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CIRCUIT PROCESSES

By J. MACQUEEN

University of California, Los Angeles

Circuit processes of order r are defined using a finite class of weighted
circuits in a finite set S. The probability of the next value of the process is
made proportional to the total weight of those circuits in the class which pass
through the value in question and the last r values. The process is an order r
Markov chain in S, and the stationary distribution is easily calculated. Also,
it is shown that all stationary order r Markov chains in a finite set can be
represented as circuit processes of that order.

1. Introduction. Consider the directed graph in Figure 1, which consists of three
overlapping directed circuits, ¢; = (¢, a, b, ¢), ca = (a, b, r, s) and ¢3 = (s, ¢, a, b, ). Imagine
a particle moving among the points, or vertices, S = {a, b, ¢, r, s, t}, taking one step each
unit of time, always traveling along one of the directed arcs chosen in a random way, thus
giving rise to a stochastic process X;, Xs, ..., with values in S. Given a history of two
steps, say, X.-1 = a, X, = b, the probability that X,,; = y is calculated as follows: first,
fixed weights w. > 0 are assigned to each circuit, for example, w., = 5, w,, = 3, w., = 7, as
indicated in the figure. Then for each y in S, the circuits %(a, b, y) which pass through (a,
b, y) in that order are located, such a circuit being one in which a occurs, followed by b
and then by y. Thus %l(a, b, ¢) = {ci1, ¢cs}, and %(a, b, r) = {c2}, and there are no others, i.e.,
%(a, b, y) is empty for all other y in S. Next, the sum w(a, b, y) of the weights w. for ¢ €
%(a, b, y) is calculated, taking the sum to be zero, of course, if ¥(a, b, y) is empty, and
finally the probability that X,.; = y given X,,—; = a and X,, = b is set equal to

w(a, b, y)
ZIES w(a: b) x) ’

(1)

For y = c this gives %5 and for y = r, %s. Using this method for assigning probabilities to
each point given each possible two step history (X,-:, X,) through which passes at least
one of the circuits, determines a probability law for the process Xi, X, ---. We call it a
circuit process of order two. Evidently it is a familiar stationary Markov chain of order
two, i.e., the probability distribution of the next value of the process depends only on the
last two values. That the earlier value may make a difference is seen by calculating as
above, P[X,.1 =t| X, = s, Xo-1 = ¢] = 1 and P[X,+1 = t| Xy = 5, Xp—1 = r] = 0. Of course,
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the process is an ordinary Markov chain (of order one, if you will) in the space of such
histories of length two.

It is easy to verify, as will be done below, that the stationary or invariant distribution
for the process is given simply by w(x, y) = Y.es w(x, ¥, 2) calculated as above, but
appropriately normalized on each ergodic’ class. Thus, the order two Markov chain under
consideration has for its states the set of ordered pairs (x, y) in which y follows x in at least
one circuit, and in this instance, the class of such pairs for which w(x, y) is positive is seen
by inspection to form a single ergodic class. On this class u(x, y) = w(x, y/Y w(x, y), the
sum in the denominator being taken over all pairs in the class, is the unique positive
invariant distribution. For example u(a, b) = %7, where ¥, w(x, y) = 67 is calculated simply
by counting the number of arcs in each circuit, multiplying by the corresponding weight,
and adding over circuits, viz., 4-5 + 4.3 + 5.7 = 67. In the case of multiple ergodic classes,
w(x, y) would be normalized on each class to give the invariant probability on that class.
To illustrate, suppose b is removed from ¢; so ¢c; = (a, r, s). Then there are two ergodic
classes, and if X; = a, X, = r, for example, the process is restricted thereafter to the single
circuit (a, r, s) while if X; = ¢, X, = a, for example, the process is restricted thereafter to
c1 and c;. On the latter class u(a, b) = 1%s. Multiple ergodic classes seem to be of potential
interest here, whereas in the usual applications of Markov chains a single ergodic class will
almost invariably suffice. For this reason the possibility of multiple ergodic classes is
assumed throughout, which, as it happens, adds very little technical difficulty.

The above can be generalized to create for any given positive integer r, a general class
of processes, called circuit processes, which are stationary and nontransient Markov chains
of order r, with easily calculated stationary distributions. This is done in some detail in the
section which follows. Moreover, it is shown that to every stationary Markov chain of
order r in a finite set S, there is a circuit process with the same transition probabilities on
the ergodic classes.

The latter result shows that without loss of generality the parameters of a stationary
order r Markov chain may be taken to be a finite class of circuits and their weights, instead
of the transition probabilities themselves. This fact may be useful in applications. Among
other things, it suggests that model formulation might on occasion begin with a suitable
class of circuits. If, by good fortune, the process at hand is seen to have a special structure
such that a relatively small number of circuits will suffice to capture the qualitative
behavior, subsequent exploration of the model and of the phenomena itself is facilitated
because the stationary behavior is then directly accessible. For example, both transition
probabilities, and average costs associated with visiting certain states, can be expressed
explicitly in terms of the weights, which permits fairly easy sensitivity analysis of their
relationship. A minimal use of circuit processes is heuristic and didactic: examples of order
r processes with explicit stationary distributions are provided in abundance, which should
help understand the value and limitations of such processes in describing natural phenom-
ena. ‘

2. Circuit processes. Here a circuit is a periodic function ¢ on the integers .#"into
a nonempty finite set S. We say ¢ is a ‘circuit in S’. Thus there is a smallest positive
integer & = 1 such that c(¢ + k) = c(¢) for all t € 4. We call & = k(c) the length, or period,
of ¢. Let ¢’ be the circuit defined by ¢’(¢) = c(¢ + j), j ahy integer. A circuit ¢ is also
completely determined by any of the sequences of elements (c(¢), c(t + 1), -+, c(t + k& —
1)), or sequences of arcs ((c(?), c(t + 1)), (c(t + 1), c(t + 2)), - - -, (c(t + k — 1), c(¢))), where
k= E(c), and ¢t is any integer. These alternative descriptions of a circuit will be used freely
depending on convenience. For example, the ordered list of elements is used in the
introduction. This is the most economical description for many purposes.

! Also called irreducible; all states in the class can be reached from one another following paths of
positive probability.
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A circuit has another representation when the elements of ¢ are identified with points
in the plane, as a closed, directed, continuous curve with a continuous directional derivative,
which passes through each of the points in ¢, and in the same order as in ¢, but takes a
distinct direction at each point. This definition sometimes enables one to draw a circuit on
a piece of paper in a convenient and reasonably unambiguous fashion, because the
continuity of direction enables one to follow the right path at each point where the circuits
intersect, as is illustrated by Figure 1.

Given a sequence u = (u(1), u(2), - - -, u(n)) where each u(i) € S and n = 1, which will
be called a ‘sequence in S,” let J.(z) be the number of distinct integers j, 0 < j < k(c) — 1,
such that ¢/(t) = u(¢), t =1, 2, - - -, n. If there is at least one such j, we say ¢ passes through
u, and J.(u) is then just the number of times ¢ passes through u. Obviously J. (1) = J.(u)
for all i. A property of the function /., basic to all that follows, is that it is balanced as
defined by Lemma 1 below.

Let u be a sequence in S and y an element in S. Then (y, u) and (u, y) are, respectively,
the sequences in S, (y, u(1), ---, u(n)) and (u(1), ..., u(n), y).

LEMMA 1. For u = (u(1), ---, u(n)) any sequence in S, ¥, yes Jo(y, u) = ¥ yes Jo(u, y)
= J.(u).

Proor. If c does not pass through v, it does not pass through (y, u) for any y, so in
this case Y, J(y, u) = Jc(u) = 0. On the other hand, for each distinct j such that c’(t) =

u(t),t=1,2, ---, n, there is a unique y, namely y = ¢/(0), such that with the same and
hence distinct J, we can say ¢! passes through (y, u), that is (1) = ¢(0) = y, ¢7(2)
=c/(1) = u(l), -+ +, ¥ (n + 1) = ¢/(n) = u(n). Thus each j contributing a count of one to

Je(u) contributes a count of exactly one to Y,es Je-(y, u) = Y jes Jo(y, ¥). A similar
argument shows Jo(u) = Y ,es Je(u, y). O

Let % be a finite class of circuits and for each ¢ € ¥ let w. be a given positive number.
For u any sequence in S, let w(u) = Yeee weJ(x). Then w is also balanced, as expressed by
the following lemma.

LEMMA 2. For u any sequence in S, ¥, ,es w(y, u) = Y yes w(u, y) = w(u).

Finally, consider the sequence of random variables X;, X;, - - - with values in S, satisfying
foralln=r,

P[Xn+1 =y|Xn =2r Xn—l =2r-1y 000y Xn—r+1 =21 Xn—r =yn—r, Tty Xl =y1]

(2) _ w(zly 22, ***y 2ry y)
w(zi, 22, <+ -, 2)

whenever w(zi, 2z, - -+, 2,) is positive, and whatever may be the sequence y1, y2, +++, Yn—r.

The process X1, Xz, - - - will be called a circuit process of order r. Evidently the process is

a familiar Markov chain of order r, which is to say an ordinary Markov chain in the space
of sequences in S of length r. The transition law is completely specified by the integer r
= 1, the class of circuits %, the positive circuit weights w., and the formula (2) for the
transition probabilities.

To make the Markov structure clear, let # be the set of gll sequences in S of the fixed
length 7, which will now be called histories, and let #* be the subset of # where w is
positive. For u € i, let T'(z) be the set of histories defined by I'(z1, 23, ---, 2,) = {v:v =
(22, 23, +++» 2r, ¥), ¥y €S}, and for v a history (21, 22, - -+, 2,) let y(v) = z,, the last element
of v. For u € #*, and v € I'(u) let

w(u, y(v))
w(u)

and for v & I'(z) put p(u, v) = 0. Thus p(u, v) is defined for all v but only for ¥ € #*. Then

3) plu,v) =
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an equivalent definition of a circuit process, of order r, is a sequence of random variables
Ui, Uz, - - - with values in 5, where

(4) P[Un+1 = UI Un =u, Un—l = Up-1, **° Ul = ul] =P(u, U)

whenever u € #*. Although p(u, v) is defined only for ¥ € 7, it will be assumed
henceforth that U, is in s#* with probability one, and since p(u, v) > 0 only if v € 5#7, any
future history having positive probability given Uy, is also in . Thus the incompleteness
of the definition causes no harm. The process Ui, Uz, -+, in #* and the process X;, X,
... in S are directly related by U, = (X», Xn+1, +, Xn+r-1), R =1,2, + -,

The convenience in working with circuit processes comes largely from the following
result:

LEMMA 3. The function w is invariant with respect to p on #*, that is, for all u €
>,

(5) w(u) = Yexr' w)p(v, u).

ProoF. Letu = (zi, 22, + -+, 2r). Since p(v, u) = 0 if u & I'(v), only v of the form (y, 21,
2a, - -+, 2,—1) can contribute to the sum on the right in (5), which, from the definition of p,
is then

w(y, 21, 22, +++, 2) _
Zyesvw(y, 22, 23, ++*, Zre1) 203, 22, 20 o) Y yes w(y, 21, 22, ++ -+, 2r)
= w(zly 22, vy zr)’

with the latter equality following from Lemma 2, and the proof is complete. 00

To apply Lemma 3 in calculating stationary distributions, suppose G C 5 is an ergodic
class for which p(u, v) = 0 if « € G and v & G. For such a class the unique stationary
distribution pg is given by pe(v) = 0 for u & G, and for u € G,

w(uw)

Pelt) =5 @

To see this it suffices to note that pg so defined satisfies the equation
Dpc(w) = Yvee Pa(V)P(v, u), for u € G by Lemma 3, and considering Yuec pe(u) = 1, it is
unique by a standard result (see Doob (1953), page 179 ff.). Given the circuits ¢ and the
weights w., determining the ergodic classes G and pg for each class is computationally
straightforward.

Consider now the problem of constructing a circuit process to represent any given order
7 Markov chain on the ergodic classes of the chain. It turns out to be convenient to actually
do this construction first using circuits in #7, obtaining, in effect, a representation of the
given transition probability p in terms of circuit processes of order one in H#*. The
construction using circuits in S then follows because the representations are isomorphic in
a way made precise below. This approach, although perhaps not the shortest, has the
advantage of making the relationship between the circuit processes of order r and the
Markov chains in #* completely transparent. Hence the following rather lengthy preli-
minaries, which only state formally what is readily apparent from study of a few examples.

A circuit in # is a periodic function y on the integers .#"into the space 5 of sequences
in S of length r, with the added property that y(¢ + 1) € I'(y(¢)) for all ¢. The length or
period of v is the smallest positive integer n = n(y) such that y(t + n) = y(¢) for all ¢. A
curcuit in J# is elementary if for some ¢, and hence all ¢, the n(y) elements y(¢), y(¢ + 1),
-«-, y(t + n(y) — 1) are all different from one another. Also, for all integers j let v/ be the
circuit defined by y/(£) = y(¢ + j), and let y(£)(i), i =1, 2, - - -, r, be the ith element in v(8),
that is if y(t) = (x1, X2, +++, %), YO)@) =%, and x; €S, i=1,2, .--, 1. Notice y(t)(i) =
Y/(#)(i — j) for 1 = j < i < r, and specifically, y(£)@) = Y (&)(1) fori=1,2, .-, r.
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For y a given circuit in 5# define the circuit ¢ in S by the formula c(f) = y(¢)(1). The
period of c¢ is exactly that of y since if c(¢) = c(¢ + k) for all ¢, and hence ¢(¢t + i — 1) =
ct+i—1+k)=yt+i-DQ)=y")1) =y®)(@) =yt +i—1+ k(1) =yt + k(1)
=vy(t+£k)(i),i=1,2, ..., r, the period of y is at most that of ¢, whereas since c(¢) = y(¢)(1)
= y(t + n)(1) = ¢(t + n) for all ¢ the period of ¢ is at most that of y. Thus the two periods
are equal.

If vy is elementary, the circuit ¢ just defined has another property, that of being r-
elementary, by which is meant, the smallest integer 2 = 1 such that for some ¢, c¢(¢ + & +
)=c(t+1i)fori=1,2, .-, r, is k = k(c). Thus it is not surprising that the r-elementary
circuits in S are isomorphic to the elementary circuits in J That is, for a given circuit ¢ in
S define y by y(£)(¥) = c(t +i1—1),i=1,2, ..., r. Then y(t + 1) € I'(y(¢)), that is, y(¢ +
V@) =ct+i)=vy@)i+1),i=1,2, ..., r — 1 (see the definition of I" above). Also, if ¢ is
r-elementary, y is elementary with the same period as ¢, since if c(t + k) = c(¢) for all ¢
certainly y(¢)(i) = y(¢ + k)(i), i =1, 2, .-, r, and the latter condition cannot hold for 2’
< k if ¢ is r-elementary. It will be convenient to let ¢ = 6y and y = ’c be the circuits in S
and J#, respectively, defined for elementary circuits in # and r-elementary circuits in S, by
the above formulae, that is, ¢ = 8y is defined for all ¢ by ¢(¢) = y(¢)(1) and y = 8’c is defined
forall tby y(£)()) = c(t +i—1),1=1,2,---, 1.

One other observation is needed before proceeding further. For y an elementary circuit
in #, and u, v elements in # with v € I'(u), let J*(u, v) = 1 if for some ¢, 1 < ¢ < n(y) —
1, y(t) = u and y(t + 1) = v and let J*(x, v) = 0 otherwise. Thus J%(u, v) is just the number
of times, necessarily zero or one, that y passes through (u, v). Then for elementary y and
r-elementary ¢, J*(u, v) = Jg(u, y(v)) where y(v) € S is the last element in v defined
previously and, conversely, J.(«, y) = J%(u, v(u, y)) where if u = (x1, - -, x,), U(u, y) =
(xg, - -+, xr, ¥). Both of these formulae are easily established. To illustrate, suppose J*%(u,
v)=1,soforsomet,1<t=<n(y) — 1, y(¢) =uand y(¢ + 1) = v. Then y(¢)(i) = c(t + i —
1),i=1,2,--.,rand c(t + r) = y(t + r)(1) = y(¢t + 1)(r), so ¢ = 8y passes through «, y(v),
and exactly once at that, since c is r-elementary, so Js,(«, ¥(v)) = 1. The argument for the
remaining cases is similar.

The above observations yield immediately the main result needed for the construction.

LEMMA 4. Let €* be a class of elementary circuits in #* and for each vy in €* let w*
be a given positive number. Let w*(u, v) = Y ,es WhJ*%(u, v). Then, letting € = 0¢* and
we = wh., we have w*(u, v) = w(u, y(v)) where w(u, y) = Yees Wedc(u, Y.

Now let Uy, Us, - - - be a Markov chain of order r, that is, each U, is a random variable
with values in % and P[Up+1 = v| U, = &, Up—1 = Up-1, +++, U1 = u1] = p(u, v) for all n
=1 and Yver p(u, v) = 1. As is well known, for each ergodic subclass G C # (see again,
Doob (1953), page 179 ff.) there is a probability distribution pg on J# such that pg > 0 on
G, Yuec po(u) = 1, implying pc = 0 outside G, and for u € G; pe(u) = Yvec pc(v)p(v, ).
Also for u € G, p(u, v) = 0if v & G. Let #* be the union of all such subsets G.

THEOREM 1. There is a finite class € of r-elementary circuits in S, and circuit weights
w. > 0 such that for allu € #*

_ wlu, yv))
(6) puy, v) =

where as above w(u, y) = Yees Wedc(u, y) and w(u) = Yees wed.(u).

ProoF. For each ergodic class G let ag be a positive number, and define w* for all
elements u, vin #* by

(7 w*(u, v) = Y acpe(u)pu, v).
Obviously,
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w*(u, v)
w*(u) ’

where w*(u) = Yoexr” w*(u, v) = Ycacpc(u). Also notice w* is balanced on #, that is,
Yoex” w*(u, v) = Yvexr" w*(v, u), because of the invariance of the pg. It will be shown
first, in Lemma 5, using just the balance, that there is a class €* of elementary circuits in
H#* and weights w* > 0 for y € €* such that w*(u, v) = Y ,c¢+ wiJ%(u, v) for all u, v in
HT.

(8) pu,v) =

LEMMA 5.2 Let w* be a nonnegative function on the set of all ordered pairs (u, v) of
elements from a finite set A, with Yvex™ w*(u, v) >0 for allu € #*, and suppose Y e "
w*(u, v) = Yoexr” w*(, u), u € H#*. Then w*(u, v) = Y, cq~ WiJ*(u, v) where €* is a finite
class of elementary circuits in #*, J*(u, v) = 1 if y(t) = u and y(t + 1) = v for some t and
is zero otherwise, and w* is a positive number for each y € ¢*.

ProoOF. Here circuits are conveniently described in terms of their arcs. Consider the
directed graph in #* with a directed arc (u, v) for each pair u, v such that w*(u, v) > 0.
Since w* is balanced, existence of an arc (, v) entering v implied there is at least one arc
leaving v. Thus starting at some element u; € # " we can find a sequence of arcs (us, u.),
(u2, us), - - - for which w*(u;, u:+1) is positive, the existence of each member of the sequence
being guaranteed by the existence of the preceding. However, #* being finite, there is a
smallest integer n = 2 such that u, = u; for some i, 1 < i < n. Then y; = (u;, Ui+1), (Uis1,
Uisz), =+, (Un-1, W;) is an elementary circuit in #*. Let w?, be the minimum of w*(u, v)
over the arcs in yi, and let wi(u, v) = w*(u, v) — w% J% (4, v). Then w; is nonnegative for
u € #* since if J% (u, v) = 1, that is, the arc (&, v) is in y1, w*(u, v) = w3 by the choice of
the latter. Since J% is balanced, w; is balanced, and if w; is positive for some u, v, another
elementary circuit y; can be found and extracted, giving w, = w;, — w3.J3%, = w* —
wh Jy — w¥ J%,, etc. But note wi(u, v) is zero for at least one arc (u, v) for which w*(x,
v) is positive, namely any arc in y; yielding the minimum w?¥ . Thus the initially finite
number of arcs in the graph with positive weight is reduced at each step and finally wy.1
= 0 and then w* = Y, w¥J%. With €* = {y1, ve, - -+, y»} and weights w?* the proof is
complete.

The proof of Theorem 1 can now be finished. The function w* in Lemma 5 is taken to
be w* given by (7). Then w* = Y c¢» w%J*% and Lemma 4 provides the circuits ¥ = §%*
and the weights w. = w ¥ such that w*(u, v) = w(u, y(v)) where w(u, y) = Yees wedc(4, y),
and because of (8), p(u, v) = w*(u, v)/w*(u) = w(u, y(v))/w(u) where obviously w*(u) =
w(u), completing the proof.

The representation provided by Theorem 1 is not unique as is shown by the order two
process with just two circuits (a, b, c, d, ¢, b) and (b, c), each with a weight of one, which
process can be represented equally well by the two circuits (a, b, ¢, b) and (b, ¢, d, ¢) each
with a weight of one again. All four circuits are 2-elementary, and either representation
might arise from the construction of Lemma 5.

Theorem 1 shows that the circuits used in creating a circuit process of order r could be
taken to be r-elementary without narrowing the class of processes, so far as their behavior
is concerned. However, it is not necessary to do so and in fact it provides a certain sense

" of freedom to be able to put down any finite number of circuits and associated weights,
and know that these define a circuit process of order r, for every r = 1. If the process so
specified uses some circuits which are not r-elementary for a given r of interest, and an
equivalent representation in terms of r-elementary circuits is desired, it can be obtained by

2This lemma and other elementary facts about Markov chains and balanced graphs were
previously noted by the author (MacQueen (1977)). In spite of its usefulness, the lemma does not
appear in any of a large number of works on Markov chains and graphs which were checked. The
author was led to the lemma, eventually, because of an interesting note by S. K. Stein (1968).
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using (3) and Lemma 3 to find the invariant distributions, and then applying Theorem 1
and the construction of Lemma 5.

Acknowledgment. Circuit processes were first discovered in a tentative and incom-
plete form in the course of lectures given by the author while visiting in the Department
of Statistics at the University of Oslo. Discussions with colleagues there, and their support
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the above.
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