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ADDITIVE AMARTS!

By G. A. EDGAR
The Ohio State University

Multi-parameter martingales and amarts can be studied using methods
developed for amarts defined on a directed set by A. Millet and L. Sucheston.
To study an amart indexed by N X N, we use an associated process indexed
by the “lower layers” of N X N. J. B. Walsh’s convergence theorem for two-
parameter strong martingales is recovered as a special case. Vector-valued
versions of some of the results are also stated.

The work in this paper began as an attempt to understand some of the recent work on
multi-parameter martingales (e.g. [13]) from the point of view of amarts. It was motivated
partly by the modern trend to generalize everything. But most of the motivation was the
experience from the one-parameter case: often results are equally easy in the amart setting
compared to the martingale setting, and occasionally the situation is even clearer for
amarts.

There have already been a few papers that treat multi-parameter martingales using
amarts: [11] [7] [12]. The approach used there seems to be different from the one used in
the present paper.

In this paper, an amart version of Walsh’s discrete-parameter convergence theorem [13,
Theorem 3.5] is proved. The present paper closes with the version of this convergence
theorem for processes with values in a Banach space.

In this paper the “stopping domain” is identified as a special case of the “stopping time”
with values in a directed set. This makes it possible to apply the theory of amarts indexed
by a directed set, as developed by Astbury [1], Edgar-Sucheston [5], Millet-Sucheston [10],
and others.

No matter what index set is used, I consider a martingale to be a process that satisfies

(D) E[X:|#]=X, for s=<t.
Again, an amart is a process such that
2) E[X,] converges

as 7 runs through the directed set of all simple stopping times.

Even though the parameter set I = N X N was the original motivation for this paper,
mention of that case has been postponed to later in the paper, and more general versions
of the main results have been placed first.

This paper deals with the “discrete-parameter” case. Investigation of “continuous-
parameter” processes from this point of view is left for the future.

1. General directed set. We begin with a few basic definitions concerning amarts
on a directed set. The main references are [5], [1], [9], [10].

Let (2, &% P) be a fixed probability space. Let o be a directed set. A family (%):cs of
o-algebras contained in & satisfying % C % if s < t is called a stochastic basis. A family
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(X:)ies of random variables is called a stochastic process. The process (X;) is said to be
adapted to the basis (%) iff X, is %-measurable for all t € J. A simple stopping time of
the basis (%) is a function 7:Q2 — J with finitely many values such that {w:m(w) =t} €
% for all t € J. The set of all simple stopping times of (%) will be denoted

I'(J; (F)ees);

this will be shortened to I'(J) or I when the missing symbols are to be deduced by the
reader. A stochastic process (X;) is an amart for (%) iff

(i) (X;) isadaptedto (%),
(i) E|X;|<o forall t€d,
(iii) the net (E[X.]).er of real numbers converges.

It is known [5, page 199] that the process (X;) is a martingale (that is, conditions (i) and
(ii) hold and E[X.| #] = X, for s =< ¢t) if and only if conditions (i) and (ii) hold and the net
(E[X,]).es is constant. It has therefore been suggested that a synonym for “martingale” is

“exact amart.”
We begin with a technical but useful result. Millet and Sucheston [10] have proved a
similar result concerning martingales. Note that uniform integrability is not postulated.

1. THEOREM. Let J be a countable directed set, let (% ):cs be a stochastic basis, and
let J, C J be a subset cofinal in J. For each u € J,, let 4, be a class of stochastic processes
indexed by J(u), where {t € J,:t = u} C J(u) C {t € J:t = u}. Suppose:

(@) If (X,) € %, then (X,) is an L*-bounded amart for (%)wcsw .
@) If Xi)eow) € G ur EJo,un=u,and A € Zu,, then (1A(X; — Xu))tesw,) € G,
(iit) There is constant C so that for all u € J,, all (X;) € %., and all a > 0,

aP {supwsniw | X:| > a} = C sup.eruwn E|X-|.
Then for all (X;) € 4., the net (X;)wesnsw converges a.s.

Before proving this, we separate out a lemma. Compare [13, Lemma 3.6] and [10,
Theorem 2.5].

2. LEMMA. (a) Let J be a directed set, (%) a stochastic basis, and (X;) an L'-
bounded amart. Let ¢, 7 > 0. Then there exist t, € J and Ae &, such that P(A) >1—1
and

j|X,—X,o|dP<e
A

for all simple stopping times T = t,. (b) If, in addition, X, — 0 in probability, then there
exist t, € J and A € &%, such that P(A) > 1 —nand fA |X.|dP<eforallt=t,.

ProOF oF LEMMA. The process (X;) converges in probability [5, Theorem 2.10], say
to X... (In case (b), X.. = 0.) Then X, = X, — E[X..| %] is an L'-bounded amart, converging
to 0 in probability. By the “lattice property” for amarts [1, Corollary 2.1], the positive and
negative parts X7, X; are also L'-bounded amarts, still converging to 0 in probability.
Apply the amart “Riesz decomposition” [1, Theorem 2.1] to each one separately:

Xr=v®+2zp,
Xr=v{+z0,

and (Y{"), (Y{) are martingales, (Z") and (Z{”).er converge to 0 in L'. An examination
of the proof of the Riesz decomposition shows that Y{" =0, Y{™ = 0. Also, Y{* and Y}
converge to 0 in probability. Thus, we can write

X=Y"-Y"+2,
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where Z, = Z{" — Z{?) + E[X..| %], so that Y{" and Y{™ are martingales converging to 0,
and (Z,),er converges to X, in L'-norm.
Now choose ¢, € J so that

(i)E|Z,—Z,o|<§ forall 7=¢, and

5

Let A = {Y{” <¢/5, Y’ <e/5} € %, . Now for r €T, 7 = t,, we have (by the martingale
property)

(i) P{Y§;><§, Y§;><f} >1-1.

05] Yi*’dP=] Y® dP <<,
A A 5

So

le,—X,q|dP
A
sf Yi*’dP+f Y}:’dP+f Yi"dP+J' Y}:’dP+f|Z,—Z,a|dP<e.
A A A A

The argument for (b) is similar. 0

PrOOF OF THEOREM. Let (X;).s belong to the class %,. Then (X;) is an L'-bounded
amart, and hence [5, Theorem 2.10] converges in probability, say to X.. Choose ¢ <
t;< ... ind, and A, € %, recursively so that

(i) .th b d .Xoo, a.s.
(i) P[A]>1-27%

(iii)j [ X, = X, |dP<47* for 1=t
A

This is possible by the Lemma and the fact that </, is cofinal in J. Then for each &, the
process (14 ,(X; — X;,)) e, belongs to %;,. By the maximal inequality (iii),

C
P{Suptzt,,,teJa IXt - Xt,,| > 2_k} = 2—_7; SUPr=¢, E| ]-Ak(X‘r - Xt,,)| + P(A})

= 2—% 47k 4 27k = (C +1)27%
So by the Borel-Cantelli Lemma, (X;).c., converges a.s. [

A similar theorem for uncountable directed sets can be obtained by requiring essential
convergence rather than pointwise convergence.

2. Lower layers. We now change to a slightly different setting. Let I be a directed
set with least element 0, and locally finite in the sense that all intervals [0, ¢] = {s € I:0
=< s < t} are finite. A subset S C I is a (lower) layer iff from s < ¢t and ¢ € S it follows that
s € S. We will write Z(I) or £ for the set of all nonvoid finite layers of I. Clearly the
union of two layers is a layer, so #(I) is a directed set when ordered by inclusion. The
directed set I is canonically identified with the cofinal subset of ¥ consisting of the lower
intervals [0, t].
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If (%)er is a stochastic basis indexed by I, the associated stochastic basis (#%)sevu)
indexed by the layers is defined by

3) Hs = \/ses F,
the least o-algebra containing Us;es %. If (X:)wer is a stochastic process indexed by I that
has the form

X = Zsst Y,

for some difference process (Y;)scr, the associated process (Fs)se#) indexed by the layers
is defined by

(4) Fs=Ys Y.

The associated process has these two properties:

(5) Fron =X,

(6) Fss, + Fsns, = Fs, + Fs,.

A process indexed by #(I), or a cofinal subset of £ (I), that satisfies (6) will be called an
additive process. If (F;) is additive, then (5) defines the associated process (X;). Of course,
our definitions have been made so that if (Y;) is adapted to (%), then (Fs) defined by (4)
is adapted to (%) defined by (3).

An additive amart is a process (Fs)se#u), indexed by the layers, that is additive and is
an amart (formula (2) above; the directed set is .#(I)). Similarly, an additive martingale
is defined by (6) and (1) for index set .Z(I).

The following is a special case of Theorem 1.2 of [9] (take J = L(I), p = ).

3. THEOREM. Let (X;):.er and (Fs)se« be associated processes.

(@) If supcsE | X:| < and sup.er) | E[F-]| <®, then sup,ereE |F,|<oo.
(ii) If (Fs)se«is an L*-bounded amart, then (| Fs|)se » is also an L'-bounded amart.

If (Fs)se«is an L'-bounded additive amart, the process (| Fs|)se +need not be additive.
In other words, if (X;) and (Fs) are associated process, then (| X;|) and (| Fs|) are usually
not associated.

We now consider the special case I = N X N with the usual ordering: (i, j) < (m, n) if
and only if i = m and j < n. In that case every process (X;) can be obtained by adding a
difference process,

X = Esst Y,;
namely, define

Xown — m—1n — Amn-1+ Xm—l,n—l, m>0, n>0

Xo - Xo,n—l N m = 0, n>0
(7) Ymn =

Xmo - Xm—l,o , m > 0, n=0

Xoo , m= 0, n=0.

In the case I = N X N, an additive martingale is the same as a “strong martingale” in
the terminology of [13]. If (%,n) m,mer is a stochastic basis, we write Z,o = \/nen F m,» and
similarly for % ..

4. PROPOSITION. Let I = N X N, and let (% n)mner be a stochastic basts. Suppose
(X:)er is an adapted, integrable process, and (Fs)sc v the associated process. Then the
following are equivalent.

(a) (Fs) isan (additive) martingale
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(b) The net (E[F,]).er is constant

(¢) E[Xirrj41 — Xivrj — Xijr1 + Xij| Fim V Foj] =0
E[Xi1,0 — Xio| ] =0
E[Xojs1 — Xoj| i1 =0
forall i,jE€N.

ProoF. (a) < (b) holds for any directed set in place of (N X N).

(b) = (c). I will prove the first equation; the other two are similar. Let (i, j) € I be
given. For m = i and n = j, consider the layer S = {t € I't =< (i, n) or ¢ < (m, j)}. Then
Hs= Fin\) Fmnj. Let A € H#s. Define :Q — Lby

w =15 . if wEA
MO =1su{i+1,j+1)}, if wEA.

Then 7 € T'(£). So by (b), E[F,] = E[Fs]. Thus
J' (Xi+l,j+l - Xi,j+1 — Ai+l,) + Xi,j) dP = f (F.,. - Fs) dP =0.
A

This holds for all A € %, \/ %, for all m, n so it must also hold for A € Fin vV Faj.
(c) =(b). Let 7 € I'(¥). Since (Fs) is additive

(8) F,= Ztel l(tE‘l‘) Yt’
where (Y,) is the difference process defined by (7). But
(G, Hen={G) &} =U{r=8})

where the union is over the (countable) collection of all S € & with (i, j) € S. Thus
{m+1,n+1) €1} E Fuo\ Foon, {(Mm+1,0) E 7} € Frow, and {(0, n + 1) € 7} € Faun.
- Combining this with the hypothesis (c), yields E[1¢e, Y:] = 0 for ¢ of any of the above
forms. Thus, by (8), E[F,] = E[Y,].0

The argument appearing in the last part of the above proof shows that every “stopping
domain” in the sense of [13] belongs to I'(#). The converse is false. However, the stopping
times 7, and 7, appearing in Theorem 5, below, are (usually) counterexamples.

It should be noted that if the three equations in part (c) are replaced by inequalities
E[---]1=0, then it is equivalent to the condition that the net (E[F’]) be increasing. If the
process (X;) vanishes on the axes, this is equivalent to the “strong submartingale” in
paper of A. Millet (“Colloque ENST CNET sur les processus a deux indices 19807, Lecture
Notes in Mathematics, 863).

If (Fs)sev is an additive amart, u € I, A € %, then the process (Y;). defined by Y.

= (Fiou; — Flo, u)1a is associated with an additive amart Gs = Fs — Fio,u, where S runs
through those layers in I corresponding to arbitrary layers in {t € I:t = u}. If (Fs) is L
bounded, then so is (Gs), by the Proposition above. So in order to apply Theorem 1 to
obtain a pointwise convergence theorem, it only remains to establish a maximal inequality.
This is done using the method of Walsh [13, Theorem 3.3].

5. THEOREM. LetI= N X N, and suppose (Fs)sex) is an additive process. Then for
all a >0,
aP {supsr| Fon| > a} < 6 sup.ere) E | F|.

PrROOF. Fix u = (u1, u2) € I, and consider A, = {sups=.| Flo,| > a}. For t = (&1, &)
[0, 4], let U, = {s = (s1, s2) E [0, u]:51 < ti or 53 < £2}.
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'ro=ﬂ Ug,

where the intersection is over all ¢ € [o, u] with | Fi,,q| > a (and 7, = [o, u] if there is no
such ¢). Then 7, € I'(¥). Next, define

T1=N (70 n U(i,o))

where the intersection is over all i such that | F; nv,, | > @/3 (and 71 = 7, if there is no such
i); and
T2=N (T N U(o,,'))

where the intersection is over all j such that | F; ave. | > @/3. Then 71, 72 € I'(#). Now
if w € Ay, then | Fio,1| > a for some minimal ¢ = (i, j), and for such a minimal ¢,

(To N Ugoy)) U (1o N Ui jy) =70y (7o N Ugiy) N (10 N Up,n) = [0, 2],

a a a a a
we{lF,o| >§} u{|F,,| >§} u{|F,,| >-§} ={|Fﬂ| >§} U{|F,2| >-§}.

Now P{|F,|> a/3} =< (3/a)E | F,,|, and similarly for 75, so we have

SO

6
) P(AY) stupferm E|F.|.
Now let u increase; in the limit we get the required maximal inequality. 0

7. CoroLLARY. Let I = NXN. If (Fs) is an additive amart and X; = Fios is L'
bounded, then X, converges a.s.

Proor. Combine Theorems 1, 3, and 5.0

3. Vector-valued amarts. Many of the above results can be extended to the case of
processes with values in a Banach space E, by making appropriate changes in the proofs.
We begin with a brief discussion of the case of general directed set.

Let o be a directed set, let (). be a stochastic basis, and let E be a Banach space. An
adapted family (X;).cs of Bochner-integrable E-valued random variables is an amart iff
the net (E(X,))-erw) converges for the norm topology of E. The adapted family (Xi)ees is
a uniform amart iff

lim,supe: E || E[X,| %] — X.|| = 0.

The basic references are [5] [6] [1] [2]. In the case J = N, it is known that an L'-bounded
uniform amart with values in a Banach space with the Radon-Nikodym property converges
(strongly) a.s. [2]; and that an amart such that sup, E || X, || < « with values in a space E,
where E and E* both have the Radon-Nikodym property, converges weakly a.s. [5,

Corollary 5.3].

Let E be a Banach space, let JJ be a directed set, let X, be an E-valued Bochner-
measurable random variable for each ¢ € J, and let X.. be an E-valued random variable.
We will say X, converges to X.. in L*(E), or in Bochner norm, iff

lim, E || X, — X || = 0.

We will say X, converges to X. in P'(E), or in Pettis norm, iff for every € > 0 there exists
t, € J such that for all ¢ = £, and all norm-one linear functionals f € E*,

E|fX:— X.) | <e.
We will say X, converges to X., in L°(E), or in probability, iff for every ¢ >0
lim; P{|| X; — X« || > ¢ =0.
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We will say X, converges to X, in P°(E) iff for every ¢ > 0, n > 0 there exists ¢, € J such
that for all ¢ = ¢, and all norm-one linear functionals f € E*,

P{|fX:—X.)|>¢} <.

All four of these topologies are metrizable linear space topologies. The spaces L'(E) of
Bochner-integrable and L°(E) of Bochner-measurable random variables are complete in

their respective topologies.
The following is well-known to the experts, but I was unable to find it in the literature.

8. THEOREM. Let dJ be a directed set, let (%)cs be a stochastic basis, and let E be a
Banach space with the Radon-Nikodym property. Suppose (X;):«cs is an L'-bounded E-
valued amart. Then X, converges in P°(E).

ProoF. By Astbury’s Riesz decomposition [1, Theorem 2.1], X, can be written X, = Y,
+ Z:, where Y, is a martingale and Z, converges to 0 in P'(E). For any increasing sequence
<t <t; < ..., the process (Y )n-1 is an L'-bounded martingale, so by Chatterji’s
theorem [3] it converges a.e. and hence it converges in L°(E). But L°(E) is a complete
metric space, so it follows by the Cauchy criterion that the process (Y;):cs converges in
L°(E). Therefore, in particular, (Y;) converges in P°(E). Also (Z;) converges to 0 in P°(E),
so (X;) converges in P°(E). 0

I conclude by stating the vector-valued versions of the theorems proved above. The
proofs are omitted, since they involve nothing new: they use Theorem 8, part (b) of Lemma
2, and the vector-valued techniques used in the past ([5], [6], [1], [2], [4], [8])-

9. THEOREM. Let E be a Banach space. Let I = N X N, and let (Fs)scvu) be an
additive process with values in E. Suppose

sup-er E | F; || <,

. and write X; = Flo.
[
(@) Psupeer|| X, ||t > a} < — suprercs E || |-

(b) If (Fs) is an amart, then for all f € E*, the net f(X,) converges a.s.

(c) If, in addition, E has the Radon-Nikoydm property, then there is a random
variable X.. so that f(X;) > f(X.) a.s. forall f € E*.

(d) If, in addition, E* has the Radon-Nikodym property, then X, converges weakly
a.s.

(e) If (Fs) is a uniform amart and E has the Radon-Nikodym property, then X,
converges strongly a.s.

REFERENCES

[1] ASTBURY, K. (1978). Amarts indexed by directed sets. Ann. Probability 6 267-278.

[2] BELLOW, A. (1978). Uniform amarts. Z. Wahrsch. verw. Gebiete 41 177-191.

[3] €HATTERJI, S. D. (1978). Martingale convergence and the Radon-Nikodym theorem. Math.
Scand. 22 21-41.

[4] EDGAR, G. A. (1980). Asplund operators and a.e. convergence. J. Multivariate Anal. 10 460-466.

[5] EDGAR, G. A. and SUCHESTON, L. (1976). Amarts: A class of asymptotic martingales. oJ.
Multivariate Anal. 6 193-221.

[6] EDGAR, G. A. and SUCHESTON, L. (1976). The Riesz decomposition for vector-valued amarts. Z.
Wahrsch. verw. Gebiete 36 85-92.

[7] FouQug, J.-P. and MILLET, A. (1980). Régularité & gauche des martingales fortes a plusieurs
indices. Comptes Rendus Acad. Sci. Paris 290 A773-776. '

[8] GHOUSsOUB, N. and SUCHESTON, L. (1968). A refinement of the Riesz decomposition for amarts
and semiamarts. J. Multivariate Anal. 8 146-150. o



206 G. A. EDGAR

[9] MILLET, A. and SUCHESTON, L. (1979). Characterizations of Vitali conditions with overlap in

terms of convergence of classes of amarts. Canadian J. Math 31 1033-1046.

[10] MILLET, A. and SUCHESTON, L. (1980). On convergence of Li-bounded Martingales indexed by
directed sets. Probab. Math. Statist. 1 151-169.

[11] MiLLET, A. and SUCHESTON, L. (1980). Convergence et régularité des martingales a indices
multiples. Comptes Rendus Acad. Sci. Paris 291 A147-150.

[12] MILLET, A. and SUCHESTON, L.(1981). On regularity of multiparameter amarts and martingales.
Z. Wahrsch. verw. Gebiete 56 21-25.

[13] WaLsH, J. B. (1979). Convergence and regularity of multiparameter strong martingales. Z.
Wahrsch. verw. Gebiete 46 177-192.

DEPARTMENT OF MATHEMATICS
THE OHIO STATE UNIVERSITY
231 WEST 18TH AVE.
CorumBus, OH 43210



