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THE GROWTH OF RANDOM WALKS AND LEVY PROCESSES

By WiLLiam E. PruIrTT

University of Minnesota

Let {X:} be a sequence of independent, identically distributed non-degen-
erate random variables taking values in R? and S, = =X, X;, M, =
max=i<, | Si|. Define for x >0, G(x) = P{| X |>x}, K(x) = xE(| X: |2 1{| X |
=x}), M(x) = x7' | EX11{| X1 | = x}) |, and A(x) = G(x) + K(x) + M(x). Then
if 8 = sup {a : lim sup x°A(x) = 0}, § = sup {« : lim inf x*A(x) = 0}, it is proved
that n™"/*M,, — 0 for a < 8, — o for a > §, while the lim inf is 0 and the lim
sup is o for B < a < §. Some alternative characterizations of the indices 8, 8
are obtained as well as the analogous results for Lévy processes.

1. Introduction. Let {X;} be a sequence of independent, identically distributed non-
degenerate random variables taking values in R and S, = %, X;, M, = max;=, | S;|. The
problem is to obtain bounds on the rate of growth of M,. Let F denote the distribution
function of X;, and X denote a random variable with this distribution. Define, for x > 0,

G(x)=P{|X|>x}), K@x)=x7" j ly*dF (y)
(L.1) |yl=x
M(x) =x7! f ydF(y) ‘ s h(x) = G(x) + K(x) + M(x).
|yl=x

First we will obtain the relatively simple bounds

(1.2) P{M, = a} = Cnh(a), PM,<a}= ﬁz%?) .

From these bounds it follows readily that if we let
(1.3) B =sup{a:lim sup,.. x*h(x) = 0}, 6 = sup {« : lim inf, .. x*A(x) = 0},
then the rate of growth of M, relative to powers is almost completely determined by

0 if a<p 0 if a<$

. . _l/a =
w if a>pgr LminfrM, {oo if >0

(1.4)  lim sup n”"*M, = {
with probability one. Other results may be easily obtained from the bounds in (1.2). For
example, the expected first passage time out of the ball of radius a, centered at the origin,
is comparable to {A(a)} . Functions similar to 4 have recently been used for a variety of
purposes; for example, see [2], [7]-[10].

It is clear that the first result in (1.4) is unchanged if M, is replaced by | S, |. Complete
information about the behavior of lim sup a;'|S, | is available in Feller’s (1946) paper on
upper envelopes. Sharper forms of the second result in (1.4) are also known in special
cases, for example if F is in the domain of attraction of a stable law [5]. The interest here
is that both results are universal, the proof is relatively easy and shows the duality between
the two results, and it probably gives all the information one would ordinarily want about
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the rate of growth of M,. The problem of obtaining information about lim inf n™/*| S, |
seems to be much more difficult, and results are only known in special cases.

This work was motivated by the fundamental paper of Blumenthal and Getoor (1961)
which defines certain indices for Lévy processes and determines some properties of the
sample paths of the processes in terms of these indices. In particular, they obtain the
analogue of the first result in (1.4). However, the correct index for the second result in (1.4)
has not been found and this was mentioned as an open problem in Taylor’s (1973) survey
paper. This problem has a solution analogous to (1.4). G and K are defined as in (1.1) with
F replaced by the Lévy measure, but the definition of M has to be changed somewhat.
Then & is defined analogously to (1.3); see (3.1) and (3.3).

The results for sums of independent random variables are given in the next section.
Alternative definitions of the indices 8, § are also mentioned. The results for Lévy processes
are in the final section. Since the proofs are similar, only the differences are noted in this
case. The new index 8 is compared to other indices that have been defined earlier and an
example is given.

2. Sums of Independent Random Variables. We start with the proof of the
fundamental lemma (1.2). To see that it really suffices to consider the one dimensional
case, let S, = (Sy, -+ -, S7) and M/, = max.<, | S%| and then

2.1) maxi< <q Mln =M, =< 2?:1 Mln

Similarly, if A,(x) denotes the function defined as in (1.1) for X’ where X = (X!, - - - XY,
then straightforward but slightly tedious estimates show that there are constants ¢, C,
depending only on the dimension d, such that

(2.2) ch(a) = 24_; hi(a) = Ch(a).

Using (2.1), (2.2), and (2.3) with the one dimensional version of (1.2) then gives the d
dimensional version. Alternatively, one may simply replace A(a) by = hj(a) in (1.2) and
then there is no need to prove (2.2).

LEMMA. Define h as in (1.1). Then there is a constant C, depending only on the
dimension d, such that for all n and a > 0

C
nh(a)

P{M, = a} = Cnh(a), PM,<a}=<

Proor. We may assume that the X; are real valued as indicated above. Let T, =
2L Xi1{| Xi| = a}. Then

|ET,|=n = naM(a)

J x dF(x)
|x|=a

so that if | ET, | = a/2 we have
P{M,=a} =1=2nM(a) < 2nh(a).
On the other hand, if | ET, | < a/2, then we have by Kolmogorov’s inequality
P{M, = a} = P{max=.| X;| > a} + P{maxi,| T;| = a}
= nG(a) + P(maxi<, | T; — ET:| = a/2}

- na?K(a) -
= nG(a) + W_ 4nh(a)

We will prove the second inequality with A(2a) in place of A(a). The reader may show that
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h(a) and A(2a) are comparable; in fact, for C > 1

L < ___h(Ca) <
2C?~ h(a) ~ 7

We abuse our notation slightly by letting T, denote the sum of the X; truncated at 2a
instead of a in this part of the proof. The reason for this is that M, < a implies that | X, |
=< 2afori=nandso M, =max.<,| T.|. There are three cases depending roughly on which
of G(2a), K(2a), and M(2a) is dominant. First suppose that

(2.3)

(2.4) K(2a) = 2G(2a) + 2M(2a).
Then by Esseen’s version of the concentration function inequality [2, page 295], we have
4
P{|S,|=<2a) = Cta ¢

(n(40)’K*(4a)}?  (nK"(4a)}

where K° is defined as in (1.1) for the symmetrized variable X; — X,. (This inequality is
considerably simpler than the concentration function inequality in its full generality. A
proof is given at the end of this paper.) Now

X1 — X)?dP = (4a)_2j Xi - X;)* dP

| X,|=2a,| X,|=<2a

K*(4a) = (4a)‘2f

|X,—X,|<4a

K(2a){1 — G(2a)} — %{M(2a)}2.

N =

Since K(2a) < 1 we have by (2.4) that
G(2a) < Y%, {M(2a)}* = % (K(2a)}? < %K(2a).

Thus
K°(4a) = BK(2a)
and so
8v2C
2. n| < S,
( 5) P{IS '<2a}<{nK(2a)}1/2

Now this gives the desired bound by letting m = [1n/2] and noting that
(2.6) P{M,=a} =P{|Sn|=<2a,|S, — Sn|=2a}
since we also have under (2.4) that
K(2a) = AK(2a) + G(2a) + M(2a) = %h(2a).
Now we must deal with the case when (2.4) fails. If we also have G(2a) = M (2a) then

P{M, = a} = P{maxi=.| Xi| = 2a} = (1 — G(2a)}" < ¢ "? < 7GEa)

and then
2.7) G(2a) = %G (2a) + %LM(2a) = %4G(2a) + %M (2a) + % K(2a) = %h(2a)

since (2.4) fails. Finally if M(2a) = G(2a), there are two possibilities. If nM(2a) < 1, we
have

(2.8) PM,<a}=1= !

nM(2a)

while if nM(2a) = 1 we have
| ET,| = n2aM(2a) = 2a
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and so
P{M,=a}=P(|T.|=a)<P{|T. - ET.| = %|ET,|}

- n(2a)’K(2a) _ 4K(2a)
= (naM(2a)}®  n{M(22a)}*"

Since (2.4) fails and M dominates G, we have
K(2a) = 2G(2a) + 2M(2a) < 4M(2a)

so we are led again to the bound in (2.8) with a constant of 16. Finally the argument in
(2.7) gives a lower bound of M(2a) = A(2a)/8 in this case.

REMARK. The second bound of the lemma is not at all sharp. In fact, for any fixed
integer k, we may split the interval [1, n] into % blocks of length approximately n/% and
the maximum of the sums of the X; in each block will be at most 2a when M, < a; this is
similar to (2.6). Thus the given bound leads to an improved bound of C, {nA(2a)}~* where
Cr now depends on % as well as d. As above, 4(2a) may be replaced by A(a). As an example
of the usefulness of this observation, we obtain the estimate for expected first passage
times.

THEOREM 1. Let
S(a) = min{j:|S;| > a}.

Then there are constants ¢, C depending only on the dimension d such that

¢ < ES@=-C.

h(a) h(a)

Proor. Note that {S(a) > n} = (M, < a} and so
(2.9) ES(a) =23, P{S(e)=n}=1+37_, P(M,< a)

C__ _na. c
n*(h@) " (N - D{Rh@)®

Since A(a) = 2, we may take N = [6/Ah(a)] and have N — 1 = 2/A(a). This gives the upper
bound. For the lower bound we use the first inequality of the lemma. If n < 1/2Ch(a),
then P{M, = a} < %, so by (2.9) we have

1 1 1
ES(a) = 5(1 * [2Ch(a)]) = 1Chia)’

Now we will prove the main result about the rate of growth of M,.

=N+33n

THEOREM 2. Let B,  be defined as in (1.3). Then if a < 8, n”V*M, — 0 as., if a > §,
n V"M, —  as., while if B < a < 8, we have

lim inf n”"*M, =0, limsup n"V*M, = », a.s.
Proor. First suppose that a < 8 and take a;, a2 so that @ < a; < a; < 8. By the lemma
and the definition of 8
P{M, =n"*} < Cnh(nV*) < Cn'"/=

for large n. Thus, taking n, = 2*, we have M, = n}/'* for large £ by Borel Cantelli. Then
for n, < n < nps1, and & large

Mn < M"le-rl < n}({:‘lz < (2n)1/ﬁ2 <= nl/azl/azn (a—ag)/aay
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which gives the first result. The second is similar; if § < a; < a2 < @, then

P{M,< n'%) < = Cp7 't/

nh(n'/*)
for large n and the rest of the argument proceeds very much as above. Now suppose that
B < a1 < a. By the definition of B, there is a sequence {x;} with x; — o and x{'A(xx) —
. Let ni = [x3']. Then for large %

2C

= 0
neh(xe) - xih(xe)

P{M,, =<x} =<

so that
P{M, =n{/"}=P{M, =x}—1

and so P{M,, = n¥* io.} = 1. This means that lim sup n"/*M, = 1 and so lim sup
n~'*M, = . The proof that lim inf n~/*M,, = 0 for a < § is completely analogous.

Some general remarks about the indices 8 and 8 will conclude this section. We expect
that the slowest rate of growth for M, should be n'/* when E'|X|* <  and EX = 0. This
is confirmed since A(x) = K(x) = cx™2 in any case so that 8 < 2; in fact, even 8 < 2. In case
E|X|* < » and EX = 0, we have A(x) ~ x2E | X |? so that 8 = 8 = 2 as we know from the
laws of the iterated logarithm of Hartman-Wintner (1941) and Chung [6], respectively. If
E|X| < o and EX # 0 then by the strong law n™'S, — EX and so n”'M, — | EX|. In this
case it is not hard to check that A(x) ~ M(x) ~ x| EX| and so 8 = § = 1. If we then
assume that EX = 0 whenever E | X | < o, then the reader may verify that

(2.10) B = sup{a €[o0, 2]: f |x|* dF(x) < 00} .

In this form we see that the first half of (1.4) follows immediately from Feller’s (1946)
general result since T G(n'/*) < w iff E | X |* < oo. Another characterization of § is given by

THEOREM 3. Let M; = max{M,, 1}. Then
§=inf{a: 2, E{M;} *<o}.

Proor. Let H, denote the distribution function of M, and H = X H,. Then integration
by parts shows that for a > 0

EM,}*“=a fm X 'H,(x) dx
1
and so
(2.11) S.E(M;} " =a Jm x*'H(x) dx
1

with the understanding that if one side is infinite so is the other. Now for a = 1
(2.12) a fm x'H(x) dx = « Jm x*'H(x) dx = H(a)a™,

1 a
while by (2.9) and Theorem 1 we have

- 1% 1%
(2.13) H(a) = ES(a) — 1= 7@ 1= @

for large a. By (2.11)-(2.13), we see that if = E {M7}™* converges, then h(a)a“ is bounded
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below so that a = 8. On the other hand, if a; > 8 then x*A(x) = 1 for large x so that again
by (2.9) and Theorem 1

c
H(a) = ES(a) — 1< @ = Ca
for large a. Then (2.11) shows that £ E {M,} ™ converges for a > a;.

It is also possible to calculate 8 and & directly from the characteristic function. For
simplicity, assume that d = 1 and let f be the characteristic function of X. Then A(x)
behaves like | 1 — f(x™') | in nice cases but this is not true in general. However, there are
universal constants ¢, C such that

ch(x) =x J' (1 - f(uw) du| = Ch(x).
0

This is proved by considering separately the real and imaginary parts of 1 — f and using
the standard estimates for sin x and 1 — cos x.

Finally, for d > 1, we consider the relation between the indices and their one-dimensional
counterparts. If we let 8;, 6; be the analogous indices for the components X”, then it follows
readily from (2.2) that 8 = min;<j=q Bj, 8§ = min,<;<q §;; this is also clear from Theorem 2.
If A, is regularly varying for all j (regular variation of G; implies this), then 8; = §; for all j
and so § = 8 = min 8, = min §;. However, in general the times when the small values of
M, occur may vary for the different components, and M, may not get as small as its
“maximal” component, i.e. it is possible that 8 < min 6;. As an example, let x, = 2*" and let
X have mass

Xz at (0, £X.41), n=0,1,2 ...
Xon at  (£x2., 0), n=1.,2 .-,
with the remaining mass at zero. Then it is easy to see that
hi(x) ~ 2x2042 + 2%2,x 7%, Xon < X < Xon+2
h2(x) ~ 2Xzme1 + 2%20-1% %, Xon—1 = X < Xon+1-
Then it follows easily that 8 = 8; = B2 = 1 but § = %, while §, = 8; = %.

3. Lévy Processes. A Lévy process is one with stationary independent increments,
taking values in R, and characteristic function E exp{i(u, X;)} = exp{ty(u)} where

Uu, %) ) dv(x)

—_ 7 %) _ 1
Y(u) = i(d, u)+J(e 1 ——————1+’x|2

with b € R and » a Borel measure on R satisfying
|x|?
—d < oo,
Jl Flap e e

It is also customary to include a Gaussian part, but since its behavior is well known we will
omit this component in order to simplify the formulas. We will assume that X, = 0 and
that we are dealing with a version which has almost all sample functions right continuous
and having left limits.

We define, for x > 0,

G(x) = v{y:|y| > x}, K(x)=x_2J' |y dv(y)

|yl=x

(3.1) M(x) = x7!

- yly)? f y
b+ ——dr(y) — ——dv(y)
jms,myl? V) LT
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h(x) = G(x) + K(x) + M(x).

Then if we let M, = supo<,< | X, |, we have

(3.2) P{M, = a} = Cth(a), PM =a}=< -t?l((%) .

Furthermore, if we define
(3.3) B = inf{a:lim sup..o x*A(x) = 0}, 8 = inf{a:lim inf,_, x°h(x) = 0},

then with probability one

0 if a>3§
00 if a<é§”

0 if a>p8

(3.4) lim Sup:—o t_l/aM[ = {m if a< B )

llm inf,_»o t_l/aMt = {
There are also results for £ — o analogous to (1.4) if the indices are defined in terms of
x“h(x) for x — o0 as in (1.3). (The reason that some of the inequalities are reversed for
small times is that x“ is increasing with « when x is large but decreasing when «x is small.)
If we define S(a) = inf{¢:|X,| > a} then we have ES(a) comparable to {A(a)}™" as in
Theorem 1. Also, as in (2.10),

,8=inf{a>0:f |x|“dv(x)<oo}
|x|=<1

where @ is as in (3.3) provided that we remove a linear drift term when [j< | x| dv(x) <
. This is the definition of 8 given by Blumenthal and Getoor (1961). Corresponding to
Theorem 3, we have

1
(3.5) é= sup{a: f EM;*dt < 00} .
0

Combining the definition of § with the fact that ES(a) and {A(a)} ! are comparable shows
that

(3.6) 8 = sup{a:lim sup, o a “ES(a) < «}.

This is also valid with S(a) replaced by min {S(a), 1} and this makes it possible to compare
8 with v, the index introduced in [11] which gives the Hausdorff dimension of the range of
X. The definition of y was as in (3.6) with the first passage time S(a) replaced by the
sojourn time in the ball of radius @ up to time one. Thus we have

vy=86=8.

If the Lévy process has increasing sample paths it is called a subordinator. In this case a
lower subordinator index ¢ was defined by Blumenthal and Getoor (1961) and it was shown
that y = ¢ in [11]. Since it was shown in Theorem 2 of [11] that y may be obtained as & is
in (3.5) but with M, replaced by | X,|, we have y = § = ¢ for a subordinator. However, y and
8 may be different in general. If one symmetrizes the example given in Section 4 of [11],
then y = % as was (partially) shown in [11] while it is easy to check that § = %; this
calculation is done as in the example given for sums of independent random variables in
Section 2.

The main thing that needs to be proved for Lévy processes is the pair of inequalities
(3.2). The other proofs are then very much the same as in Section 2. As before, we consider
only d = 1. The analogue of the truncation is to let Y(u) = y1(u) + ya(z) where

. tux iux
= 1bu + wx _ 1 — —_ i3
Yi(u) = ibu fpclsa (e 1 e x2) dv(x) L)a T dr(x)

Yalu) = J (€™ — 1) dv(x).
|x|>a
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Then X, = X} + X? with X' ~ {, X? ~ s, the two processes being independent with X;
having finite variance and X? being compound Poisson. By differentiation of the charac-
teristic function,

3

) N A = x — x
EX} = —ity}(0) t{b+ J;Iﬂ — e (@) L)a — dv(x)}

Var X} = —t*{1(0))* — ty1(0) — {EX:}* = tj x dv(x)

|x|=a

so that | EX; | = taM(a) and Var X; = ta’K(a). Now the proof of the first bound in (3.2)
proceeds as in Section 2 since we know that for the compound Poisson process X?

P{X2%0for some s <t} = 1— e ““ = tG(a).

The other inequality is also proved as in Section 2 with the truncation coming at 2a now
instead of a. Since M, < a implies that there are no jumps of magnitude larger than 2a
before time ¢, we have

P{M, < a) = e*°® P {supo=s=: | X} | < a}.

The first factor may be used when G is dominant and the second when M is dominant as
in Section 2. Thus we only need to consider the case when K is dominant. Rather than
attempting to obtain the needed result from the concentration function inequality, it is
easier to proceed directly in this case. This is essentially Esseen’s (1968) argument but it
is much easier here. For any random variable Y with characteristic function f we have

cu’P{uY| =1} =EY*(1 —cosuY) = EJ f cos wY dw dv
(1] 0

=J’ f Re f(w)ddeSuJ | f(w)| dw
0 0 0

so that

a‘l

P{|Y|=a} SCaJ | f(w)]| dw.

0

If we take Y = X,, then f(w) = exp{ty(w)} so that

| f(w) | = exp{¢ Re Y(w)} = exp{tJ' (cos wx — 1) dv(x)}

|x|=2a

3.7) = exp{—thzf x? dv(x)} for |w|=< (2a)"
|x|=2a

= exp{—Ctw?*4a’K(2a)}.
Thus

® C,
<< < —_ 2 2 = —
P{|X:| =2a} = CaJ' exp{—Ctd4a°K(2a)w*} dw K"

0

This is the analogue of (2.5). The remainder of the proof is essentially the same as above.

REMARK. All that is needed to complete the proof of the analogous inequality for S,
is a slight modification of (3.7). If f, g denote the characteristic functions of S,, X
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respectively, then

[fw)| =|gw)|" < exp{—% n( — | gw) |*)}

= exp{—% n f (1 — cos wx) dFs(x)}

where F* is the distribution function of the symmeétrized random variable X; — X, which
has characteristic function | g(w) |2 Now (3.7) and the rest of the proof are completed as
above.
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