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A METHOD OF APPROXIMATING EXPECTATIONS OF FUNCTIONS
OF SUMS OF INDEPENDENT RANDOM VARIABLES™"?

BY MicHAEL J. KrLass

University of California, Berkeley

Let X, X,, .-+ be a sequence of independent random variables with S,
= Y1 X.. Fix a > 0. Let ®(-) be a continuous, strictly increasing function on
[0, ) such that ®(0) = 0 and ®(cx) < c*®(x) for all x > 0 and all ¢ = 2.
Suppose a is a real number and ¢/ is a finite nonempty subset of the positive
integers. In this paper we are interested in approximating E max,cs ®( | a +
S, | ). We construct a number b,;(a) from the one-dimensional distributions of
the X’s such that the ratio £ max,es ®(| a + S, | )/®(bs(a)) is bounded
above and below by positive constants which depend only on a. Bounds for
these constants are given.

0. Introduction. Let X;, X5, ... X, be independent random variables whose distri-
butions are considered to be given, and S, =Y, X.. Von Bahr and Esseen (1965) have
shown that when the variables have zeromeansand 1= 8<2,E | S, | =2, E | X | A
When the variables are further assumed to be identically distributed, Davis (1973) obtained
a lower bound of the form E | S, | = c:t where c; is a constant and ¢ is some function® of
the truncated second moment* of X. Under an additional moment condition, he also
proved that E | S, | # < c,t*, where c; is another constant and 8 a number between 1 and
2. More recently, Klass (1979) obtained uniformly accurate upper and lower bounds for
E | S, | which are independent of X for all n = 1. For each n, the bounds were shown to
be nearly best possible. They are best possible asymptotically. For 8 = 2, the order of
magnitude of E | S, | # was found by Brillinger (1962) in the identically distributed, mean
zero case, and by Rosenthal (1970) in the nonidentically distributed case.

Suppose ¢(-) is any function which is strictly increasing and continuous on [0, ©) such
that ®(0) = 0 and some a > 0, ®(cx) < c*p(x) for all x > 0 and all ¢ = 2. (Any increasing
continuous function on [0, «) satisfying ®( | x+y | ) =y(@(|x|) +P(| ¥]|)),y>0,is
of this type and conversely.) Can the n-dimensional integral E®( | a + S, | ) =2 ---

% ®(|a + x1 + --- + x,|) dFi(x1) --- dF.(x,) be approximated in terms of 1-
dimensional X;-integrals? (Here F;(-) is the distribution function of X; and a is any
constant.) We construct a number b, based on a, ®, and {F;:i=1,2, .., n} and use ®(b,)
to approximate E®( | a + S, | ). We derive uniform bounds (depending only on a) for the
ratio R, = E®( | a + S» | )/®(b,). In fact a more general result is obtained. Let J be any
nonempty subset of {1, 2, ---, n}. A number b, is constructed such that Ry = E max,cg
D(|a+ S |)/P(by) is also uniformly bounded away from 0 and . Actually, the special
case a = 0 already embodies the general one. Nevertheless, we find it convenient to isolate
any constant terms.
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We split the derivation into a number of sections. Section 1 contains a few technical
lemmas that are needed in subsequent proofs. Section 2 introduces the quantities to be
used in the construction of b,;. In Section 3, an upper bound is obtained for R;. Owing to
a certain pathology, this particular bound can be arbitrarily poor. Section 4 discusses this
phenomenon and suggests a remedy: centering the X’s at their medians. Lower bounds for
E®( | a + S. | ) in terms of certain tail ®-moments® and truncated second moments of Y;
= X; — med X; are presented in Section 5. These are based on certain inequalities for
symmetric random variables. Truncated second moments and tail ®-moments govern the
order of magnitude of E®( | a + S, | ) except when both the extremal Y’s can be neglected
and the distribution of @ + S, is sufficiently concentrated about some nonzero value. Then
the median of ®( | @ + S, | ) = ®( | med(a + S.) | ) is a good approximation for E®( | a
+ S, | ). The median (or some other nearby quantile) can be approximated in terms of
quantities of the form a + Y meds X; + Y2 EY,I(| Y;| = b), termed “truncated
expectations” or “truncated means”. Details appear in Section 6. Section 7 contains the
main theorem together with several remarks. These remarks touch on (i) cases in which
centering at medians is unnecessary, (ii) alternative construction of truncation points, and
(iii) one-sided bounds using another approximation scheme applicable in special cases.

Given an appropriate generalization of the notion of the median of a random variable,
these results can be extended almost without change to sums of independent random
elements taking values in a Hilbert space. Moreover, they can be further extended to
Banach spaces, subject to some modification of the approximating quantities. These results
will appear in a forthcoming paper [9].

1. Preliminaries. We will be mainly concerned with the following two classes of
functions:

(1.1) F= {f(-): f(-) is continuous and strictly increasing on [0, %), and satisfies f(0)
=0, f(x) = f(—x) and f(®) = lim. . f(x)}.
(1.2) F={®PEZF:0<B(cx) = c*®@(x) for all x>0 and all c = 2}.

Whenever we have a sequence of independent random variables (rv’s) Xi, Xz,- - -, the
symbol S, will mean the nth partial sum }%; X;. The median of smallest absolute value
of an rv X is written med X and a v b (a A b) denotes the maximum (minimum) of the real
numbers @ and b, with a* =a v 0, a” = (—a) v 0. A denotes a Poisson rv with mean A.

We require the use of certain lemmas whose proofs we omit. We state them here for
later reference. The first three can be proved via variational arguments. They are used in
Lemma 3.3, Theorem 5.1, and Lemma 6.1 respectively.

LEMMA 1.1. Suppose a = 0 and let I, I, ---, I. be independent indicator rvs. Let -
Y1 P(Ij=1)<q=1 Then

E(1 + )" if a=1

E(l + 27=1 Ij)“ = {2zxq + (1 —_ q) lf a<l.

LEMMA 1.2
inf{]'[::l1 Q-p)0=p;=1l,1=<i=nYLip;<q=1; Maxizizn i = Pn}
n—1
=(1—2> le® as n—o w.

n

LeEMMA 1.3. Letn =1. Then

% Quantities of the form E®(| Y.|)I(| Y:| > b).
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inf([[,  A-p):0=p=sll=sisnYyLpsqsli=1-gq

The next result is well known.

LEMMA 1.4. Let p, v be positive o-finite measures on —» < a < b < o, such that for
any a = x = b, p[x, b] = v[x, b]. Let f be any nonnegative, nondecreasing function on
[a, b]. Then for any a < c¢ < b,

f(x) du(x) = f(x) dv(x).

[e,b] [e,b]

When f is absolutely continuous, the inequality follows from an integration by parts.
However, since every nonnegative, nondecreasing function is the increasing limit of such
absolutely continuous functions, application of monotone convergence establishes the
result in general.

2. The approximating functions. Let X = (Xi, X, - - -, X,,) be a vector of rv’s. For
y > 0 and any constant a, define

(2.1) Msi(y,a)=sup{m:y| a+ YL EXI(| Xi| =m)|=m}.

The set defining Mx( y, a) is nonempty. Application of dominated convergence shows that
limm . E(| Y| /m)I(| Y| <m) =0 for any rv Y. Hence Mx(y, a) is well-defined and
finite. Mz(y, a) may be called a truncated mean function or simply truncated mean. We
note that right-continuity of trucated expectations (expectations of truncated variables)

yields
2.2) y|la+YL EXiI(|X|=m)|=m  for m=Mz(y, a).

Let f € & (see (1.1)). As noted in the introduction, the approximation of Ef(a +
¥'7-1 X.) depends not only on truncated means, but also on truncated second moments and
tail fmoments. It is convenient to combine these last two items, adding their effects.

For each y > 0 let K% (y) equal Y 7-; Ef(X;) if this sum is 0 or c. Otherwise let Kz (y) be
the unique positive real number such that

(2.3)  y Y EXI(|Xi| < k) + y(E*/f(k)) Ti1 EFX)I(| X:| > k)

=K if k=Kz(y)

{>k2 if 0<k<Kx(y)
< k? if k> Kz(y)

Kx(-) is the (generalized) K-function of X determined by f. The special case when f(x) =
| x| and X = X, produces the K-function introduced in Klass (1976). To check that (2.3)
actually holds for some Kz (), divide by £? and note that for any rv X such that 0 < Ef(X)
< o,

g(k) = E(X/R)I(| X| < k) + E(fX)/f(R)I(| X| > F)
= E(|X| A k)*/E* + E(f(X) — f(R))*/f(k)

is the sum of two nonincreasing, continuous functions. The second function is strictly
decreasing on [0, ess sup| X |] while the first is strictly decreasing on [ess sup| X|, o).
Therefore g(-) is strictly decreasing and continuous on (0, «). Moreover, it has range
(0, ). Thus, a unique, continuous, strictly increasing functionK z (-) exists satisfying (2.3).

3. The upper bound. We devote this section to obtaining an upper bound for
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E®(a + Yi-1 X)), with ® € £, for some a > 0. First we need an inequality giving an
exponential bound for a certain type of tail probability.

LeEMmMA 3.1. Let Yy, Ys, ..., Y, be independent r.v.’s with finite second moments and
P(Y;=b)=1for1=i=<nandsome0=b=w Supposey>0and Y EY? =<1’ Then

P(maxicjen Y1 (Y. — EY)) = y) < exp{yb~ — (yb™" + v®b %)log(1 + byv?)}.

Proor. Let x > 0. A straightforward generalization of an inequality in Lemma 5.1 in
Klass (1976) gives

P(max;<j<n Y, (Y: — EY)) < y) = exp{—xy + v°b7%(e™® — 1 — xb)}.
To obtain our lemma, simply put x = 5™ log(1 + byv~?).0

The next lemma utilizes the above bound on tail probabilities to derive an inequality
for integrals involving sums of bounded centered variates.

LEmMA 32. LetY:,Ys,..., Y, beindependent r.v.’s such that maxi<j<,| Y:| < b with
probability 1 and Y7, EY? < b® for some 0 < b < «. Suppose ® € %, for some a > 0. Then

E maxi<j<, ®(¥i-1 (Yi — EY))) < C()@(b)

where C(a) is a constant depending only on a.

PrROOF. If b = 0, the result is obvious. Observe that maxi<;<» ®(YL, (Y; — EY)) =
®(). Hence if b = o the result is also obvious. So suppose 0 < b < . Using Lemma 3.1
in the second inequality below,

P(maxij=n | Y1 (Yi— EY) | =)
=< (P(maxi=j=n Z{=1 (Y:— EY)) = y) + P(maxisj<n Z{=1 (EY;—=Y)=y) Al
< 2exp{yb™' — (yb '+ Dlog(l +yb™)}) A 1=1[y,®) (say).

v is a probability measure. Application of Lemma 1.4 yields

00

E®(maxi<j<, | Y1 (Y;— EY)) | )Sf D(y) dv(y)
0

00

= ®(4b)1[0, 4b) + J’ @(y) dv(y)

4b
= 4°®(b)[0, 4b) + D(b) f (yb™Y)* dv(y)
b
(since ® € %)

=0(b){4" + J’ (67" — 4% dv(y)}
4b

= ®(b){4* + 2a f x*'exp[x — (1 + x)log(1 + x)] dx)
4

= C(a®(d). ]
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REMARK 3.1.  Since x — (1 + x)log(1 + x) = — x for x = 4, a crude upper bound for C(a)
is
(3.1) Cla) =4+ 2I'(a + 1), a>0

where I'(-) is the gamma function.
The next result bounds the influence of the “big” X’s.

LEMMA 83. Let ® € % for some a > 0. Let X = (X1, Xz, -+, X,) be a vector of
independent rv’s such that Y1 P(| X;| > b) =q forsome0<b=wand0<qg=<1.
Then

32) EOYL | Xi|I(|X.| >b))
={2%9+1—-q) VEQ+ Z)} YL EQXI(| X;| >b)).
Thus if b = Kz (y) for some y = 1 (see (2.3)), then
(33) EQ(Xi | X | I(| Xi| >8) =y {2y +1-y™) v E(1L+ Z-1))0(b).
ProoF. Inequalities (3.2) and (3.3) are obvious if b = . Hence suppose 0 < b < oo,
Write X! = X;I( | X; | > b). Since
2 | XV | =L I(| Xi| > b)) maxicj<n | X) |,
we have
QY | XV ) =T QL I(]| Xi| >b) | X))
=20 (| X7 | [1+ T, I(| Xi | > 0)])
=Yia 1+ T IC] Xi | > O)"0(| X7 | ).
Taking expectations and using independence, we obtain
(3.4) EQYL | XV |)=EQ+YLI(|Xi| >0 Y- EO(| X/ |).
Application of Lemma 1.1 then yields (3.2). If b = Kz (), (2.3) implies that
YL P(|Xi| >b)=y! and LLED(| X} | ) =®(b)/y, evenif b=0.
Letting ¢ = y7!, (3.3) follows from (3.2). O

It is now easy to obtain a general upper bound.

THEOREM 3.1. Lgt d e Z forsomea>0and X, X, --- bea sequence of independent
rv’s. For j = 1, let X; be the vector (X1, X3, +++, X;) and S; =YL, Xi. Let J be a finite
nonempty subset of the positive integers and for any real number a define

K; = Kx(1), M;(a) = Mx(1, a), K; =mazx,cs K, M;(a) = max;ec; M;(a).
Suppose n is the largest element in J. Then
K;,=K, and  E maxjes ®(a + S;) = B(a) ®(K; v M;(a))

where B(a) is a constant dependiﬁg only on a.

Proor. Fix a and J. Since K] is nondecreasing in j, it follows immediately that K; =
K,.Let b= K, v M;(a). For 1 =j < n, write

X/=XI(|X;| =b,X/=X,—X;, and §;=YL, (X;- EX).
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We first observe that X1, X5, ..., X, satisfy the condition in Lemma 3.2. For any j € J,
the triangle inequality and (2.2) yields

Da+8)=®(|a+YiaEX:| +Y | X/ + [ 55])
<O(b+Y% | X/ | +maxicizn | Si])
< 3®(b) + (Tt | X7 |) + @(maxiziza | S:] )

where the last inequality is a simple consequence of the fact that ® € %,. We now take
max over j € J and then take expectations. Applying Lemma 3.2 and Lemma 3.3 to the
result, we get

E maxjes ®(a + Sj) =3*{1 + C(a) + 2° v E(1 + 2)*}P())
- = B(a)®(Ks vV Ms(a)). 0

REMARK 3.2. As a result of (3.1), an upper bound for B(a) is
(3.5) Bla) =3*{(1 +4*+ 2INa + 1) + 2* v E(1 + A)*}.

REMARK 3.3. In many interesting situations computation of M,(«) is unnecessary
because K, = M,(a). For instance, suppose ®(x)/x is nondecreasing on [0, «) (which
happens whenever ® is convex and increasing on [0, )), @ = 0 and the X’s have zero
means. Then for any 1 =j<n and m > 0,

ISLEXI | X | =m)| =YLE|Xi | I(| Xi| >m)
= (m/®(m)) Y, EOX)I(| X;| > m).

Now if m > K,,, the above quantity is less than m. Hence by (2.1), M;(0) < K,. This being
true for 1 <j < n implies that M,;(0) < K,,.

4. The need to center the variables. Does the truncation point b, = K, v M,(a)
generate a “good” approximation of E®(a + S,)? This is the key issue to be resolved. We
perceive three potentially dominating aspects of the (a + S,) distribution:

(i) The median m, of (a + S,) (or some other gth quantile where g is bounded away
from 0 and 1). This may be thought of as the net trend of a + S;,a + Sz, -+, a + S,.

(ii) The range or dispersion r, of the (a + S,)-distribution as measured by, say, the
median r, of | (@ + S,) — m. | (or some nearby quantile). This may be thought of as the
contribution to the expectation in question made by the size of the typical deviation of
a + S, from its median. It is relevant when r, = 2 | m,, | . Alternatively we may think of
the range of (a + S,) as some appropriate quantile of | S, — S, | , where S, and S, are
independent and identically distributed (i.i.d.). This obviates the need to center (a + S,)
to determine its range.

(iii) The maximal | X; | .

Our b, attempts to approximate the largest of the contributions made by (i), (ii) and
(iii). To do so, it utilizes sums of (i’) truncated expectations, (ii’) truncated second moments,
and (iii’) tail ®-moments of the X;’s.

One important consideration has been neglected: the magnitude of b, (and hence ®(b,))
is sensitive to X;’s which are grossly improperly centered. For example, let W;, W; be i.i.d.
with P(W; = 1) = P(W; = —1) = %. Choose any constant ¢ = 0 and let X; = W, + (-1)’e.
Then X; + Xo = W, + W, and E®(X; + Xo) = E®(W;, + W,) = % @ (2). As is easily
checked, b, ~ ¢v2 as ¢ — . Hence the estimate given by (naive use of) Theorem 3.1 is
asymptotic to <I)(c~/§ ) as ¢ — o, For unbounded ®, this is arbitrarily larger than % ® (2).

This problem does not arise when the sum of the second moments of the suitably
truncated variables has the same order of magnitude as the sum of the variances of the
same truncated variables. By transforming the variables, we can create such a situation.
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Given any vector of constants ¢ = (c1, +++, ¢x), @ + S, = (@ +3%1 &) +XE1 Xi — c).
Having selected ¢, replace @ by a + Y% ¢ and X; by X; — c; (thereby retaining
independence) and then construct the associated truncation point bz. Using Theorem 3.1,
we get

E®(a + S,) < B(a) infz ®(bz)

with a similar inequality holding for E max;c s ®(a + S;). We make no attempt to construct
the optimal ¢, a difficult task at best. For our purposes it is adequate to center X; at ¢; =
med X;. Thus we let Y; = X; — med X;, thereby constructing independent rv’s whose
distributions depend only on the corresponding X;. They have the further property that
forany b>0, Y; = Y,I(| Y:| < b) satisfiesE(Y})? =2 VarY! (whenceY X, E(Y)? =
2 Y%, Var Y;). Let b% denote the truncation point corresponding to(a + Y., med X;) +
Y7, Y; and put b% = max;es b¥. Theorem 3.1 then states that E max,c; ®(a + S;)/
®(b%) is bounded away from infinity above (uniformly in J and ® € %,). We will show that
this ratio is also uniformly bounded away from zero below. Therefore the order of
magnitude of (say) E®(a + S,) is solely governed by the items in (i), (ii) and (iii) above
provided we amend (iii) to read “maximal | Y; | ”.

5. Lower bounds based on the K-function. We need a lower bound to complement
Theorem 3.1.

LEMMA 5.1. Let Y, Y,, ..., Y, be independent rv's symmetric about zero and f € .
Fix b > 0. Then

Ef(Yi+ Y2+ -+« + Y,) = Y% max{E maxi=i=» f(Y3), Ef(C1 Y:I(| Yi| = b))}
Proor. We write T, = Y; + Y, + ... + Y, for short. Let 7 be the first i such that

| Y| =maxi<j=» | Yj|,1=1i=n.The conditional distribution of T, — Y, given Y, is
symmetric about zero. Hence at least half the time it has the same sign as Y,, whence

ITn|=|(Tn_Yr)+Yr|2|YrI
so that on such a set, f(T,) = f(Y,). Therefore
Ef(T,) = % Ef(Y,) = % E maxi<i<. f(Y3).

To prove the other half of the result, we note that the conditional distribution of
Y1 YI(| Y| >b)given {Y:I(| Y:| =b),1=i=n} is symmetric about zero. A similar
argument therefore yields

Ef(T,) =% Ef($% YI(| Yi| < b))

and this concludes the proof. 0O

REMARK 5. When f is also convex, an argument based on Jensen’s inequality for
conditional expectations shows that the constant factor % may be replaced by 1.

The idea of the next lemma is well-known. Variants of this theme appear in Chung
(1974, page 48, exercise 11) and Davis (1973, Lemma 1).

LeEmMA 5.2. Let Yy, Y,, ---, Y, be independent mean zero rv's taking values in
[—b, b] for some b> 0. Let v* =Y%, EY? > 0. Then for any 0 < y< 1,

P(| 35 Yi| = Vyv) = (1 - y)%%(b + 3vd).

ProoF. Put W= (3% Y)? and note that EW = v® and
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EW?=Y2.,EY!+ 63 Yi<icjsn EYIY?
=YL EYI+3XL EYDH?
= v%(¥* + 3v?).
Since
(1-yEW= J' W dP < (EW?P(W = yEW)}"2

(W=yEW)
we may conclude that

P(| 351 Y:| = Vyv) = (W= yEW) = (1 - )EW}*/EW*
= (1 — y)2?/(® + 3v?). O

THEOREM 5.1. Let ® € &%, for some a > 0. Let Y = (Y1, Y, ---, Y,) be a vector of
independent rv's symmetric about zero. For fixed y = 2, let b = Ky (y). Then, whether or
not b is finite,

E®(Y 1Y) = D(y, a)®(b)

where

a/2
(5.1) D(y, a) =8(2y + 3) ' (a + 4) [2y(a T 4):]

Proor. Without loss of generality, we may suppose that ®(b) > 0 and
E®(YL, Y,) < . Therefore E®(Y;) < o for 1 =i =n and so 0 < b < «. For simplicity, we
let

T,=YL1Y,Yi=YI(|Y:| =b), and Y!=Y;—-Y: for 1=i=n.
The definition of b implies that
(5.2) Yo 2T E(Y)? + y(@(8) 7 Yk E®(Y!) = 1.

One of the two terms in the left-hand side must be = %. We consider both possibilities.

Case 1. Suppose

(5.3) ¥y Y EQ(Y!) = %®(b).
We first observe that (5.2) entails

(5.4) L P(Y!#0)<y'<k%.
Let

_J1stg, 1<i=<n, suchthat Y/ #0
Tl if no such i exists.

Lemma 5.1 implies that )
E®(T,) = %E maxi=i=x®(Y;) = % Y E®(Y) I(r = i)
=% Y EI(r = i)®(Y7)
(5.5) =% YL, P(r=i)E®(Y!)
=%P(r=n) Y E®(Y?)
=% (1 - P(Y? #0)} Y= E®(Y)).
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We may reorder the Y’s if necessary to ensure thatmax;<;<,P(Y! # 0) =P(Y, # 0)
without altering the value of E maxi<;<.®(Y;). In view of (5.4), Lemma 1.2 now yields

(5.6) S {1-P(Y!#0)}=[1-(ny) '] = e
which together with (5.3) and (5.5) yields
(56.7) E®(T,) = (4y) e *®(b) > D(y, 0)®(b)

where the last inequality follows from elementary calculus.

Case 2. Next suppose
(5.8) yb I YL, E(Y!)? = Y%,

Let 0=y =1and v’ =Y%; E(Y})% Then v® = b%/(2y). Applying Lemma 5.2 in the second
inequality below,

E® (S, Yi) = @(Vyv) P(| S Yi| = Yyv)
(5.9) = ®(b(v/2y)A(1 — y)*0*/(6* + 307
= @(b(v/29))(1 — v)*(b*/2y)/{b* + 3b*/2y}
= (v/2y)"@(b)(1 — v)*/(2y + 3)

where we use the fact that ® € %, in the last inequality. The right-hand side of (5.9) is
maximized when y = a/(a + 4). Hence

. { . 4 2 a a/2
(5.10) E®(Q, Yi)=(2y+3) (a T 4) [2}'(0{ T 4)] ®(d).

Lemma 5.1 now finishes the proof of the theorem. [

In order to generalize the above result to rv’s which are not necessarily symmetric, we
need the following fact:

LEMMA 5.3. Let 17' = (Y1, Yy, ---, Y,) be a vector of independent rv’s with medign
zero. Let (Y, Y3, ---, Y.) be an independent copy of Y and define Y* = (Y1 — Y1,
Yo— Y2, -+-, Yo— Y,). Then for anyy >0 and f € %,

Ky+(2y) = K3(y).
Proor. Consider independent rv’s V and W such that med W = 0. For any symmetric
function A(.), nondecreasing on [0, x), it is easy to see that
En(V — W) =%Eh(V).
For fixed y > 0, let k = Ky+(2y) and Y} = Y; — Y;, 1 =i < n. We observe that for f€ &,
he(x) = 2°I(| x| < k) + (R*/f(R) f(x)I(| x| > k)
=2 A R? + (RP/f(R)) (f(x)— f(R))*

is a symmetric function of x, nondecreasing on [0, «). Thus

2ER(Y?) = 2Ehy(Yi — ¥i) = Eha(Y)), 1<i=n
The definition of £ now implies that

k2 =2y Y1 Ehp(Y}) = y Yie1 ERe(Y))
which, in view of (2.3), shows that 2 =Ky3(y). O
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By first centering the rv’s at their medians and then applying a symmetrization
argument, the following improvement of Theorem 5.1 is obtained.

THEOREM 5.2. Let X1, X,, --- be a sequence of independent rv’s and ® € %, for some
a>0.Let Y;=X; — med X, for i = 1 and for an positive integer j, write S; = X; + Xz +
o+ X, Y, = (Y1, Vs, -+, Y)), and K; = Ky(1), the K-function associated with ® and

Y,-. Let J be any finite nonempty subset of the positive integers with largest element n.
Then for any real a,

E maxje ,P(a + Sj) = G(a)P(K,)

where

a/2
— =14l-a -2 o
(5.11) Gl =7T"4"%a+4) (a 7 4)

Proor. Let (X'l,_Xz, -++) be an independent copy of (X1, X5, - --) and let Yi=X —
medX,, Y=Y, - ¥:=X—X,,S. =X+ Xo+ --- + X,,and Y = (Y}, Y5, .-, Y)).
Theorem 5.1 yields

D@2, a)®(Ky3:(2)) = EQ(YF + Y5+ ... +YF)
=E®(a+S,.— (a+8)
< 2*{E®(a + S,) + E®(a + S.)}
= 2°""E®(a + S,).
Since ® is nondecreasing, Lemma 5.3 yields
E maxje ®(a+ Sj) = E®(a + S,) =27 'D(2, )@ (K,) = G(a)P(K,). |

6. Assessing trend. Let W=a +Y; X;and let ®(-) € % for some a > 0. Consider
approximating E®(W) when the distribution of W is highly concentrated. A natural
estimate is ®(m), where m is a median (or nearby quantile) of W. Unfortunately, the
complicated nature of convolutions typically prevents med W from being calculated. An
approximation of med Wis needed. Ideally, it should depend on one-dimensional quantities
considered to be computable.

Classical results suggest an approach: Consider sums S,, of i.i.d. rv’s with finite nonzero
mean. Because these sums trend, their expectations ES, and medians med S, are asymp-
totically equivalent. Blind substitution of EW for med W, however, does not succeed in
our more general context. The difficulty is posed by extremal X;’s which occur with low
probability and therefore affect EW much more than med W. To avoid this contingency,
we consider “truncated expectations”.

Suppose it is possible to find b > 0 such that m, = | a + Yi=; EX;I(| X;| < b)| is nearly
|m|. When W is highly concentrated (and the effect of badly centered X’s can be
neglected), it is reasonable to expect that b may be chosen almost equal to | m | (which in
turn is approximately m,). This essentially defines & implicitly as Mx(1, @) and thereby
provides an heuristic interpretation of the role played by ®(Mx(1, a)) in the approxima-
tion of E®(W). In fact, for purposes of approximating E®(W), Mx(1, a) need only be
close to the absolute value of med S, (or nearby quantile) when K, <cMx(1, a) for some
appropriate ¢ > 1.

LEMMA 6.1. Let ® € %.for some a > 0. LetX:j = (X, Xz, -+, Xj) be a vector of
independent rv’s and S; = Y’}=1 X, for 1 = j < n. Then for any real number a and 1< j =<
n,

®(Mx(1, a)) < max{®(Kx,(2)), 2°°E®(a + S))}.
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Proor. We fix a and j throughout the proof. To simplify notation, we define
M=Mz(1,a), K=Kz, Xi=XI(X|=M), X/=X-X,
T; = Y4, (X! — EX}), m=a+ Y%, EX;.

We assume M > K since the lemma is immediate otherwise. First suppose that X, X;,
..+, X, are continuous rv’s. Then'M = | m|. We assume, without loss of generality, that M
=m.Sincea +S;=M+ T;+ Y/, X!,

E®(a + Sj) = (M) P(a + Sj = %M)
(6.1) =27@(M)P(ni, {X! =0}, Tj= —%M)
= 27O(M){ P(ni, {X7 =0}) — P(T; < —%M)}.
In view of our assumption that M > K, it follows from (2.3) that
2{3x1 E(X;/M)? + ¥, E®(X!)/® (M)} < 1.

Hence there exist nonnegative @, @’ with @ + @’ < 1 such that

(6.2) 2Y%1 E(X))? = QM?

and

(6.3) 2 Y4, E®(X!)? = Q®(M).

It follows from (6.3) that ¥/, P(X” 5 0) < %@Q’. Therefore by Lemma 1.3,
(6.4) PN {X! =0) = P(XI'=0)=1-%Q = %( + Q).

In addition,
P(Tj< — %M) = P(-T;1(Tj < 0) > %M)

= 2ET;I(T;<0)/M  (by Markov)
(6.5) =E|T;|/M (since ET; = 0)

= (ET))"*/M

= QL EXHHAM

= (%Q)"* (by (6.2)).
Inequalities (6.1), (6.4) and (6.5) now yield

E®(a + §)) = 27®(M) {4(1 + Q) — (4Q)"*}
=277 ’®(M)

where we took the infimum over @ € [0, 1] in the last inequality. This proves the lemma
for continuous X’s.

For the general case, introduce rv’s Ui, U,, - -+, U, uniform on (-1, 1) such that X,
Ui, Xz, Us, +- -, X,, U, forms an independent sequence. Let

Xi@=X+eU, Xl = (Xi(e), -+, Xi(e)), 1<isn,
Sn(€) = Yit1 Xi(e), ’ M(e) = Mz (1, a), K(e) = Kx,(2).
By what has already been proved,
®(M(e)) = max{®(K(e)), 2°"*E®(a + S,(¢))}.

It is easily verified that lim._,,®(M(e)) = ®(M) and lim._,® (K (¢)) = ®(K). Furthermore,
since Sn(€) — S. as. as € — 0, and ®(a + S.(e)) = 2*{P(a + S.) + ®(n)} for |e| < 1,
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dominated convergence yields lim._,oE®(a + S.(e)) = E®(a + S.). The obvious limit
argument then completes the proof of the lemma. 0

As a result of the above lemma and Theorem 3.1 it is clear (and is proved in Theorem
7.1) that whenever ®(Kx, (2)) is too much smaller than E®(a + S)), an accurate
approximation of E®(a + §;) is obtained by using ®(Mx(1, a)). We asserted at the
beginning of this section (and also in Section 4) that in such cases Mx3(1, a) is useful
because it in turn approximates the absolute value of the “center” of the distribution of a
+ S;. We now quantify this assertion.

COROLLARY 6.1. Let ® € %, for some a > 0. Let )}j = (X1, Xs, - -+, X)) be a vector of
independent rv’s and S; = Y’/=1 X, for 1 <j < n. Suppose that for some real number a and
1=j=n, Mx(1, a) = K3,(2) > 0. Let M = Mx(1, a) and

M- { M if a+ Y EXI(|X:|<=M)=0
-M otherwise.
Then
(6.6) Pla+S-M<u%M)=Y%
and
(6.7) Pa+S—M=—%M) =%,

PROOF. Suppose first that each X; has a continuous distribution. Then M = a +
4.1 EX;I(| X;| = M). The proof of Lemma 6.1 can be adapted easily to establish both
(6.6) and (6.7). For the general case, we let X;(€), M(e), K(€) be defined as in the proof of
the preceding lemma and define M(e) as indicated above. Note that M(e) —» M gnd
K(e) — K as e — 0. Since M = K, it follows that Yi~; P (| X;| = M) < %. Consequently, M(e)
assumes a definite sign for all small e. It therefore converges to M as e — 0. Now a standard
weak convergence argument completes the proof. 0

7. The main theorem and some remarks.

THEOREM 7.1. Let ® € Z, for some a > 0. Let X1, X, - - - be independent rv’s and for
eachj=1,write S;=Y% Xiand Y; = (Y1, Ya, - -+, Y;), where Y; = X; — med X;. For any
¥ >0, let K;(y) = Ky(y), with K; = K;(1) for short. For any real a, let

Mj(a) = sup{m: | a + ¥’-1 (med X; + EY:I(| Y:| = m))| = m).
Let J be a finite nonempty subset of the positive integers and set
M;(a) = maxjesM;(a), K;=maxjes K;.

Then, if n is the largest element in J,

K,=K,
and
(7.1) A(a)®(Ks vV Ms(a)) < E maxjesP(a + Sj) = B(a)®(Ks vV M;(a))
where
(7.2) A(a) =27*"'G(a)

and G(a) is defined in (5.11) and B(a) in Theorem 3.1.

Proor. The fact that K; = K, and the right-hand side of (7.1) follow immediately
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from Theorem 3.1 after first centering the X’s at their medians and adjusting the constant.
It therefore only remains to prove the left-hand side. Two cases are considered.

Case 1. M,(a) > K.(2). Let k € J be such that M,(a) = M;(a). It is then immediate
from Lemma 6.1 that
E maxje /®(a + Sj) = E®(a + S;) = 27°*®(M(a))
> 27 'G(a)® (K, vV M;(a)),
where the last inequality follows from the fact that G(a) < % and K, < K,.(2) < M;(a).
Case 2. M;(a) = K.(2). Let(Yi, Yz, ---) be an independent copy of (Y, Yz, - - ), and
write
Xi=YVi+medX;, §=YiuX, Yi=(Y,Ys,---,Y, ¥y, 7T -.-, 70
It is easy to see that K,.(2) = Ky.:(1). Applying Theorem 5.2 to obtain the second inequality
below,
G(a)®(K. v M;(a)) = G(a)D(K.(2))
=E®Q2a+ S, +5,)
=2°E{®(a + S,) + ®(a + S,)}
=2"""E®(a + S,)

= 2°"'E maxjesP(a + S)).

COROLLARY 7.1. Assuming the conditions and notation in Theorem 7.1, write
My (a) = maXISjsnl‘lj(a)- Then

A()®(K, vV M,(a)) < E®(a + S,) < B(a)®(K,, v M,(a))
and
A()®(K, v M} (a)) < E maxi<j=-P(a + S;) < B(a)® (K, vV M} (a)).

ProorF. Obvious from Theorem 7.1 by appropriate choice of J. 0

REMARK 7.1. If in addition ® is convex and nondecreasing on [0, ©) (whence ®(x)/x
is also nondecreasing on [0, »)), and the X’s have zero means, then we do not have to
center at medians. In fact, letting K, = K3, (1), there exist constants c;(a), c2(«) such that

(7.3) c1(0)@(Ky,) = E®(S;) < E maxi=;j=n®(S)) = c2() @ (Kn).

The middle inequality is obvious. From Theorem 3.1 and Remark 3.3, it is clear that the
right-hand side holds with c:(a) = B(a). Next we require use of the fact that

(7.4) E®(max;<j=,|S;|) = 3(2)°E®(S,). .

This inequality (which we prove below) shows that to complete the proof of (7.3), it
suffices to show that ®(K,) < cE®(max;<;<»|S;|) for some universal constant ¢. This fact
can be proved directly by elementary arguments. However, for reasons of economy, we
choose to prove it via the left-hand side of the following result of Burkholder (1973,
Theorem 15.1):

There exist positive constants c¢3(a), cs(a) such that

(7.5) cs( E®(S(X,)) < E max;<j<,®(S)) = cs(a) E®(S(X,))
where S(X,) = (¥, X?)V2
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Two additional facts are needed:

(7.6) E®(S(X))) = cs(@)®(K,)  if T E(Xi)?=%K?:
(7.7) E®(S(X7)) = co(@)®(K,)  if T E(X))*<%K}

where c¢5(a), co(a) are positive constants and X = X;I(| X;| = K,), X! = X; — Xi,);:;, =
(X1, «-+, X5), etc. The proof of (7.6) uses the proof of Lemma 5.2 while that of (7.7) is
similar to the first part of the proof of Theorem 5.1. Since trivially

(7.8) E®(S(X,)) = max(E®(S(X,)), E®(S(X2))},

the left-hand side of (7.3) follows from inequalities (7.4) through (7.8).

As may be surmised, there is a close connection between this paper and the individual
and joint works of Burkholder, Davis and Gundy (see Burkholder (1973) for references) on
square function and maximal inequalities and martingale decompositions. In particular,
their results can be used to obtain ours when ® is convex and the X;’s have mean zero.

ProoF OF (7.4). By Ottavianni’s inequality,
P(maxi=j=»Sj = y + 2ES;) < P(S. = y)/mini<;j=.P(S. — S; = —2ES5)
< P(S, = y){1 — P(maxi<;=.(S, — §))” > 2ES;)}™!
=2P(S,=y) (by Doob’s submartingale inequality).
A similar inequality may be obtained with {—S;} in place of {S;}. Hence, observing that
ES, = 0 implies E | S, | =2ES;, we get
WLy, ©) = P(maxiei=s| S| 2 y + E| S:|) = 2P(|S, | 2 ) = o[y, ).

Using Lemma 1.4,

0

E®(maxi=;=.|S;|) < ®(2E|S,|) +f ®(y + E|S.|)u (dy)

E|S,|
00

s2“<I>(E|Sn|)+f @(2y)u (dy)

E|S,|
00

=2°0(E|S.|) +2* f @ (y)v (dy)

E|S,|
=2°E®(|S.|) + 2°"'E®(|S.|)
(by convexity and definition of »)
= 3(2)*E®(S,).
REMARK 7.2. The same bounds we derived for E max;jc,s®(a + S;) based on ®(K, v

M(a)) in Theorem 7.1 can be obtained using slightly different truncation points. In the
notation of that theorem, let

t7 (y) = sup{t: yYr1 EQ(Y)I(| Y| > t) = ®(¢)}

and
vy () = sup{v: yY1 EY?I(| Yi| = v) = v?}.

For simplicity, write ¢, = t7 (1) and v, = vy, (1). Then
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THEOREM 7.2.
A(@)®(v, v t, vV My(a)) < E maxjesP(a + Sj) = B(a)® (v, Vv ¢, vV Ms(a)).

Proor. The left-hand side follows from the observation that v, Vv ¢, < K,,. A perusal
of Section 3 shows that

E maxjes®(a + Sj) < B(a)®(d)
for any b = v, Vv £, v M,(a). Hence the right-hand side holds also.

We think of M,;(a) as approximating the absolute value of an appropriate quantile of @
+ §;+ for j* € J with M;-(a) = Mj(a). Similarly v, approximates the range of the
distribution of a + S,. Finally, ®(¢,) always approximates E maxi<;<,®(Y;). In this
manner, ®(¢, v v, v M;(a)) gives weight to each of the three aspects of the distribution of
W = max;c ;P (a + S;) identified in Section 4 as governing the order of magnitude of EW.
Although we have provided but an heuristic discussion, with some effort these notions can
be made rigorous.

REMARK 7.3. In practice it may often be possible to obtain one-sided bounds of Ef(S,)
by other methods. For example, suppose f(x) = xg(x)® and X, X2, :--, X, are iid.
nonnegative rv’s with mean yu. Then, assuming all expectations are well-defined and finite,

Ef(S,) = ES,&(S,) = ¥i1 EXig(S,) = nEX.g(S,)
= nEX,E(g(Sn-1 + X,)| X»)
=nEX,g((n —1)p+ X,) if gis concave
=nEX.g((n — 1)p + X,) if gis convex.

Such a bound satisfies one of our criteria for acceptability: It may be calculated directly
from the one-dimensional X-distribution (by computer if necessary). One integration is
required to compute p and a second to construct the bound. In many cases such a bound
is extremely close to the true value of Ef(S,). This seems to occur whenever the L;-
interaction between X, and g(S.-; + X.) brings out the dominance of the maximal X;,
placing X, in that role.

NoTE ADDED IN PROOF. The auther has recently been informed by J. Kuelbs of related
and pioneering work by J. Bretangnolle and D. Dacunha-Castelle (see Application de
I’étude certaines formes linéaires aléatories au plongement d’espaces de Banach dans des
espaces L°, Ann. Ecole Normale Supérieurg, 2(1969), 437-480). Let Xi, X5, ..., be iid.
random variables, S, = X; + ... + X, and X, = (X, ..., X,). Using the notation of this
paper, they show that if X; is symmetric and has finite mean, there exist constants 0 <'c
< ¢* < o (possibly depending on X;) such that,c<E | S, | /Kx, (1) =< c¢* for all n. Thus
their paper is perhaps the first to approximate E | S, | in terms of Kz, (1). However,
explicit results on the precision and generality of the approximation do not seem to exist
in print prior to Klass (1980).

®An example of this kind cropped up while the author was working at the Jet Propulsion
Laboratory in 1973. To determine the capacity of a communication channel, it was necessary to
approximate a quantity which could be expressed in the form E (S, /n)log(S./n) where the X’s were
modified Bessel functions of the first kind of N(O, ¢ r.v.’s and n = exp 0?/2. Using this method of
approximation, numerical integration indicated a relative error not exceeding 0.05. For further details,
consult Butman-Klass (1973).
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