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THE MEAN NUMBER OF REAL ROOTS FOR ONE CLASS OF
RANDOM POLYNOMIALS

By M. SHENKER

University of Michigan
Let &, &, -+, &, --- be a Gaussian stationary sequence of random

variables. We study the asymptotic behavior of the mean number of real roots
of the polynomial P,(x) = & + &x +-- -+ &x” as n — .

Let &, &, - -, &, . . . be a Gaussian stationary sequence satisfying the conditions

(*) E¢,=0,Var &, =1

(**) for any n, the distribution of (&, &, - - -, &) is nonsingular. We put p, = E& &. and
denote by »,(a, b) the number of real roots of the polynomial

Pn(Z) =£0+§1Z+ e +£n2"

in the interval (a, b).

Let us note that:

(1) in view of the assumption (**), P,(z) has no multiple roots with probability 1;

(2) Ev,(0, 1) = Ev,(1, ), Ev,(—, —1) = Ev,(—1, 0). Ev,(—1, 0) and E»,(0, 1) may be
different.

The purpose of this paper is study of the behavior of Ev,(—%, ©) as n — .

The problem reduces to studying E»,(0, 1), for »,(—1, 0) is the number of real roots in
the interval (0, 1) of the polynomial @,(z) = P,.(—z) whose coefficients &, — &, - -+, (—1)",
form a Gaussian stationary sequence with the correlation function p, = (—1)*ox. Kac
proved (see [1]) that if &, &, - - - are independent (p. = 0 for 2 > 0) then, as n — oo,

2
(1) Ev,(0,1) ~ —1- Inn and Ev,(—%, ) ~—Inn
2 T

for in this case pr = pz.
It turns out that these asymptotics remain valid if all the correlations are small. One of

the main results of this paper is

THEOREM 1. If
Tha1|pe| < %

then
1
Ev,(0,1) ~—Inn
2

and

2

Ev,(—, ®) ~—Inn

kg

asn— o,
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In the condition of this theorem, the strict inequality cannot be replaced by a nonstrict
one.

ExamPLE 1. Let 7o, 71, +++ , 7, - - - be a Gaussian stationary sequence of independent
random variables, Eny = 0, Var 7o = 1. We define & = (=1)*(nx + mx+1)/v2. Then
&, &, - -+, &, - - - is a Gaussian stationary sequence satisfying (), (**); p1 = %, pr = 0 for
k > 1, and in this case Ev,(0, 1) = o(ln n), Ev,(—», ©) ~ (1/7) In n.

It turns out that if p, = 0 then the asymptotics (1) on (0, 1) remain valid under weaker
restrictions on p;.

THEOREM 2. If p,. = 0 for all k and ¥%-1 kpr = o(n) as n — « then Ev,(0, 1) ~ (1/2m)
Innasn— .

ExaMPLE 2. Letn, 1o, 11, -+, M, - - - be a Gaussian stationary sequence of independent
random variables with En = 0, Var n = 1. We define & = «/E) + V1 — pnr where 0 < p <
1. Then &, &, ---, &, --- is a Gaussian stationary sequence satisfying (), (%), pr = p
when &£ > 0.

In this case Ev,(0, 1) = o(In n) as n — oo,

Theorem 2 asserts nothing about Ev,(—1, 0), for the signs of the coefficients 5, = (—1)*0x
alternate. Note that in Example 1 the function g, satisfies the conditions of Theorem 2, yet
the asymptotics (1) in (—oo, o) are not valid. In the case of alternating sign coefficients,
strong assumptions concerning their regularity are necessary.

THEOREM 3. If
(1) p2r = 0;
(2) the function | px| is strictly concave;
3) Yi-1k|pr| = o0(n) asn— oo,
then

2
Ev,(0,1) ~ —1- Inn and Ev,(—»,©) ~—Innasn— o,
27 T
This theorem is an easy corollary from the following

LEmMmA. If
(1) p2r = 0;
(2) p2r = —par+1;
(3) par + 2p2r+1 + p2rs2 =0 and there exists j such that psy + 2p3i+1 + paje2 > 0;
4) Yi-1k|pr] =0(n) asn—
then Ev,(0,1) ~ (}/2r) Inn as n — .

Example 1 shows that without any regularity assumptions, no restrictions on the rate
of convergence of p;. to 0 are sufficient for the asymptotics (1) to hold, and Ev,(—1, 0) and
Ev,(0, 1) may differ even by order.

Let us sketch the proof of these results. )

Under the assumptions (*), (**), the Kac-Rice formula holds (see [2]):

1

Ev,(0,1) = % f (AC-B*»?A7'dx where A = A,(x) = EP:(x),
0

B = B,(x) = E[Pn(x)dP.(x)/dx], C = C.(x) = E[dP,(x)/dx]".

It is easy to see that
A=3kox” +2 Y5 (ox T 27



512 M. SHENKER

1 — a2n
= 2 (1 — A /(1 — ),
1-—4°
Similar expressions can be obtained for B and C. One finds that if ¢ is sufficiently large
then in the interval [0, 1 — en™! In n] the terms containing x” are negligibly small because
x"< (1 —en'In n)" = O(n™°). Taking it into account we obtain that

1—en~lInn
J’ (AC-B?)? A~ dx ~ % In n;
0

and in the interval [1 — en"! In n, 1] there are not many roots for the interval itself is small.
The following example gives an idea of the significance of the condition (**).

ExaMPLE 3. Let m be a natural number, ¢, = £, if £ = j (mod m), £, and ¢; independent
otherwise. Evidently,

_J1 if &= 0(modm)
PE=10 if &5 0(mod m)

and the condition (**) does not hold. Let n be such that (n + 1/m) = is an integer. Then
P.(z)=b+&z+ o0 + Epaz™!
+ 52"+ e F 2™ L
+ £2™00 4+ g 2™
=@E+bzt e+ 2™ )1+ 2"+ -0 + 27U

has at most m real roots counted according to multiplicity.
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