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A LIMIT THEOREM FOR THE MAXIMUM OF AUTOREGRESSIVE
PROCESSES WITH UNIFORM MARGINAL DISTRIBUTIONS'

By MicHAEL R. CHERNICK

Oak Ridge National Laboratory

A class of first-order autoregressive processes is given for which the
extreme value limit theorems of Loynes and Leadbetter do not apply. A limit
theorem is derived for these processes that depends on the parameter r, an
integer greater than or equal to 2.

1. Introduction. The class of processes considered in this paper are stationary, first-
order autoregressive processes with uniform marginal distributions. These processes shall
be referred to as uniform AR(1) processes.

DEFINITION 1.1. The uniform AR(1) processes are defined recursively as X =
1 . . .
- X%, + e, where ris an integer such that = 2 and the €,’s are a sequence of independent,

identically distributed (i.i.d.) random variables and ¢, is independent of X @,. The distri-
bution of the €,’s is given by P(e, = k/r) = 1/rfork=0,1,2,...,r— 1, for each n = 1. Let
X{ be distributed uniformly on the interval [0, 1] (denoted X¢” ~ U0, 1]). This defines
a family of strictly stationary autoregressive processes since 1/r < 1 for each r = 2 and
x ~ U[O0, 1] for each n. A simple characteristic function argument shows that x "’ ~ UT0,

1.

2. Leadbetter’s theorems. Let M, be the maximum of Xo, Xi, ..., X,.. Loynes (1965)
showed that if a strong mixing condition is satisfied, M, appropriately normalized can only
converge to one of three extreme value type distributions. Further, he showed that if a
sufficient condition is satisfied, the norming constants and the limiting distribution are the
same as if the sequence were i.i.d. Loynes refers to the mixing condition as uniform mixing,
but strong mixing is more commonly used in the literature. Leadbetter (1974) strengthened
this result by weakening the mixing condition. Under the condition he calls D(u,), the first
theorem of Loynes holds and if, in addition, D’(u,) holds [D’(u,) is similar to Loynes’
condition] the second theorem of Loynes also holds. A converse to Leadbetter’s theorem
has recently been given by Davis (1979). Since the conditions D(u,) and D’(u,) will be
used in subsequent sections, Leadbetter’s definitions follow.

DEFINITION 2.1. A strictly stationary sequence {X.,} is said to satisfy the condition
D(uy,) if for any integers 1 = i1 < s < +++ < L <1 < -+ < Jo=nwithj1 — i, =,
[ Fop, s i W@n) = Fopig i (@n) Fjy g,y () | = 0y where limy o, im, e &,y = 0 and
{un} is some sequence of real numbers. F; ,, ..., (u,) is notation for P[X; =< u,, X;, <
Uny ++ o, Xi = u,].

DEFINITION 2.2. D’ (u,) is said to hold if

lim sup nnow Y-z P[X1 > ttur, X; > tne] = 0(71;),
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When D' (u,) holds in addition to D(u,) Leadbetter gets the following theorem.

THEOREM 2.3. Let M, = max(Xo, X1, «-+, X,) and M} = max(X{, X%, --- X) where
{X..} is a strictly stationary sequence with X, having distribution function F for each i
and {X}} is an iid. sequence with X} also having distribution function F. Let u, = un(x)
= anx + b,. If for each x, D(u,) and D'(u,) hold and P[M} < a,x + b,] — G(x) where G
is one of the three extreme value type distributions, then P[M, < a.x + b,] — G(x) also.

It is worthwhile noting that another theorem of Loynes holds with D(u,) replacing
strong mixing. This is an improved version of Theorem 2 in Loynes (1965), page 995.

THEOREM 2.4. Let {X,} be a strictly stationary sequence satisfying D(u.) and suppose
for u, = un(x) P[X1 > u,] = (1(x)/n) where A, = B, means A,/B,— 1 as n — . Then
P[M, < u,] — exp(—kr(x)) for some 0 < k < 1, provided it converges.

This theorem was not given by Leadbetter (1974), but it follows quite easily. Leadbetter
shows that D(u,) implies

(2.1) limyw P(My, < ) — P(Mp < u,) =0

for n = ml. Loynes (1965) showed that (2.1) for / = 2 is sufficient to determine that the
limit can only have the form exp(—kr(x)) for some 0 < k£ =< 1. Since (2.1) is all he really
uses in the proof, the combination of these two results yields Theorem 2.4.
O’Brien (1974) gives examples which show that all k£ between zero and one are possible.
In Section 4 it will be shown that P[M{ < u,]— exp(—(r — 1)x/r) where MY’ = max{X{’,
", ..., X}, and {X{"} is a uniform, AR(1) process. Theorem 2.4 holds for the uniform
processes with 2 = (r ~ 1)/r.

3. Checking Leadbetter’s conditions.

THEOREM 3.1. The uniform AR(1) processes satisfy the condition D(u,) with o, =
0'/(1 = p) and u, = 1 — (x/n) where p = 1/r.

Proor. For convenience we suppress the superscript r. Since 1/r > 0, Theorem 1 in
Chernick (1977) applies and {X.} is an associative process. Hence
0=Fi, . .ipjri(Un) = Fi. i (@a) Fyy..... ., (Un)
=Fi,...;; ) [PXj, < tn, ++, X, < tn | Xiy S U, -+, Xi) < W)
- PX;, S U, +++, X, = )]
Let W), = X, — p”#X; fort=1,2, ..+, q.
PXj = up, o+, Xj, S un| Xsy < ttn, « -+, Xi, =< un)
=SPW, = uu, -+, W), S u,)
=PX;Sup+p" "X, -, X;, < un +p" 7" X,)
=PX =St -+, Xj, S up) + Y1 Plun < Xj, < un + p’ %]
=PXj,<un, -+, X;, < u) +p'/(1—p).

Computations show lim infi . lim sup,_. nkYj-2 P(X1 > e, Xj > tn) = x/(r — 1) > 0.
So D'(u,) fails.
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4. The Limit theorem for the uniform AR(1) processes. For certain values of
m < n, we consider P[M,, <1 — (x/n)]. We have P[M,, <1 — (x/n)] = P[M,-.1 <1 — (x/
n), Xn=<1- (x/n)] = P[My,-1 =1 — (x/n), (Xn-1/1) + €n = 1 — (x/n)]. Conditioning on
€n gives
(r—1)
r

“.1) P[M,,. <1- f} = P[Mm_1 <1- f]
n n

+1P[M 1<1—— X 1<1—rf]
r n

if (r — 1)x/n < 1. We also have foreach 1 =i=<j— 2

(4.2) P[Mm <1-%Xx,<1- r'f} _r=D P(M,,,_l <1- f)
n n r n

1
4= P(Mm_1 <1-%x,.,<1- r’*lf>
r n n

where j is the integer for which 1 — r''(x/n) = 0 > 1 — r'(x/n).

These recursive type formulae enable one to calculate P[M,, <1 — (x/ n)] for every m
= j — 1. Repeated application of (4.1) and (4.2) yield
{(m + 1)r — m}x

rn

(4.3) P[Mmsl—g] =1- for each m=j— 1.
Let £ =[n/j]. We see that P*[M,_; <1 — (x/n)] = exp (—((r—1)x/r)) as j, k — oo,

THEOREM 4.1. For the uniform AR(1) processes

-1
X Ye-orz2, P[Mi,’) =1- %] - exp<— r-Dx r )x) forall x=0.
Proor. We will show for & = [n/j]
(4.4) IP[M,,SI—%}—Pk[Mwlsl—%]'—)O asn and j— oo.

Wedefinel,={(¢i—1)j, .-+, jy—1—myand If={ij—m, ---,ij— 1} fori=1,2, ---, k.
We choose m so that m — « and m/j — 0 as j, n — «. We denote by M(I,) the maximum
of the X;’s for j € I,.

IP[Mnsl—f]—Pk[Mj_lsl—f}
n n
S‘P[M,.sl—f]—P[M,ksl—fﬂ
n n
+ P[n:;l (M(I,-)s1—f>] —P[M,-ksl—f”
n n

+ P[r\ﬂLl (M(I,) <1- f)] — PHM(I) <1 - f) l
n n

+ Pk(M(Il) =1 —f) - Pk<114,_1 =1 —f) l
n n
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We will show that all four terms tend to zero as j, m and n — . Using (4.3) and
following Lemma 2.4 of Leadbetter (1974), it is easy to see that the first, second, and fourth
terms tend to zero.

It remains only to be shown that the third term tends to zero. Let A; = {M(l;) =1 —
(x/n)} fori=1,2, ..., k. We have

|P(Nk1 A) — T[T P(A)) | = P(AR | NEL Ay) — P(A) + P(Ag-| NEZA)
— P(Ap1) + - -+ + P(A2| A1) — P(A2).
We shall show that for any k= s = 2

0= PN 4) - Pla) <2
and hence
3
| P(Mie A) = [z P(AY) | < Shr =,
n J
Let g =j — 1 — m. We have P(A,) =1 — ( ¢ + 1)x/n) + (gx/rn) and

P(A,

1-x/n
X X X
Nzl A) = J P[X(s—l)js 1—— o, Xg1-m=1——
o n ‘n

(4.5)
Xis—1)j-1-m = U] dF(v)
where
Fy(v) = P[X(s-1)j-1-m = V| [ghat; Al
By stationarity for each s the integrand in (4.5) is equal to

X X
(46) P[Xq+m+1$1_;, "'7X2q+m+151_; Xq=v:|-

For each I, X,+1 = p'X, + W, where W, is a discrete uniform random variable with
P[W,= (h/r")] = (1/r') for h=0,1,2, ---, (' — 1). Now P[Xgsmn = 1 — (x/n), ---,
Xogim =1 — (x/n) | X, =v] = P[Wpn =1 — (x/n) — p™" v, «+v, Woag =1 — (x/n) —
p™ 9] and we observe that form + 1<l=m + ¢

l

P[Wls1—f—p’v]=1 if v=1-22%
n n
ri—1 . rix

=— if v>1-—.

r n

This observation together with (4.5) and (4.6) show that

1-r"1x/n 1-~2x/n

PA,INZHA) = J’ dF,(v) + f
0

1-ri~lx/n

P[ Warg=1— % - p'"*"v] dF(v)

1-r/"3x/n
@7n + J' P[ Winig1=1-— % — o™y, Wig<1— % - p"”qu] dF(v)
1

—ri~2x/n
1-x/n x x
+ .. +J’ P(Wm+1S 1———‘Pm+lv, ) Wm+q-S 1___pm+qv) dF(v).
1-rm*lx/n n n
It can be shown that foreach0=v =<1

(4.8) U= P[X-1-1-m = V] = Fy(v) = P[W,<v]=v+ p’
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The integrands in (4.7), P[W,; <1 — (x/n) — p'v, +++, Wiy = 1 — (x/n) — p™ ] =
P[W, =1 — (x/n) — p'v] =1 — p’ over the interval of integration for each I So (4.7)
simplifies to give

PA,|NiZH A) = Fs<1 - f) + i (1 - —,1_—,) [F(l - f)
n r n

(4.9)
- Fs<1 - rf—’f>] + {1 - Fs(l — p f)}(l —%)
n n r

Repeated use of (4.8) in (4.9) together with some algebraic simplification yields

o (g + 1)x X q 1
PA, NS A) <1 —q—n—+q—+%+pq2?-_-l;l—_l

rn
+ 1 1

51_u+q_‘x+_, 2——7:5 .
n rn r’ r’="

Hence

PA.|NZHA) — P(Ay) <2+ 3, <3
n r " n i
This shows that the third term tends to zero as n, j — o« and completes the proof of the
theorem.
This result illustrates the importance of the condition D’(,) in Theorem 3.1 Leadbetter
(1974). It also shows that simple autoregressive processes can fail to satisfy the condition
and, hence, different limits can be expected.
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