
density function of the standard normal variable. We need the following facts about Mills’
ratio. For details see Johnson and Kotz (1970) page 278. Mills’ ratio R (x) is defined by

2.1) R(x) =[1-Fx)]/f(x), x>0.

R (x) satisfies the following inequalities.
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(2.2) x/(*+1) <R(x)<1/x
and
2.3) 2(x® + 4)2 + x] ' < R(x) < 4[(«* + 8)"* + 3x]".

LEMMA 2.1. Let H(¢, x) = F(t + t'x), h(t, x) = n log H(t, x) + €%, a(x) = e *(x* +
2x)/2, and b(x) = — e ™*(x* + 4x° + 8x® + 16x)/8. Then as n — =, Z[eh(t, x) — al(x)] >
b(x).

Proor. Note that ¢ — o iff n — . Also as n — », we have H(¢, x) — 1 and nf (£) ¢!
— 1. Write
log H(t, x) + n”'e™*
n?

L; =lim A (¢, x)£ = lim

The denominator can be replaced by ¢ 3£ (¢) sinée n™ ¢ [ *f ()] = [nt 'f ()] > L.
Also

dn _d[1-F@®)] _

dt dt B

dfe)

Therefore
log H(t, x) + n"'e™
t7°f (2)
i GO+ ) (1 — t7x) — f(t)e™
- 370 - £ @)

L1=11m

by L’Hospital’s rule. It follows that

— _2—1—22 _ 42 —Ht —X
L1=ﬁmexp( X t x)(i t—zt x) (¢, x)e .

One more application of L’Hospital’s rule gives L; = a(x). Write

=1 ,—x __ 42,-1
L; = lim #[£h(¢, x) — a(x)] — i 8 H(t, x) + ;‘_4:_1 t7n"alx)

Replace the denominator ¢ *n™" by ¢7°f(¢), apply L’Hospital’s rule, and multiply by H (¢,
x). Then we have

exp(—x — 27 %% (1 — ¢ %) — H(t, x)e™ + t 2H(t, x)a(x) _ 2a(x)H(, x)]

L, = ﬁm[ ¢ T (O)n

The limit of the second term is 2a (x). To find the limit of the first term apply L’Hospital’s
rule and use the fact that ¢’f(¢) — 0 for all 7. Then

i exp(—x—2""t 2D 21 — ¢ %x) + exp(—x—2""t %P 2x — 2H (¢, x)a(x) _

L, =1 472

2a(x).

One more application of L’Hospital’s rule gives the limit in the lemma.

THEOREM 2.1. Let G(x) = exp[—exp(—x)]; then, for n — o,
PIE(H ¢, x) — C(x)} — a(x)G(x)] = [b(x) + 2'a%(x)]G(x).

Proor.
e[ {H (¢, x) — G(x)} — a(x)G(x)] = [t — 1) — a(x)]G(x)
(2.4) =[2{th(t, x) — a(x)} + t*h2(t, x)
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l—3
x{% + R x) 2,_3ﬂ}:|G(x)‘

By Lemma 2.1, A (¢, x) — 0,

g BTG 0) h~ 3(t x)

The theorem follows from (2.4).

<exp[h(t,x)]— 1, and £kt x) > a(x).

3. Moments of X (n).

LEMMA 3.1. For fixedr and d, r>0,0<d < 1, x"[{H"(t, x) — G(x)} —a(x)G(x)]
is bounded for x > — dt* by integrable functions independent of n.
Proor. Using the Taylor expansion of log H (¢, x) and (2.1), we get
2[R (t, x) — a(x)]
=t[-nR(t+t'x) f(t+t'x) +e*] — Lalx) + C(¢, x)
where by the inequalities (2.2),
|C(t, x)| < t'n R3(t + £ 'x)f2(t + £ 'x)F ' (¢ + £ 'x)
<3+ 1D+ 2 EOF A - d)t]le”™
<t*+ 1A -d)¥Q)F Q- d)tle™ for x> —dt’

Hence | C(¢, x) | < e for large ¢t. Writing n™" = R(¢)f (¢) and using (2.3) for R (¢) and R(¢
+¢t7'x) we get fort + t'x > 0,

t[-n R+t x)f(t+t7'x) + e ] — t2a(x)

[{t +t )2+ 832+ 3(¢ + t %) (262 — 2% — 2x) — 4L*[(¢% +4)2 + t]exp (—2't%x?)
A+t x)* + 82+ 3(t + t'x)]

xXe™*
To find a bound for the numerator, write
[E+¢x)?+ 8] 2=t +t2x)[1+472A + ¢t %x) 2+ - -]
which is valid for x > —d¢2, ¢t >V8(1 —d) ™, and 0 <d < 1; and (¢2 + 4)"> = ¢t(1 — 2¢2 +
..)fort>2 and exp(—27¢ %% =1 -2 %2 + ... .

Using the above expansions in the numerator of (3.1) we see that it is greater than
tki(x) for some function %; such that ki(x)e™ is integrable. Also for x > —dt? the
denominator is less than 10¢(1 — d) if ¢ > ~/§(1 — d)7.. Thus, for x > — dt?, and ¢
sufficiently large, t*[t*h(t, x) — a(x)] > 107'(1 — d) 'ki(x)e™™.

Similarly treating the other terms in (2.4) we can find integrable functions such that,

for x > —dt?, t*[t*{H"(t, x) — G(x)} — a(x)G(x)] is bounded below and above by these
functions.

LEMMA 32. ForO<d<1,andi,j=0,[-% t'|x|/H"(t, x) dx — 0 as n — o.

ProOF.

—dt? (1-d)t
j t|x|’F™t + t'x) dx = j t* y — t|’F™(y) dy

—o0

(3.2)
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(1-d)

0
= t1F"(0) J |y = t1’F(y) dy + f £ 2 — 1VF(t2) dz.
— 0

The first term on the right-hand side of (3.2) converges to zero since t*F"1(0) converges
to zero and §°., y"F(y) dy is finite for all nonnegative r. In the second term the integrand
converges to zero uniformly. To see this note that, by (2.2),

£ F™(tz) < t*F"[(1 — d)t] < ¢* exp[—n{l — F((1 — d)t)}]

o R(A- DB - D)
- exp[ RO () }" 0.

Therefore, the last term in (3.2) also converges to zero. This proves the lemma.

LEMMA 3.3. §-%° ¢|x|'G(x) dx — 0 as n — o.

PrOOF. §=% ¢'|x|’G(x) dx =< t'exp[—2 "exp(dt?)]§ =% | x|’exp[—2 "exp(—x)] dx — 0
asn— o,

THEOREM 3.1. ti[m.(n) — m.] + 27 t*r[mr1 + 2m.] = r[(r + 3)mpse + (12 + 4r)m,.,
+ (16 + 4r)m,]/8 as n — © where m,(n) and m, are the rth moments of H"(t, x) and G (x)
respectively.

PROOF. m,(n) — m, = § % x"d[H"(t, x) — G(x)] = —r § x"'[H"(t, x) — G(x)] dx.
Therefore by Theorem 2.1 and Lemmas 3.1, 3.2 and 3.3 we get

t'[m.(n) — m;] + 27t [me + 2m,]
=— rj [t*x[H"(t, x) — G(x)] — 2 'a(x)G(x)] dx

- — rj [6(x) + 27 (x)]x" G (x) dx.

This, together with the fact that § x*e¢ G (x) dx = § x*¢ *dG(x) = — kmi—1 + ma, gives
the result of the theorem.
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