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LAPLACE FUNCTIONAL APPROACH TO POINT PROCESSES
OCCURRING IN A TRAFFIC MODEL

By. P. ZEEPHONGSEKUL

Melbourne State College, Carlton, Victoria, Australia

This paper deals with a wide class of point processes which are subsumed
under the name of z-processes. These processes are generalizations, in the
sense that the initial distribution of the vehicles are not necessarily stationary
Poisson, of point processes occurring in a traffic model of Rényi (1964). Using
the Laplace functional, we derive the distributions of various z-processes when
the initial process is stationary Poisson and prove a weak convergence result
to the doubly stochastic Poisson process when the initial process is not
necessarily Poisson distributed.

1. Introduction. Rényi (1964) proposed the following simple model for traffic flow
on an infinite straight road without any intersections. Vehicles appear at an arbitrary fixed
point on the road, usually taken as the point zero on the real line, at the sequence of
random instants {r;}, ¢ = 1, distributed as a stationary Poisson process. The ith vehicle
then proceeds to travel along the road at the constant velocity v;, the assumption here
being that the random variables v; are independent and identically distributed and are also
independent of the sequence {r;}. The trajectories of the above model in the time-road
diagram are straight lines, and the points of intersection between the lines give the times
and positions where overtakings occur. Such overtakings, known as “free overtakings,” can
only be done “without delay” in the sense that there can be no change in velocity as one
vehicle approaches another prior to overtaking. If {r;} are the instants when a fixed
vehicle overtakes other vehicles with lower velocities and {r;'} the instants when faster
vehicles overtake the fixed vehicle, then provided we consider overtakings by vehicles
entering the road at any time ¢ > 0, Rényi showed in the same paper that {r;} and {r;}
are distributed as two independent Poisson processes.

Brown (1969a, b), using an invariance property of the Poisson process, derived other
processes from the traffic model of Rényi besides {r;} and {r;}. Amongst these are the
positions of the vehicles at any time ¢ and the instants at which vehicles pass a given point
on the highway. Solomon and Wang (1972), using a geometrical approach based on the
notion of a Poisson field of random lines, also derived the distributions of the above
processes.

On close inspection, it is clear that most of the derived processes mentioned above are
in fact point processes on the real line where the position of the ith point is given by

2 = a(v;)a; + b(v;, t), t>0.

Here a(v) # 0 and b(v, t) are some measurable functions, {«;} is a realization of an initial
point process, and the random variables v; are assumed to be independent and identically
distributed. Point processes generated in this manner will be called z-processes in the
sequel.

The objective of this paper is to apply the Laplace functional method in considering z-
processes. We are motivated here by Kallenberg (1975), who has shown how the Laplace
functional can be used to provide a compact formulation of many important properties of
random measures and point processes, as well as a useful tool in proving weak convergence
results.
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In Section 2, we present some basic definitions and preliminary results. The reader is
referred to Jagers (1974), Kallenberg (1975) and Kerstan et al (1974) for details. In Section
3, the Laplace functional of the general z-processes is derived, and we used it to obtain the
distribution of some z-processes. When the initial process is neither Poisson nor mixed
Poisson distributed, the resultant z-process will in general not have a Poisson distribution,
so in Section 4 we give a necessary and sufficient condition under which a sequence of z-
processes converges in distribution to a subordinated Poisson process (also called a Cox or
doubly stochastic Poisson process). When a(v) = 1, our results also subsume some classical
results on random translations (for example, Doob (1953), Goldman (1967) and Thedeen
(1964)).

2. Preliminaries. Denote by % and %° the Borel subsets and the ring of bounded
Borel subsets of the real line R respectively. Let M be the set of measures on % that are
finite on #° and m the smallest ¢-algebra of subsets of M such that the mappings p —
w(A), A € B°, are measurable. Let N be the subset of M consisting of the non-negative,
integer-valued measures of the form p = Zﬂ;] 8., (8.,(A) = 1a(a), where 1, is the indicator
function of the set A), £ € Z,, and {«;} is a sequence of points in R without any limit
points.

Denote by K and K. the set of non-negative, bounded and measurable functions on R
with bounded supports, and the subset of K consisting of the continuous functions
respectively. In the sequel, we define u(f), n € M and f € K, as the integral [ f dp. Let the
topology on M be the vague topology, that is, the coarsest topology making the mappings
p— u(f), f € K., continuous. Under the vague topology, M is a Polish space, and the
Borel subsets generated by the open sets are identical to m. Also, N is a vaguely closed
subset of M.

A measurable mapping ¢ from a probability space (2, < P) into (M, m) is a random
measure. If the range of ¢ is contained in N a.s,, it is a stochastic point process (s.p.p.). The
Laplace functional (L.f.) of a s.p.p. ¢ is the mapping from K into R, (R+ = [0, «)) defined
by

@ L(f)=EE*"), fEK

The L.f. of a s.p.p. £ determines the distribution of ¢ uniquely. For p € M, the Poisson
s.p.p. £ with mean measure p is defined as the s.p.p. with L.f.

(2 %(f) =exp(-p(1 —e™)), fEK.

If the measure p in (2) is a random measure, we obtain by mixing a subordinated Poisson
process ¢ directed by p with L.f.

(3) LH=%1-¢'), feK
Using the same notation as Kallenberg (1975), we denote a subordinated Poisson process
directed by p as SP(u).

We note that the kth moment (k= 1,2, .--) of a s.p.p. £ on a set A € %, E(£(A)"), is
obtained by applying the formulae:

k
(4) E(A)") = (—l)k{g? «5—‘2(31/4)}

=0

where s is a non-negative real variable. If the first moment measure v; of a s.p.p. £ is
absolutely continuous with respect to the Lebesgue measure A, the corresponding Radon-
Nikodym derivative dv;/d\ = i; will be referred to as the intensity of .

Finally, a sequence of random measures §, converges in distribution to a random
measure ¢, written £, —4 &, if the corresponding distribution of £, converges weakly to the
distribution of ¢ (Billingsley (1968)). Let dA, A € %, denotes the boundary of a set A, and
for any random measure ¢, define %¢ = {B € %#°:£(0B) = 0 a.s.}. Then % is a ring (see
Lemma 4.3 in Kallenberg (1975)) and contains the semi-ring .#% of half open intervals. The
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equivalence of the following statements is well known: (i) & — 4 §, (i) % (f) > Z(f), f
€ K., and (iii) (£.(B1), -+, &u(Br)) —a (&(By), ---, £&(Bg)) for each finite sequence B,
<+, By in A}. In fact, it suffices that (iii) holds for pairwise disjoint sets in .%;. We note
that the above convergence criterion for random measures also hold for sequence of s.p.p.

3. Laplace Functional of z-processes and some applications. For each¢> 0, let
T, be the measurable mapping from R X R. into R defined by Ti(a, v) = a(v)a + b(v, t)
where a(v) # 0 and b(v, t) are some measurable functions. Let ¢ be the z-process generated
from an initial s.p.p. 7, i.e. a typical realization of § consists of a sequence of points in R
with the ith point occupying the position z; = Ti(a;, v;) where Y 8, is a realization of 7.
Here {v:} is a sequence of non-negative, independent and identically distributed random
variables with distribution G;, independent of 7. For each fixed ¢, we shall assume that the
functions a(v), b(v, t) are continuous a.s. and are such that

5) v, X G(T7'(B)) <, BE A°.

It is routine to check, using the following theorem and (4), that (5) is nothing more than
the usual assumption that a z-process £ has an a.s. finite number of points in any bounded
set.

THEOREM 1. Let ¢, be the z-process generated from a s.p.p: 1 and define

(6) gha =f exp(—fe T, v)) dG:(v), fEK,
0

where f o T, denotes the composition between f and T,. Then

(7 Z(f) = %(-In g).

Proor. For any fixed non-random n = ¥ 8.,
%,(f) = [1&1 E(exp(—f o Tila, v))) = exp(n(In g7))
where the expectation is taken with respect to G;. Therefore, by mixing

%(f) = E(exp(n(ln gf))) = %(-Ingl). O

From (2), if 7 is Poisson with mean measure p, the resulting z-process has L.f.
(8) L) = exp(‘— J’ (1= e T d(u x Gn)
RxR,

and more generally from (3), if 5 is SP(p),

9) 4(f) = £ - g).

COROLLARY 1. Let 1 be a stationary Poisson process with intensity 8 > 0 and consider
only outcomes of n on some fixed interval (yi, y2). Set

Tt(‘Yl*, U) = limalyl T‘t(a, U),‘ TVt(YZ_y U) = limatyz Tvt(a, U),
hy(v) = max {T(y1+, v), Ti(y2-, V)}, dy(v) = min{Ti(y:+, V), Ti(y2-, V)},

and h; = sup,h:(v), d; = inf, d;(v). Then the z-process generated from n is Poisson with
intensity

(10) i(z) = BJ dGi(v)/ | a(v) |
A7
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with outcomes in the interval (d;, h;). Here
(11) A, = {(v, 2):di(V) < 2 < h(V), O<v<ow}
and A = {vivER,, (v,2) E A,}.

Proor. From (8), we have
y2 o
-%,(f>=exp(—ﬂ f f (1 — &7 Y) dA() dG,w)), fEK.
n Jo

By the translation invariance of A, monotonicity of T(a, v) in « for fixed v, and Fubini’s
theorem

0 rhy(V)
%(f) = exp(-,BJ’ j (1—e") d\z - b(v, t))/a(v)> dG.(v)
0

d,(v)

o0 rhy(v)
(12) = exp(—ﬁ J’ f (1 — ) d\(2) dG:(v)/| a(v) |>
0

dy(v)
hy
= exp(—ﬁf f (1 — @) dGi(v) dA(2)/] a(v) |) .
d, Jaj

The proof is completed on comparing (12) with (2). 0

Note that when a(v) = 1 and (y1, y2) = R, i.(z) = 8 by (10). This invariance property of
the stationary Poisson process under translation was first shown by Doob (1953), page 404.
As remarked by Goldman (1967) and easily proved using the above method, this invariance
property remains valid for mixtures of stationary Poisson processes. Corollary 1 also
provides the starting point to deriving many of the results for the simple traffic model of
Rényi obtained by other methods in Rényi (1964), Brown (1969b) and Solomon and Wang
(1972). We shall demonstrate this by three examples, and in each of these, the initial
process is assumed to be stationary Poisson with intensity 8 > 0 and the distribution G,
= @ is independent of time.

ExXAMPLE A. Vehicles start off at a fixed point on the road at times (7,) in [0, ¢). We
are interested in the distribution of the vehicles at time ¢. The location of the ith vehicle
at time ¢ is given by

2 = vi(t — ;) = —vir; + Uit
Also, [y1,72) = [0, 2), di(v) = 0, h(v) = vt and
A ={(v,2):0<z<ut,0<v< oo}

From (10), the generated z-process is Poisson with intensity

(13) i(z) = ,Bf dGv)/v, 0<z<wm,
z/t

Integrating (13) over any interval [x, y) with respect to A, one concludes that the 2-
process in [x, y) is Poisson with mean

v/t 00
vlx,y) =8 (t—x/v)dG) +B | (y—x)/vdGV).

x/t . y/t
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ExXAMPLE B. Vehicles start off at ¢ = 0 at different locations («;) in an interval [a, b).
We are interested in the distribution of these vehicles in a fixed stretch of road [x, y), x
= q, at time ¢£. Here

2= a; + vt
and so d;(v) = a + vt, h(v) = b + vt, d; = a and h, = . Therefore

Ai={(v,2)ia+vt<z<b+uvt,0<v<m}

and
<, 0<z<a
(14) Ai={{vi0<v<(z-—a)/t}, a<z<b,
[vi(z=b)/t<v<(z—a)/t}, 2> b,

where & is the empty set. Applying (10) to (14) and then integrating the resulting intensity
with respect to A over [x, y), it is routine to check that the generated z-process is Poisson
with mean

(y—a)/t

(x—a)/t
f (y — x) dG(v) + J (y — a — uvt) dG(v), [x, y) C[a, b),
0 N

(x—a)/t

Cy cy (y—a)/t
J (b + vt — x) dG(v) + ej dG(v) +J (y — a—ut) dG(v),
0 c c

1 2

vlx, y) =1 x<b y>b,

(y—b)/t (x—a)/t
J (b + vt — x) dG(v) + J (y — x) dG(v)
(

x—b)/t (y=b)/t

(y—a)/t
+J’ (y —a —uvt) dG(v), b<x<y.
(

x — a)/t

Here ¢; = min{(x — a)/¢, (y — b)/t}, cc = max{(x — a)/t, (y — b)/t} and e equals b — a
when ¢; = (x — a)/t and y — x otherwise.

ExampLE C. Suppose vehicle B enters the road at time 7, and position x = 0 and then
proceeds to travel at a fixed velocity vo. We shall consider the distribution of the
perpendicular projections (onto the ¢ axis) of the points of intersections between the
trajectories of the vehicles entering the road at the instants («a;) distributed as a stationary
Poisson process with fixed rate 8 and that of B. The z-process so generated consists of the
sequence of times (7{) U (r;) described in Section 1. Here

—Uia,‘/(l)o - U,‘) + l)oTo/(l)o —_ U,‘), v < o, o;< To,
2 = § Ui/ (U; — Vo) — VoTo/ (Vi — Vo), UV; > Uy, «;> Ty,
o otherwise

In this case,
A={(v,2):10<2<UoTo/(Lo—V),0<V<wo} U{(v,2)imo<z<®,v <v<0}

and (10) implies that the z-process is Poisson with intensity
(15) i(z) =g J | (v —w)/v| dG(v).
Vo—UgTo/2

In fact, (r) is stationary Poisson with intensity 8 [ (v — vo)/v dG(v), and (1) is
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stationary Poisson with intensity B8 [0 ./ (vo — v)/v dG(v), and by the complete
randomness property of the Poisson process, the two subprocesses are also independent.
On integrating (15) over [x, y), x = 7o,

Vo—VoT0/Y 0
vx, y) = f (vo(t0 — x) /v + x) dG(V) + (y — %) f | (v—w)/v| dG(v),

0~ VoTo/* Vg—UyTo/Y

and so the z-process in [x, y) is Poisson with the above mean. 0

4. Weak convergence of z-processes. Let B,, B € %, denote the set T:'(B) and
Bi = {v € R.:(x, v) € B;}. For any 5 € N, let us define the set function y;(-) by

(16) Y(B) = J Gu(B7) dy(x), BE .

It is easy to check, using the properties of inverse mappings and (5), that if 5 is a s.p.p.,
then y is a random measure.

In Chapter 8 of Kallenberg (1975), the author used an elegant method in proving the
weak convergence of a sequence of compounded point processes to a Cox process. We use
a similar method to prove our next result.

THEOREM 2. For every B € #°, let the distributions G, satisfy
an lim,, sup:er G+(B}) =0

and for each t > 0, let ¢, be the z-process generated from some s.p.p. 1.. Then ¢ — 4 £ iff
Y: —a ¥, and in that case £ =4 SP(Y) where =, denotes equality in distribution.

Proor. Assume y; —4 y, we have to prove & —4 ¢ = SP(¢). Let A(-) = Y7, silr(+), s
> 0 and the I’s are pairwise disjoint sets in .#,, then by (3), (7) and as #¢= %, it suffices
to show

E(exp(nIn g¥)) — E(exp(—y(1 — e™*))).

By the continuity theorem for Laplace transforms, it is enough to show

—nelngl= —j In(1 = Y71 GuI) (1 — €7%)) dnel(x) =a (1 — e7*)
(18)

=271 (1 — e™))),

where I;; = T;'(I;), 1 =j < m. From Theorem 5.5 in Billingsley (1968), (18) will follow if
it holds in the sense of ordinary convergence on assuming y; —, ¥. Using the simple
inequalities

x<—In(1 — x) < x(1 + 2¢)
valid for 0 < e < % and x < ¢, it follows that
(19) Y (1 — e 9Wul) < —neln gt < T70 (1 — e~ )u(L) (1 + 2e)

provided ¢ is large enough so that m maxi<j<n sup:cr G:(I};) < e. But since y; —,  implies
Ye(I) > Y(I), I € 4, (see A7.2 in Kallenberg (1975)), the desired convergence follows from
(19).

Conversely, suppose £ —4 £; we shall first prove that this will imply () is relatively
compact. Fix B € #¢, then &(B) —q4 £(B) by assumption and for each ¢ > 0, there exists
some s close to zero such that
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(20) Ee*B)y>1—¢l—e").
Using first the inequality In(1 — x) = —x, x < 1, and then Chebyshev’s inequality,
Pr{ys(B) = (1 — e*)'} = Pr{—(1 — e~*)¢»(B) < -1}

= Pr{ f In(1 — G(B7)(1 —e™)) dne = —1}

=Pr{l —exp(nIngi*) =1—e'}

=1 -E@Ee*®)/1-e).
Hence, lim sup,, Pr{ys(B) = (1 — e ™)'} = (1 — E(e™**#))/(1 — '), and by (20),
limyyo im sup; . Pr{yx(B) = (1 — e™*) 7'} <e.

But B € %, was arbitrary, it therefore follows that (&) is relatively compact (see Lemma
4.5 in Kallenberg (1975)).

By the relative compactness of (y,), any sequence N C T contains a further subsequence
N’ such that Y, =4 {, n € N’, and the direct part of the theorem now imply £ = SP(¢). But
as ¢ and £ implies each other uniquely (see Corollary 3.2 in Kallenberg (1975)), Theorem
2.3 in Billingsley (1968) implies y; —4 ¢ and the proof is complete. O

Finally, we remark that when T:(a, v) = a + b(v, t) and we define F\(B) = G,{v:b(v, t)
€ B}, B € #°, condition (17) specializes to

lim; . Supzer Fo(B — x) =

and for any s.p.p. , the random measure defined by (16) is now the convolution between
n and F,. In this case, Theorem 2 generalizes a result given by Goldman (1967) on the
weak convergence of a sequence of randomly translated s.p.p. to the mixed Poisson process.

REFERENCES

[1] BILLINGSLEY, P. (1968). Convergence of Probability measures. Wiley, New York.
[2] BrowN, M. (1969a). An invariance property of the Poisson processes. JJ. Appl. Probability 6
453-458.
[3] BrowN, M. (1969b). Some results on a traffic model of Rényi. J. Appl. Probability 6 293-300.
[4] Doos, J. (1953). Stochastic Processes. Wiley, New York.
[5] GoLbMAN, J. (1967). Stochastic point processes: limit theorems. Ann. Math. Statist 38 771-779.
[6] JaGERs, P. (1974). Aspects of random measures and point processes. In: Advances in Probability
and Related Topics I11. 179-239. Marcel Dekker, New York.
[7] KALLENBERG, O. (1975). Random Measures. Schriftenreihe des zentralinstituts fiir Mathematik
und Mechanic der AdW der DDR. Akademie-Verlag, Berlin.
[8] KERsTAN, J., MATTHES, K. and MECKE, J. (1974). Unbegrenzt teilbare Punktprozesse. Aka-
demie-Verlag, Berlin.
[9] RENvy1, A. (1964). On two mathematical models of the traffic on a divided highway. J. Appl.
Probability 1 311-320.
[10] SoLomoN, H. and Wang, C. (1972). Nonhomogeneous Poisson fields of random lines with
applications to traffic flow. Proc. Sixth Berkeley Symp. Math. Statist. Prob. 3 383-400.
[11] THEDEEN, T. (1964). A note on the Poisson tendency in traffic distribution. Ann. Math. Statist.
35 1823-1824.
MonNasH UNIVERSITY
DEPARTMENT OF MATHEMATICS
CLAYTON, VICTORIA
AuUsTRALIA 3168



