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The probability of the event | S N T'| =  is investigated, where S is the
trace of a random walk on the set of positive integers and T'is a fixed set of
natural numbers.

1. Introduction. Let X, X, X,, --- be a sequence of positive integer-valued i.i.d.
1v’s, S, = Y%-1Xrand S = {S1, Sy, - -}, i.e., S is the trace of the random walk {S,}. For
sake of simplicity suppose that X is aperiodic, i.e., the g.c.d. of the numbers n for which
P(X =n)>0is 1. In the sequel the term “trace” will be preserved for sequences S of this
kind. )

We are going to investigate the event

(1.1) [SAT|=o,

where T is a fixed set of natural numbers. The value | S N T'| can be considered as the
number of visits of the random walk {S,} into a fixed set T of positions. By the 0 or 1 law
of Hewitt and Savage (1955) the event (1.1) happens with probability O or 1. Our object is
to study when it is 0 and when 1.

2. Universally intersecting traces and sets. Let X, X;, X,, ... be as above. A
theorem of Erdos, Feller and Pollard (1949) asserts that

(2.1) limy o P(kES) =E(X)™}

where S is a trace and E denotes the expectation (the right-hand side is to be interpreted
as 0 in case E (X) = ). (2.1) easily yields:

THEOREM 1. a. If E(X) < o, then
(2.2) P(|ISNT|=0)=1

for any infinite set T of natural numbers.
b. If E(X) = «, then one can always find an infinite set T of natural numbers such
that

(2.3) P(|SNT|=w)=0.

That is we know which traces intersect every infinite set; now we determine which sets
intersect every trace.

THEOREM 2. a. If T = {Ti, T., ---} is an infinite increasing sequence of natural
numbers and the differences Tyy1 — Tn(n =1, 2, -..) are bounded, then (2.2) holds for
every trace S.

b. If The1 — Th(n =1, 2, -..) is unbounded, then there always exists a trace S such
that (2.3) holds.
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3. Borel-Cantelli does not decide. If E(X) =« and T',+1 — T is unbounded, then
Theorems 1 and 2 do not provide any information. The Borel-Cantelli lemma yields

3.1) P(|ISNT|=x)=0
if
(3.2) Yn=1 2m=1 P(Sp = Tr) < 0.

The condition (3.2) is, however, far from being necessary. Indeed, we have the following
result.

THEOREM 3. Given an arbitrary trace S such that E(X) = «, there always exists a
sequence T such that (3.1) holds, though the series (3.2) is divergent.

REMARK. Under some further restrictions (3.2) is, however, necessary for (3.1). Put
Br=|SN{T:, Tz, -+, Th}|;

note that E(B:) > 0 for large k. (3.2) means that E(8:) = O(1), and (3.1) that B, is a.s.
bounded; thus if (3.1) holds but (3.2) does not, then the normalized variables B8./E (8:)
tend to 0 a.s. and hence also in distribution. This cannot happen if 8:/E(B:) has a
uniformly integrable subsequence, in other words if one can find a positive real function f
such that f(x)/x — o for x — o but

(3.3) lim inf, .. E(f(Br/E (B:))) < oo.

This condition with f(x) = x? will be used in Section 4.
The problem is much simpler if 7" is not a fixed set but itself a trace, independent from
S.

THEOREM 4. If S and T are independent traces, then (3.1) and (3.2) are equivalent.

4. Random Dirichlet problem. The dual of Theorem 3 does not seem to be true,
i.e., we do not expect that if T»4; — T(n =1, 2, . --) is unbounded (e.g., T, = n?) then one
can always find a trace S such that (3.1) holds while (3.2) is divergent. The characterization
of the sequences T for which (3.1) implies (3.2) is unsolved and probably difficult.

ProOBLEM. Does the sequence of primes have this property?

We believe it has but we can prove only some special cases. The answer is affirmative
if e.g. the sequence u, = P(n € S)(n =1, 2, . - .) is asymptotically nonincreasing, by which
we mean that for m > n > n, the inequality «,, < cu, holds with a constant ¢ = ¢(S)
independent of m and n, for in this case (3.3) holds with f(x) = x2 (If u, is asymptotically
nonincreasing and 7' is an arbitrary set such that

4.1) T(x+y)—1(y) = K1(x)

for some finite K where 7(x) denotes the number of elements belonging to 7' and not
larger than x, then (3.3) always holds with f(x) = x2 In case when T'is the set of primes
(4.1) is known to hold.) If the restriction “asymptotically nonicreasing” could be omitted,
we would get a random analogue of Dirichlet’s celebrated theorem on the infinitude of
primes in arithmetic progressions (c.f. also Erdos and Chung (1952) concerning a related
problem).

5. Proof of Theorems 1 and 4. Given the sequence {X;} and S, = Y1 X; we define
MS=min{d:d=0, n-deS).
It is easy to check that M5 is a Markov chain. Hence by the Erdés-Feller-Pollard theorem
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(see e.g. Kingman (1972), page 12)
P(n€S)=P(M;=0)—E(X)™
which was stated in (2.1).

ProoF oF THEOREM 1. If E(X) < o, then
P(T,€ S forinfinitely many n)=lim P(T,€ S) =E(X)™' >0,

thus this probability must be 1 by the cited 0-1 law of Hewitt and Savage. On the other
hand, if E(X) = o, then we can choose 7', so that

Y P(T, ES) <o,
and hence the Borel-Cantelli lemma implies P(T'N S| = ) = 0.

PrOOF OF THEOREM 4. We consider the two Markov chains M5, M.T and define their
composition M, = (M5, M.T) which will be also a Markov chain. The existence of infinitely
many n € S N T is equivalent to M, returning to the state (0, 0) infinitely many times.
This happens with probability 0 or 1 according to the convergence or divergence of the

series Y, P(M,=(0,0)) =Y. P(n€SNT)=Y,P(n€S)P(n€ET). (Cf. Chung (1960),
Theorems 4.3 and 5.4).

6. Proof of Theorem 2. To prove part a. we need a lemma.

(6.1) LEMMA. For a trace S, a fixed set T and integer n
P(SN (T + n) = o)

is either O for all n or 1 for all n.

ProOF. Write
Aj={n:P(SN(T+n) =) =}, j=0,1

Ao and A; are disjoint and Ao U A1 = Z by the much quoted Hewitt-Savage theorem. Now
we show that if n € A and P(S: = a) > 0 for some k, thenn + a € A,. Namely if j = 1,
then

P(|SN(T+a+n)|=w)=P(S;=a)P(|SN (T + n)| = ) >0,

thus a + n & Ay; for j = 0 similarly we obtain a + n € A,.

As X is aperiodic, for every large a there is a & such that P(S, = a) > 0. Hence if A, is
not empty, it contains all large numbers. As this cannot hold for both j = 0, 1, one of them
must be empty.

Proor oF THEOREM 2a. Suppose the contrary. The above lemma yields
P(|ISN(T+n)|<x) =1
for all n. Hence with
Zy=TU(T+1DU...U(T+k)
we would also have
(6.2) P(|SNZ,| <o) =1.
But for £ > lim sup e (The1 — Tr),

Z, contains all but finitely many natural numbers, and hence (6.2) is impossible.
To prove the second part of the Theorem we need the following lemma.
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(6.3) LEMMA. Let0<r;<rs< ... bean infinite sequence of integers and let X, X1, X,
.+« beii.d. rv’s with the distribution

PX=rp)=m—"—-(m+1)~*

for some fixed « € (0, 1). Let M, be the maximum of X, X,, - - , X, and M, the maximum
of the remaining » — 1 terms. Then we have

' PM,<rp,io) =0,
P(M,=M,io.)=0.

ProoF. Wehave P(M,<r,) =0 —(n+1)"%"<ce™ " and

P(M,=M,=r;)= (rzl) (B = (k + 1)J2(1 — k~)"2

n — -
<cs (2) k 2(1+a)e nk .

Hence an easy computation yields
Yo P(M,<rn)<ow
and
S P(Mo=M,) =YY P(M,=M,=r;) < Yrck*? <o,

and our assertions follow from the Borel-Cantelli lemma.

ProoF oF THEOREM 2b. The underlying idea in the proof is the observation that one
can choose the distribution of X so that the partial sums and the partial maxima will be

generally close.

If T'+1 — T is unbounded then we can find intervals [r;, r; + s;] containing no T'; and
such that §; > ir;_1, r; > ri-; + si-;. Now choose X;, X3, --. as in Lemma (6.3). By this
lemma with probability 1 for all large n there is a maximal r; among X, X, ---, X,,
J > n, and it occurs only once. Hence

Sp=YkaXeE[r),rj+ (n—1r;-]Crjr;+sj]

as required. (X is aperiodic assuming r; = 1).

7. Proof of Theorem 3. Let u, = P(n € S); we know by (2.1) that u, — 0 and
evidently Y1 u, = . Given anr, let s = s(r) denote the smallest number such that

Y un>1;
obviously we have
(7.1) E(|ISNn[rr+s]|) =Y u. €11, 2].
Let K be large but fixed. Divide the event S N [r, r + s] # & into the subevents
Zi:SN[rr+s—K]#J, Z:SN[r+s—K,r+s]#9d0.
Obviously for fixed K we have P(Z;) — 0 as r — . On the other hand
E(|SN[r,r+s]l))=P(ZHE(|SN[L, K]|),

so that we obtain

2
P(Sﬂ[r,r+s]#®) Sm[l—m]—)"' o(1).
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Since this holds for arbitrary K and E(|S N [1, K]|) — o as K — o, we have
(7.2) P(SN[r,r+s]#3)—0 (r— ).
Now choose a sequence r, such that
Tne1 >1n + 8(ry)
and
2a=1 P(S N [1rn, rn + 8(ra)] # D) < o0,

This means that with probability one S intersects only finitely many intervals [r,,
r» + s(rz)]. Then its intersection with

T =Unlrn, rn+s(rn)]

is finite with probability one; on the other hand (7.1) ensures that the series (3.2) is
divergent.
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