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ON THE CONVERGENCE OF THE EMPIRIC AGE DISTRIBUTION
FOR ONE DIMENSIONAL SUPERCRITICAL AGE DEPENDENT
BRANCHING PROCESSES

By THoMASs KUCZEK

Rutgers University

The age distribution for the supercritical age dependent branching pro-
cesses is shown to converge on the set of nonextinction to a particular
distribution function if the offspring distribution { p,} satisfies 1 < Zjp; < .

1. Introduction. Consider an age-dependent branching process (see Harris [3] for
definitions) governed by {p;}, the common probability distribution of the number of
progeny having been born to an individual by time of death, and G(-), the common
distribution function (d.f.) of the length of life of an individual. For a realization w of the
process, let Z(¢, w) denote the total number of individuals alive at time ¢, Z(x, ¢, w), the
number among these that have ages no more than x, and A (-, ¢, w) defined by A (x, ¢, w)
=Z(x, t, w)/Z(t, w) denote the empiric age d.f. of those alive at time 2.

There has been considerable interest shown in the past in the limiting behavior of the
age distribution A (-, ¢, w), as t— . In [3], Harris showed the almost sure (a.s.) convergence
of A(-, t, w) if { p;} has a second moment and G(-) is sufficiently regular. Later, Jagers [4]
obtained the same result assuming only that { p;} has a second moment. More recently,
Athreya and Kaplan [1] showed the validity of the above result assuming that =(;-log ) -
pj is finite. After the present results were obtained, a later paper of Athreya and Kaplan
[2] was brought to the attention of the author, where they have shown that the result
holds if 1 <m = Zjp < » and G(-) satisfies a certain tail condition. In contrast to these,
the present paper assumes only 1 < m < o, with no conditions imposed on G(-). Recently,
independent but related work of O. Nerman has become known to the author. See Section
5,

The approach adopted here follows in part the basic steps of [1], namely that we
decompose A (-, ¢, w) into three terms, and then tackle each term separately. In so doing,
we use a rather interesting embedding technique leading to the final proof.

In Section 2, we give notation from [1] and our basic assumptions. In Section 3, we
state the main theorem and the three lemmas necessary to prove it. Finally, to complete
the proof of the basic theorem in Section 3, a theorem is given in Section 4 which provides
certain lower bounds achieved through a special embedding. Of the three lemmas of
Section 3, one is already proved in [1], while the other two are proven in Section 4.

2. Notation and basic assumptions. We always assume, whether stated or not, that
(a) po = 0 (rather than conditioning on the set of nonextinction), (b) 1 <m = Zjp; < o, and
(c) G(0+) = 0. For any realization w and x = 0 we define,

Z(t, w) = number of particles living at time ¢,
Z(x, t, w) = number of particles of age =< x living at time ¢,
Ax, t,0) = Z(x, t, 0)/Z(t, o),
{xi(t,w);i=1,2, ---, Z(t, )} = the age chart at time ¢,
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ON A CONJECTURE IN GEOMETRIC PROBABILITY 253

Z, (%, s, w) = number of particles alive at time ¢ + s with ages < x, in
a line of descent initiated by a particle of age x:(¢, w)
living at time ¢,
and Z, ) (8, @) = limy e Zs 0 (%, 8, w).
For x =0,y =0, let M(x, t) = E{Z(x, t)}, M(t) = E{(Z(8)}, M, (¢) = E{Z,(t)}, M, (x, t)
= E{Z,(x, t)}, and m = Zjp;. Also for x = 0, y = 0, let G,(x) = (G(x + y) — G(y))/
(1-G(y), V(x) =m [§ e™*G:(du),

n, = U e (1 — G(t)) dt]/[mf te ™ G(dt)] ,
0 0
Ax) = U e (1 — G(t)) dt]/“ e (1 — G(t)) dt] ,
0 0

V.= j V(x)Z(dx, t, w) = 325 V(x(t, 0),
0

where a is the Malthusian parameter defined as the root of the equation m [§ e~ G (dt)
=1

3. The theorem and three lemmas. The proof of the following theorem is based on
a natural decomposition of A (x, ¢) into three parts as in [1], and a separate lemma is
proven for each part, the difference being that two of the three lemmas given below are
stronger than those of [1] or [2].

THEOREM 3.1. If1<m < o, then

(3.1) lim,_, supxz=o| A (x, £, w) —A(x)| =0 as.

Before indicating the proof of Theorem 3.1, we will first define the decomposition, and

then give the three corresponding lemmas.
Clearly one may write (suppressing subscripts)

(3.2) Z(x, t+5) =37 Z,(x, ).

Also, as in [1], by defining
(3.3) a:(x, s) = ‘Z:_t) SEO [Ze, (x, 5) — My, (x, 5)]e™,
(3.4) bt (x, S) = ﬁzf_j‘: [Mxl (x, 8) e—as —-m V(x, )A (x)],
and
(3.5) c.=V./Z(¢)
we have

Ax, t+s) = a:(x, 8) + bi(x, s) + c:A(x)

a; (OO, 8) + bt (OO, S) + Ct
where a; (e, s) and b,(e, s) are the respective limits of a.(x, s) and b, (x, s) as x — . The
following lemma and corollary are from [1].

LEMMA 3.1. As s — oo, for fixed x,

(3.6) sup,=o{| M, (x, s)e™ — n, V() A(x) |, | My(, s)e™* — n, V(y)|} = 0.
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COROLLARY 3.1. As s— o, for fixed x,
(3.7) supy,. {| b:(x, 8) |, | b (, 5) |} — 0.

The next two lemmas are proved at the end of Section 4 as the corollaries of results in
Section 4.

LEMMA 32. If1<m < and § > 0, then,

(3.8) Vs =5 (,ll 5 Y20 [Z,,(x, 8) — My, (x,8)] >0 as.

In [1] it was shown that Y, — 0 in probability, if 1 < m < «, and that Y,; — 0 a.s., if
3(j log j)pj < . In [2] it was shown that Y, — 0 a.s., if 1 < m < o and a certain tail
condition on G(-) holds.

LEMMA 3.3. If1 < m < o, then for some n> 0

(3.9) lim inf, .. [V:/Z(t)]>n as.
It was shown in [1] that (3.9) holds if inf,cauppe V(x) > 0 or instead if Z(j log j)p, < .
ProoF oF THEOREM 3.1. The above lemmas show that if § > 0, then A,;(x) = A (x)

a.s. This fact and the continuity of A (x), along with technical arguments in [1], give us
Theorem 3.1.

4. A theorem based on an embedding and proofs of Lemmas 3.2 and 3.3. By
considering a certain type of process embedded within the Bellman-Harris process, the
following theorem is proved, which in turn implies Lemma 3.3.

THEOREM 4.1. If1 < m < o, then for some Ci, Cz, both positive and finite,

4.1) lim inf, ,..[Z(C1, t)/Z(t)] > C; as.
Before proving the above theorem, we shall need the concept of what we call a short

term branching process. Without loss of generality, assume G(t) < 1 for ¢ < . (The
theorem is trivially true if not.) As usual, p, = 0. Fix K > 0 such that

(4.2) G(K)-m>1, and
(4.3) G(@2K) - G(K) > 0.
With this particular K, for a particle born at time 0, define

(4.4) Z(7) = {number of particles alive at time 7, descended from the original
particle, such that (1) each has a life-span < K in length, and (2)
each of its ancestors, up to and including the original particle,
had lifespan < K}. :

The above definition implies that Z (r) is itself a Bellman-Harris process (on set ancestor
lives = K) with lifetime distribution

(4.5) G(x) = G(x)/G(K), 0=x=<K,

and offspring distribution

(4.6) Pn=Sen (z)(G(K))"(l - GK)" "D, n=01,---.
Evidently

4.7) Ynp. = G(K)Ynp, = G(K)m > 1,
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so that 0 < 8 < 1, where
(4.8) B=p(Z(r)>0, foral 7>0).

Another concept we need is that of particles of order n at time £ Recursively, define
them as follows.
The particles of order one at time ¢ are those particles ever born up to time ¢ such that
(1) their life-length is >K, (2) no ancestor (born at or after ¢ = 0) has life-length >K.
We also define

(4.9) Z,(t) = {number of particles of order one born by time ¢},
(4.10) Si(r) =2 Y1 Zhi(r)

where Z/;(7) is the short term branching process at time 7 after the birth of the jth of J;
progeny of the ith of Z;(t) particles of order one born by ¢, as well as
(4.11) Y; = life-length of ith particle of order one.

We add that ¢ is suppressed in some expressions for notational convenience, and i = 1,
2, -, Zu(2).

Assume that particles of order n at time ¢ have been defined and that this set is not
null. Define particles of order n + 1 at time ¢ to be those particles born up to time ¢ such
that (1) each has lifespan >K, and (2) each has an ancestor with lifespan >K and the
nearest such ancestor is a particle of order n.

Clearly one may define Z,.1(¢), Sn+1,i(7), Z%+1,:(1), and Y ,+1, for particles of order n +
1 just as they were defined for particles of order one. Also note that if there are no particles
of order n at time ¢ there are none of higher order at time ¢.

Also define

(4.12) Xni = Iy, e 2k7) Ipimints,, &) > 0]

fori=1,2 -+-,Z,(t),n=1,2, ---, [t/K] + 1. We note that Z, (t) is void if n > [t/K] +
1. For notational simplicity let

(4.13) n=[t/K]+1 and
(4.14) N.=3" Z.(2).

The purpose of the previous definitions was to define the random variables {X.:} and
{Z.(t)}. The following lemmas concern distributional aspects of 22X,.;. These results will
be crucial to the proof of Theorem 4.1. Before proceeding to the lemmas, more notation is
needed. Let

(4~15) p(xlla sty Xnmg,y M1y * 00y mnt)
=P(Xu = X1, +++, Xnm,, = Xnmy, Z1(t) = mu, «++, Zn () = mn,).

We note that some x are necessarily 0 if m; = 0 for some i < n,. We also use p(,- - -,) for
marginals. The following is trivial.

p(xll, © o Xnima,s ml’ ] mnt) =p(x11a sy Xim,y lml)
(4.16) .p(le’ "',x2m2|m2, X115 ***y Ximys ml) b
D (xntl, M} xnlmn,lmn[, Xn,~1,1, ***y Ximl, ml)

p(my, ---, mnt)_

LEmMMA 4.1. On{Z;=m;} form;=1,

(4.17) P(Xi1, =+ ) Xim | My Xic13, - -+, X11, M1) =p2:‘x"(l _p)m.—zl";'lx,,_
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In (4.17), p has the value
(4.18) p=[(G2K) - G(K))/(1 - GEK)]-[1-EQ1 - p)’]

where J is the random number of offspring at split and 8 is as in (4.8).

Proor (Lemma 4.1). Clearly X,, -+, Xi», are Bernoulli (p) random variables for p
as in (4.18). Using definition 2.3 from [3], one may define particles by sequences; (i1, - - - ,
ix), for example, is a particle of generation 2 + 1. Now if we condition on event that
{ay, +--, am, (a’s represent sequences) are all and only particles of order i at time ¢, and
Xi-11, *+* , X11, m; also occur} then conditioned on this set

P (%, -, Lin) = pEET(1 — pyr i,

since the future is conditionally independent of the past. Unconditioning on the particular
o’s gives (4.17).0

LeEMMA 4.2.
(4.19) DXty oo vy Xngy Min | M, + ooy My,) = pEanZZidni(] — p)Ne ST,
ProoF. Use Lemma 4.1 and equation (4.16). By Chebyshev, the following holds:
4200  p(|[(Xr, X7 Xu)/N ] —p| >€e|my, ma, -+, my) < p(1 — p)/e?N..

i=1

Since N, is really an overestimate of the number of particles of age >K at time ¢ + K,
one may argue, by means of results of Jagers [4], that for any 8 > 0, there exists M; finite
and C > 1 such that

(4.21) Nps>C™ a.s.

if m = M;. Consequently, we obtain

LEMMA 4.3. For § >0,
(4.22) P(yr ¥ X.;]/N.<p/2 io., t=md)=0.

i=1
Proor. Lete = p/2. Since M5 < x a.s. using (4.20)
4.23) X5 4, PUZ, X0 Xuil/Ne < p/2, t = m8) < ey [p(1 — p)]/[(e/2)C™] < co.
Borel-Cantelli gives the rest. 0

Now the tools are available to prove Theorem 4.1.

PrOOF oF THEOREM 4.1. It is easy to see that equation (4.1) is equivalent to showing,
for some C1, C5, that

(4.24) livinf,..[Z(Ch, )/[Z(t) — Z(C, )] > Co> 0 as.
Now note that by definition of X ,; (equation (4.12)),

(4.25) w20 X< Z(2K, t + 2K)
and
(4.26) N.=Z(t+2K) - Z(2K, t + 2K).

This yields the lower bound
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4.27) [Br, Y40 X, ]/N. < Z(2K, ¢t + 2K)/[Z (¢t +2K) — Z(2K, t + 2K)].
Directly from Lemma 4.3 we may infer that, if § > 0
(4.28) P(Z(2K,t+2K)/[Z(t+ 2K) — Z(2K, t + 2K)] <p/2 io. t=m-8)=0.
It is not difficult to show that
(4.29) liminf, .. Z(4K, t)/[Z(t) — Z(4K, t)]
= lim inf,« Z (2K, m-8)/[Z(m8) — Z(2K, m8)] as.

Therefore with Ci = 4K, C3 = p/2 we have (4.24). 0

ProorF oF LEMMA 3.3. If we let

(4.30) a = infiepoc,) V(x) >0

then

(4.31) lim inf,_,.. Vi/Z(t) = a lim inf, . Z(C\, t)/Z(t)

(4.32) =a-C; as. 0

COROLLARY 4.1. For some K’ > 0, there is a constant C’ > 1, such that
(4.33) liminf, .. Z(¢t + K')/Z(t) > C’' as.

PrOOF. See Lemma 4.5 of [2] for details. O

ProoF (Lemma 3.2). In view of corollary 4.1, this follows by the proof of Lemma 3.2
in[2].0

5. Remarks. Independently of the preceeding work, O. Nerman (Nerman [5]) has
obtained similar results for the Crump-Mode-Jagers or generalized branching process. Let

(5.1) £ () = number of offspring born to a particle by time ¢,
which itself was born at time 0,

and a be such that

(5.2) E f e ¢(dt) =1
0

If in addition, one assumes that for some 8 < a
(5.3) E f e P E(d) <o,
0

then the corresponding age result holds. In particular, for B-H processes this implies
Theorem 3.1. '

On the other hand, Theorem 4.1 evidently holds for the generalized process without the
assumption (5.3), needed in Nerman. In fact, choosing K, K’ satisfying the analogous
equations to (4.2) and (4.3), one may bound the tail of the age distribution (asymptotically)
for the generalized process, again without (5.3). However, this does not imply the ages
result for the generalized process without (5.3), which is still open (and probably true).
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