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PROPERTIES OF THE EMPIRICAL DISTRIBUTION FUNCTION FOR
INDEPENDENT NON-IDENTICALLY DISTRIBUTED RANDOM
VECTORS

BY MARTIEN C. A. VAN ZULJLEN
Catholic University, Nijmegen

A generalization to the case of independent but not necessarily identically
distributed two-dimensional underlying random vectors is obtained of results
on univariate empirical df’s of van Zuijlen (1976) (linear bounds), Ghosh
(1972) and Ruymgaart and van Zuijlen (1978b). No conditions are imposed on
the dependence structure of the underlying df’s. In the process improvements
of van Zuijlen’s results concerning linear bounds in the univariate non-ii.d.
case are obtained, whereas also applications of the results on multivariate
empirical df’s are discussed. Extensions of the two-dimensional results to the
k-dimensional case (k > 2) are straightforward and therefore omitted.

1. Introduction. For N € Nlet X,n = (Yon, Zun), n=1,2, -+-, N, be N mutually
independent two-dimensional random vectors with continuous joint distribution functions
(df’s) )

(L.1) Fin(,z2) =P(Yww=<yZw=<2z), for y,2zER
and marginal df’s G,y and H,n, i.e.,
(1.2) G.n(y)=P(Yw=y); Hwn(iz)=P(Zn=2z), for y zER.

All random vectors are supposed to be defined on a single probability space (£, &, P). For
each N, moreover, let us define the joint empirical df Fu of Xin, Xon, -+ - , Xnn by taking
N Fn(y, z) to be the number of elements in the set {X,n: Y. n<y, Z.wn<2zn=12, ---,
N} for all y, z € R, and the averaged df’s Fy, Gy and Hy as

(1.3) Fn(y,2) = N3N, Fun(y, 2),
(L4)  Gn(y) =N7'3Y1 Gun(y); Hn(z) =N7'YIN, Hw(z), for y,z€ER.

We remark that Fy has all the properties of a two-dimensional df and that its marginal
df’s are Gy and Hy.

It is well-known how several important classes of statistics, such as simple linear rank
statistics, certain rank statistics for testing independence and linear combinations of
functions of order statistics, can be expressed in terms of the empirical distribution
function(s) and how in a Chernoff-Savage approach certain properties of the empirical df
can be used to obtain the asymptotic distribution of these statistics and in particular the
convergence in probability to zero of the remainder term. In this connection we refer to
Bhuchongkul (1964), Govindarajulu, Le Cam and Raghavachari (1967), Koul (1970), Koul
and Staudte (1972), Ruymgaart, Shorack and van Zwet (1972), Ruymgaart (1974) and
Ruymgaart and van Zuijlen (1978a, 1978b).

Let us consider the following two-dimensional versions of the representations in terms
of the empirical df’s of linear combinations of functions of order statistics:

(1.5) TN:][ JIN(F3Wn (Fy) dFn,
where Yy and Jy are real-valued functions on (0, 1) and F§ = N/(N + 1)Fx. See
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Ruymgaart and van Zuijlen (1978b). Taking ¢ = 1 in (1.5) we obtain the relevant class of
nonlinear rank statistics Sy where

(1.6) Sy = ff JIn(F%) dFn.

The asymptotic theory of these what we call Kendall-type statistics, has not been
developed in the literature. If we take in (1.6) Jx(s) = (N + 1)N s then

SN=fJ'FNdFNy

which is a statistic equivalent to Kendall’s rank correlation coefficient, as already has been
remarked in Ruymgaart (1973).

In order to establish, in a Chernoff-Savage approach, the asymptotic normality of a
suitably standardized version of Sy and in particular the convergence to zero of the
remainder term in a sense stronger than only convergence in probability, one essentially
will need the properties of the multivariate empirical df to be derived in this paper. These
theorems on multivariate empirical df’s have also applications in sequential statistics and
may be of independent interest. No conditions will be imposed on the dependence structure
of the underlying df’s. The program concerning Sy as described above will be carried out
in a forthcoming paper.

In contrast to univariate empirical df’s, multivariate empirical df’s did not receive much
attention in the literature so far: Kiefer and Wolfowitz (1958), Kiefer (1961) and van Zwet
(see Ruymgaart (1974)) obtained results in the multivariate i.i.d. case; van Zuijlen (1978)
generalized van Zwet’s result to the non-i.i.d. case.

In Section 2 we shall derive useful multivariate versions of van Zuijlen’s results (1976)
concerning linear bounds for the empirical df in the univariate non-i.i.d. case. Compared
with the 1-dim. non-ii.d. case, these generalizations to the multivariate situation will
require a different method of proof. In this process we shall also obtain improvements of
van Zuijlen’s results (1976) in the 1-dim. non-i.i.d. case which are very close to the
corresponding well-known results in the 1-dim. i.i.d. case.

Section 3 is devoted to the derivation of multivariate versions of results of Ghosh (1972)
and Ruymgaart and van Zuijlen (1978b), whereas in Remark 3.1 of this section some
attention will be paid to the concrete applicability of the main results in the theory of rank
tests.

For convenience we shall restrict ourselves in this paper to continuous underlying df’s.
That this restriction is not essential follows from the remarks in Section 3 of van Zuijlen
(1978).

2. Linear bounds for the multivariate empirical df. We denote by Yi.nv < Yo
= ... = Y.y the order statistics of the rv’s Yin, Yow, - -+, Yyn. Let Gu be the empirical
df of these Y’s and define in R the random sets (n =1, 2, .-+, N)

21)  Oiw= On(Yon) = {y ER|y= Yon, Gn(y) = Gn(Yan)},
22) Tin=0n(Yww)={yER|y= Yo, Gn(y) = Gn(Ywn) = N} U {Yon)
if Gn(Ynn) > N7,
= {Y.~}  elsewhere,
(2.3) Ov={yER|Gn(y) =0},
(2.4) Ov={yER|Gn(y) =1).
Similarly, in R? we define
(25)  Oin = Oin(Xun) = {x € R? | x = Xun, Fn(x) = Fn(Xon)},
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26) Tiv= 0in(Xan) = {x € R?| x = X, Fn(x) = Fx(Xun) = N7} U {Xow)
if Fy(Xon) > N7,
= {X.nv}  elsewhere,
(2.7) Ok = {x € R*| Fn(x) =0},
(2.8) Ok = {x € R*| Fn(x) = 1),

where x; = (y1, 21) = x2 = (y2, 22) stands for y; = y; and z; = z;.

In 1945 Daniels proved an exact result concerning an upper bound for the empirical df
in the case of independent and identically distributed one-dimensional random variables
(the 1-dim. i.i.d. case). Formulated in terms of the rv’s Yyn, Yon, - - -, Yy~ he showed:

THEOREM 2.1 (Daniels). For B € (0, 1), N € N and continuous underlying df’s G,
Gon, + -, Guny With Giv = Goy = + -« = Gyy = G, we have
(2.9) P, = P(Gn(y) = B7'Gnly), for yER)=1-§8.

PROOF. An elegant proof of this theorem can be found in Robbins (1954). O

Note that
Py =P(Gn(y) =B7'Gn(y), for y€ (U= Giv) U OR))
= P(Gn(y) = B7'Gn(y), for ye UN, Olv)
= P(Gn(y) =B7'Gn(y), for y€ {Yin, Yon, -+, Yan})
=P(Gn(y) =B7'Gn(y), for y€ {Yin, Yoew, -+, Yun)).

(2.10)

In 1964 Chang proved an exact result concerning a lower bound for the empirical df in
the 1-dim. i.i.d. case:

THEOREM 2.2 (Chang). For N € N and continuous underlying df’s Gin, Gan, -+ ,

Gyn with Giy = Gony = «+ - = Gyn = Gy, we have
(2.11) P = P(Gn(y) >BGn(y), for yE[Yin,®)=1-Iy(B),
where
(1Y’ I
In(B) = (I_N_ﬂ) e (k) ik for N'spB<1
1 for B>1.
Note that

P,=P(Gn(y) ZBGn(y), for ye& (U Giv)U G}))
=P(Gn(y) = BGn(y), for yEUN: Oiv)
=P(Gn(y) ZBGn(y), for y€ (Y, Yon, -+, Yaw)})
=P(Gn(y) = BGn(y), for y€ {Yin, Yan, -+, Yauw}).

(2.12)

Lower bounds for the probabilities P; and P; in (2.9) and (2.11) respectively, in the case
of independent but not necessarily identically distributed random variables (the 1-dim.
non-iid. case), are derived in van Zuijlen (1976, 1978) and successfully applied in Ruym-
gaart and van Zuijlen (1977, 1978), Shorack (1972), Shorack and Wellner (1978) and van
Zuijlen (1976). :

It is our aim in this section to obtain lower bounds for the probabilities in (2.10) and
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(2.12) (part A and part B respectively) in the case of independent but not necessarily
identically distributed two-dimensional random vectors (the 2-dim. non-i.i.d. case). A
motivation for these multivariate theorems is given in the introduction. See also Remark
3.1.

Part A: A linear upper bound for the multivariate empirical df. In van Zuijlen (1976,
1978) a useful lower bound for P; in the one-dimensional non-i.i.d. case has been given.
When we want to prove an extension of this result to the 2-dim. non-ii.d. case in the way
the theorem has been proved in van Zuijlen (1976) we will meet the problem that for 2 >
1 the order statistics, which play an essential role in that proof, are not defined. However,
using the last equality in (2.10) together with a conditioning argument, we are able to
prove a sharpening of the result in van Zuijlen (1976) for Pi, in a such a way that the new
proof in the 1-dim. non-i.i.d. case will work without difficulties also in the k-dim. non-i.i.d.
case.

THEOREM 2.3. For B € (0, 1/2), N € N and continuous underlying df’s Gin, Gan,
.+« , Gnn, we have

T72B8%/3
(213) PIZI—B—W.
ProoF. We define
(2.14) Tun(y) = Xi1 Z;,
J#n

where Z;, j # n, are independent Bernoulli (p;) rv’s with p; = G;~(y) and hence
(2.15) p=p(y)=(N=1)3X i pj= (N =1 NGn(y) — Gun ().

J#n

For N = 1 the result of the theorem is trivial. For 8 € (0, 1/2) N € {2, 3, ---} and
continuous df’s we have

P;=P(Gn(Yun) = B_IG_N(YnN), n=12...,N)
(2.16) =1- YN P(Gn(Yan) > B7'Gr(Yow))

=1-35 f P(Tun(y) > NB7'Gn(y) — 1) dGun (y).

Next, define fori=0,1,2, --- ,N—1
@1 L= {y | Griy) € [i’* 1’—},1-)—’5)} - {y i- 1s%(é~<y>) —1< i},

N
(2.18) Iv={y| Gn(y) = B} ={y|%(én(y)) -1=N- 1}.

Remark that R = UNo I;,, LN I[;=@for i jand thaton I; (i =0, 1, - -- , N) we have
(2.19) P(Tun(y) > NB7'Gn(y) = 1) = P(Tun(y) = 0),

whereason I; 1 =1,2, .-+, N)

(2.20) NGrx(y) <(i+1)B=2B<i,

so that

(2.21) i>NGn(y) = Gun(y).

Using (2.19)-(2.21) and the inequality (1.1) in van Zuijlen (1976) we find (with Gy {L;} =
[1,dGw)
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Pi=1-Y0, 5, f P(Tun(y) = i) dGun (y)

I.

=1-y" [G,,N (I} +

-1 J’3(NC_¥N(y). — Gun () + NGn(y) — Gun (y) dGnN(y)]
B (= (NGn(y) — G (»)*
222) 21— NGn{lo} - TN T2 J: | i (z.”_(y z)v):‘;: g)i”(y ) dGu(y)
> 1— NGw{l) - T T Iili’:zf—;:;;i‘idanmw
=1- NGn{lo} - ﬁ:‘%NGN {I) |
21‘”’%‘ a 145/2)4 2 N 1€J= l_ﬁ_ﬁ'%%'u

Theorem 2.3 is a sharpening of the corresponding result in van Zuijlen (1978) in the
sense that for B sufficiently small:
%mz . Ly

a-2p°" 1-p*
Comparing Theorem 2.1 with Theorem 2.3 we see that the additional term 7(x?8%/3)-
(1 — 28)™ in the lower bound of Theorem 2.3 is apparently the price we pay for allowing
the underlying distribution functions to be different.

From (2.10) and the proof of Theorem 2.3 we obtain the following extension of Theorem
2.3 to the two-dimensional non-i.i.d. case:

(2.23) 1-8-

THEOREM 2.4. For B8 € (0, 1/2), N € N and continuous underlying df’s Fiy, Fon, - - -,
Fyn, we have

= P(Fn(x) < B7'Fn(x), for x€ (U1 Gin) U OR)

(2.24) = P(Fn(X.n) < B7'Fn(Xon),n=1,2, -++ , N)
=1- NP(FN(XN) <%) 14'BN)4 Yt _2P(£< Fv(Xn) < ¢ -:VI)'B)

where Xy is a two-dimensional random vector with df Fy and where the random sets
O%n and O% are defined in (2.5) and (2.7).

Proor. From the proof of Theorem 2.3 it is immediate that for N = 2

-—2
(2.25) P=1— NFy{I} - ﬁ:‘%NﬁN{E},
where
(2.26) {(y, o) Fuly, 2) € [‘B U +N1)B)},

so that (2.24) holds. The result for N = 1 is trivial. O
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REMARK 2.1. In the special case where Fy(Xy) is uniformly distributed on (0, 1),
which can happen in degenerate cases only, the multidimensional result of Theorem 2.4
reduces to the one-dimensional result of Theorem 2.3.

The lower bound in Theorem 2.4 does not depend on the underlying distribution
functions for instance in the special case where the sample elements are independent,
identically distributed and also independent component-wise (or more generally where
F N= GN X H, N):

COROLLARY 2.1. For B € (0,1/2), N € N and continuous underlying df’s Fin, Fay,
, Fun, with Fy = Gy X Hy, we have

7 7282
(2.27) P,=1-8- logB<,B+ Ekl 23)4)

Proor. We apply Theorem 2.4 and note that
g B\ _ B
P<FN(XN)<N =P U2<N

where U, is a random variable which is distributed as the product of two independent

random variables, both uniformly distributed on (0, 1). The density function f(x) of U,
equals

f(u) = =1y (u)-log «,
so that
~ o _BY_B _B. B
andfori=1,2,...,N—-1

iB_ o o (i+1)B)
Pl —=FnyXn) < =
(2.29) (N NN N

B -
N (log; +ilogi— (i+ log(i + 1))
B

IA

2

/3
Hence, (2.27) follows from (2.28), (2.29) and Theorem 2.4. 0.
Finally, as an example, let us derive a statement like Corollary 2.1 in the case of positive

regression dependence (see e.g., Lehmann (1967)).
Let % denote the family of absolutely continuous df’s F with either

(2.30) F\(y, z) = P(Z=< z| Y = y) is nonincreasing in y
(2.31) or Fy(y, 2) = P(Y < y| Z = z) is nonincreasing in z,

where the 2-dim. random vector (Y, Z) has df F. If (2.30) holds, then Y is said to be
positively regression dependent on Z. Similarly, let % be the family of all absolutely
continuous df’s F with either Fi(y, z) nondecreasing in y or F(y, z) nondecreasing in z. If
Fi(y, z) is nondecreasing in y then Y is said to be negatively regression dependent on Z.

LEMMA 2.1. Let X be a 2-dim. random vector with df F. For c € (0, 1] we have

(2.32) FeE#=PFX)=sc)=sP(Ussc)=c—cloge
and
(2.33) Fe 4=PFX)=c)=PU:<c)

where the random variable Us, is defined above (2.28).
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ProoF. Let X = (Y, Z) and let G denote the df of Y. From Rosenblatt (1952) we know
that (G(Y), Fi(Y, Z)) is uniformly distributed on [0, 1]>. Now, let F € % and suppose
without loss of generality that (2.30) holds. Then

y y
F(y,2)=j Fi(u, 2) dG(u)ZJ Fi(y, 2) dG(u) = Fi(y, 2)-G(y)

so that
PFX)=c)=PFi(Y,2)-G(Y)=c)=P(U:=c).
The proof of the second part of the lemma can be given in a similar way. 0O

COROLLARY 2.2. For B8 € (0, 1/14), N € N and continuous underlying df’s Fin, Fan,
, Fny with Fy € %, we have

I 2p2
(2.34) Po=1-p— 1og%f (B +(—13j_§/W>

N
is defined above (2.28). From Lemma 2.1 we have that P, < P, fori=1,2, -+, N, so
that (2.34) follows from Corollary 2.1 and the following expression for the second part in
the lower bound of Theorem 2.4:

NP(F”(X”) < %) + gy B '2P( P < Fuiit) <15 Dﬂ)

Proor. For brevity let P, = P(F‘N Xn) < %) and let P EP(Uz < ﬂ), where U,

14N
= NP(U +— (1 — 2?)4 2! 1l 2(1')(z+1) - P(t))
_ o+ 148 14N 1
B N<1 a- 2B>4)P“’ a2y {<1 Z)P‘”
1 1 1 1
* (Z B §)P‘3’ i ((N —27 (N- 1)2)P‘”'” o P‘”’} -0

The following corollary has direct applications in the theory of rank statistics.

COROLLARY 2.3. There exists No € N such that for N = N, and continuous underlying
df’s Fin, Fon, « -+ , Fan, with Fy € %, we have

6

(2.35) P(Fn(x) = (log N)*Fn(x), for x€ (UM, 03v) U 0%) =1 “Tog N’

where the sets 0%y and O% are defined in (2.5) and (2.7).
Proor. Immediate from Corollary 2.2 with 8 = (log N)™2 O

Part B: A linear lower bound for the multivariate empirical df. In van Zuijlen (1976)
it has been shown that for 8 € (0, 1), N € N and continuous underlying df’s which are not
necessarily all equal

(2.36) P, =1—%x%8%1 - B)™"
REMARK 2.2. In Shorack and Wellner (1978) an exponential upper bound for 1 — B,

has been derived from the result of Chang (1964). They showed in the 1-dim. i.i.d. case and
for underlying rv’s which are uniformly distributed on (0, 1) that

(2.37) P =1-1687"exp(-8™"), BE€(©,1, NEN.
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Moreover, Wellner (1978) proved that the constant 16 can even be replaced by e.

The following substantial improvement of (2.36) gives an exponential upper bound for
1 — P, in the non-i.i.d. case, which has almost the order of the bound (2.37) in the i.i.d.
case. The proof of this sharpening is essentially different from the proof of (2.36) in van
Zuijlen (1976) and will admit a generalization to the multivariate non-i.i.d. case.

THEOREM 2.5. For B € (0, 1), N € N and continuous underlying df’s Gin, Gon, -+,
Gnn, we have

(2.38) B =1 - 158"%xp(—B™).
ProOF. For N =1 the theorem is trivial, so suppose N = 2. Let T,.n(y) be defined as
in (2.14). Since
[Gv () = BGN(¥), ¥y € [Yiv, ®)] & [NIz (G (Yon-) = BGN(Yon))]

(2.39) < [ Nt (max(%# [Yin < Yun], —]{7)
=B GN(YnN)) ]
we have

Py =1-P(UN: (max(#[Y,n < Yun], 1) < NBGn(Yon)))
(2.40) >1- 2,{‘;1 P(max(#[YjN =Y, 1)< N,BGN(Y,,N))

J#n
=1-3% j{y|é~(y)>NLB}P(TnN(y) < NBGn(y)) dGy ().

Let i, = &(N, B8) € N U {0} be such that
To h+1

241 —<1 =1
(2.41) NG and NGB

and assume without loss of generality that BN > 1 so that
(2.42) 1=i,.

Next, define fori=1,2,3, «+-, i — 1

i={s NB<G~(y)<%1}—{y|l<NﬂGN(y)<‘+1}

(2.43)

W= { i< Gn(y) = 1} = {7]io < NBGn(y) = NB}.
Since {y Gn(y) > NL,B} =ULi L, N I; =D for i+ j,and on I,
(2.44) P(Tun(y) < NBGw(y)) = P(Tn(y) < i),

it is clear from (2.40) that

(2.45) 1-Pi=yY, Yo, f P(Ton(y) < i) dGan(y).

1,

Now, let Z be a binomial (N — 1, p) rv and let us define
(2.46) h(y) =yllogy —1) +1,

(2.47) f(y)=yh(y™) =y +log(y™) — L
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For0<B8=1/3,
(2.48) (N—l)ﬁ=NGN(y)—Gn~(y)>é—123i—12i+1>i

onl,i=1, ..., i. Thus, from Hoeffding’s (1956) Theorem 4 with ¢ = i, we have for
yeI
(2.49) P(Tv(y) = i) = PZ=1)
= P(Z/((N - 1)p) =i/((¢/B) — 1)).
Lemma 1(ii) of Wellner (1978) implies that

VA i sh(— L
(2.50) P((N — 1)55 e 1) = exp<—(N - l)ph((l/ﬁ) — 1))

where A(y) is defined in (2.46). Hence from (2.48)-(2.50) and with f(y) as defined in (2.47)
we find

P(Twn(y) =1) = exp(—(é — 1)h(m-;-_—l)>

(2.51) = exp(—if(B~' = i)

= el.<1 - g)l exp(—i(% + log 8 - 1))

= e'-exp(—if(1/B)).
Finally, (2.45), (2.51) and the definition of I; yields for 8 € (0, 1/3]

1-B =Y, Y%, e-exp(=if(1/B))Gun {L;}
=e Y% exp(—if(1/8))NGn{IL}

<£ Y1 exp(—if(1/B))
(2.52) A

= /Ez exp(—f(1/8))- (1 — exp(—f(1/B)))™"

= e’B7* exp(—1/B)-2
= 15872 exp(—1/p).
Since 158 %""# = 1 for B € (1/3, 1), the inequality holds for all 8 € (0, 1). O
The author is indebted to Jon A. Wellner, who pointed out how Lemma 1(ii) of Wellner
(1978) can be used in the proof of Theorem 2.5 to replace the earlier bound 1 —
987" exp(—(328)~')—which was based on Bernstein’s inequality—by the present one.

From (2.12), (2.39) and the proof of Theorem 2.5 it is clear that the following general-
ization of Theorem 2.5 to the two-dimensional non-i.i.d. case holds true:

THEOREM 2.6. For 8 € (0, 1/3], N € N and continuous underlying df’s Fin, Fon, « - -,
Fyn, we have

Py = P(Fy(x) = BFn(x), for x€ (U, O2v) U §%)

2.53) - P(nﬁtl [ max(% H Xy < X, %) > BFN(XnN)] )

Zl—Ner';lq,-exp<—é—ilog,8+i),
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where

i = o i+1

q,‘=P<——<FN(XN)S ), i=1)27"'yi0_1$

(2.54) NB NB
NB

where the sets 02y and 0% are defined in (2.6) and (2.8), i, is defined in (2.41) and Xy has
df Fy.

qi, = P(-i < FN(XN) = 1) ,

ProoF. The verification of the equality in (2.53) is straightforward from the definition
of the sets @2y and 0% and the fact that Fy is a stepfunction whereas the underlying df’s
are continuous. The inequality in (2.53) follows from a reasoning similar to the proof of
Theorem 2.5. 00

The lower bound in (2.53) does not depend on the underlying distribution functions
again in the special case where Fy is the product of its marginal distribution functions:

COROLLARY 2.4. For B € (0, %], N € N and continuous underlying df’s Fin, Fon,
o+, Fyn, with Fy = Gy X Hy, we have
(2.55) P;=1—log(NB)-15872 exp(—87").
ProoF. Note that in this situation the density of Fn(Xy) is given above (2.28) so that
fori=1,2--.,ip—1
i+1 2 <log(N,B).

i - 1 o

The proof can be completed with the aid of (2.56) and a reasoning as in (2.52). 00

COROLLARY 2.5. For B € (0, 4], N € N and continuous df’s Fin, Fon, - -+, Fnn, we
have
(2.57) Py=1-15NB™" exp(—B7").

ProoF. The reasoning of the proof of Corollary 2.4 can be followed, with now for i =
1,2, .-+, 0
i P i+1
2.58 Pl — sS—)]=<1
(258) ( <FN(XN><NB)<1 0

The following corollary is very useful in statistics and demonstrates the strength of
Theorem 2.6.

COROLLARY 2.6. For every § > 0 there exist No € N and K = K(8) € (0, ») such that
for every array of continuous underlying df’s Fin, Fon, + -+, Fnny, N = Ny, and for every
N = N, we have

P(Fn(x) = (K log N) 'Fyn(x), for x€ {(Xiv, Xon, -+, Xan})
(2.59) = P(Fn(x) = (Klog N)'Fy(x), for x€& (U)X, &2n) U 0%)
=1—- N1

Proor. Immediate from Corollary 2.5 with 8 = (K log N)™*. 0
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REMARK 2.3. Exploiting the approach of this paper it is possible to also obtain lower
bounds for

(2.60) @ = P(Fn(x) < B 'Fn(x), for x€ R?)
and
(2.61) Q. = P(Fn(x) = BFy(x), for x€ R® with Fn(x) #0),

i.e., to obtain still further generalizations of the Theorems 2.4 and 2.6. As an example let
us mention without proofs the analogues of Theorem 2.6 with its Corollaries 2.5 and 2.6 for
@2, which the author obtained jointly with J. Beirlant.

THEOREM 2.7. For B € (0, 4], N € N and continuous underlying df’s Fin, Fon, «« -,
Fnn, we have

(2.62) @:=1-e?Y2, §iexp(—iB™ — ilog B + i) — 3082 exp(—B ),

where iy is defined in (2.41) and where

1 _ + 1 .
<i,~=2ﬁ=lzﬁ’=1P(——’—<FN(Yn~,zm~>s’ ) i=1,2 i 1,

(2.63) v NB NB
Gi, = Z:;nzgﬂ P(% < Fn(Yun, Zmn) < 1) .

CoROLLARY 2.7. For B € (0, 4], N € N and continuous underlying df’s Fin, Fan,
« -, Fnn, we have

(2.64) @:=1—- {3087 + 41IN(N — 1)}8 ' exp(—B7").

COROLLARY 2.8. For every § > 0 there exist Ny € N and K = K(8) € (0, ) such that
for every array of continuous underlying df’s F\n, Fon, « -+, Fny, N = Ny and for every
N = N, we have

(2.65) P(Fn(x) = (Klog N)'Fy(x), for x€ R?* with Fn(x)#0)=1—- N7,

3. Other theorems on multivariate empirical df’s. The motivation for the theorems
in this section is given in the introduction. See also Remark 3.1.

The first theorem is an extension of a result of Ghosh (1972) in the 1-dim i.i.d. case to
the 2-dim. non-ii.d. case. We refer to Ruymgaart and van Zuijlen (1978b) for the 1-dim.
non-i.i.d. case.

THEOREM 3.1. For every 8 = 0 there exist K = K(8) € (0, ©) and Ny = No(8) € N such
that for every array of continuous underlying df’s Fiy, Fon, +++, Fny, N=1,2, --- and
for every N = N, we have

NY2| Fn(x) — F(x) i
@ P(s"p"‘e’*z'F_”""e‘s/”'l“""’”’” (FN(xl)(lN - (x)))l/lz =KlogN)=1-N""

Proor. Define an inverse of a df G on (—x, ») by
3.2) G '(u) = inf{y| G(y) = u}, for O<u=l,

whereas G!(0) = —» and G ~!(a) = = for @ > 1. Moreover, let for i, j € {1, 2, - .-, N+1},
NEN, xe R?,

a;v= Gy (N); by = ANGNTY),

win = (ain, bin) € R?,
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(3.3) Diy = {xe R?| Fn(x) € [ﬁhi%]}

Ry= {(u'nE R?*|i,j=8,4,.---, N+ 1},
Fn(x) — F’N(x)
(Fn(x)(1 — Fn(x)))"*"

For N=6,i,j€ {4,5, ---, N+ 1} and x € ([ai-1,n, ain] X [bj-1,n, bjn]) N D3y we have
FN(ujz:,N) - Fy(u/Zin)

(Fn(w/Zin) (1 — Fn(wn))'?

_ (Fnwin) \* _ Fywin) — Fa@in) Fy(wy) = Fy@izly)
Fn(w/Zin) (Fyin) A = Fx(Wn)? " (Fv@i=in) (1 — Fy(uin)))"?

= 2+ 1)?Un(w,n) + 6N7/2

Un(x) =

Un(x) =

and
FnWiZl n) — Fn(uln)
U, = — LA -
V) B (1 = Falia )
_ (Fy@itim\” __ Fy@itiy) = Fy@itly)  Fy(in) = Fxuitiy)
Fn(u)n) Fn@Zin) 1 = Fn@iZIn))? (Fa(uhiy)(1 — Fy(wiZin)))?
1 A
= 7,5 UN(u’,-Il_N) - 4N‘1/2,
so that
(3.4) Supp,, | Un(%) | = v3 maxg,np,,| Un(x)| + 6N V2

Hence, for proving (3.1) it is sufficient to show that for every 8§ = 0 there exist K = K(§)
€ (0, ») and Ny = Ny(8) € N such that for every array of continuous underlying df’s F,
Fony o+o, Fyn, N=1,2, ... and for every N = N, we have

(3.5) P(maxz,np,,| N"2Un(x)| = K log N) < N™*,

It follows from Bonferroni’s inequality and Theorem 5 in Hoeffding (1956) that the
probability in (3.5) is bounded above by

(3.6) Yrynn,y P(| NFy(x) — NFy(x) | = KN'? log N(Fy(x)(1 — Fn(x)))"?)

1 1
oA _N]
Applying Bernstein’s inequality and proceeding as in Ghosh (1972, page 352), with Kl/«/i
replaced by K, we find for N = Ny(K) the following upper bound for (3.6)

3.7) 2 Y b, exp(—%K V2 log N) < 2N? exp(—%K log N) = 2N> %78,
% IN

where NFy(x) has a binomial distribution with parameters N and Fy(x) €

which is less than N™'™° for K = 32 + 86.0

The second result is an extension of the first part of Theorem 3.2 in Ruymgaart and van
Zuijlen (1978) to the 2-dim. non-i.i.d. case. See also van Zuijlen (1978) for a weaker, but
similar multivariate result.

By an abuse of notation we write Fy and Fy for the measure induced by the df’s, thus
Fn{B} = [p dFn, F{B} = [p dFy for a Borel set B in R”. An interval in R? is defined as
the product set of two intervals, closed, open or half open, bounded or unbounded, on the
line.
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THEOREM 3.2. Let I be an interval in R* and let % = {I*:I* is an interval contained
in I}. For every § = 0 there exists K = K(8) such that for every array of continuous
underlying df’s Fin, Fon, «++, Fnn, N =3, 4, ---, for every N = 3, 4, - .- and for every
interval I, with Fy{I} = N™', we have

1/2
3.8) P(suppeqFN{I*} sz{I*}I<K< Pl }) logN)zl—N‘H.

Proor. We follow the lines of the proof of Theorem 2.1 in van Zuijlen (1978). We start
by applying Lemma 2.1 in the above mentioned paper with 2 = 2 and obtain in the
notation of this lemma for K =8 N=3

= 1/2
P(sup,e,| Fx{I*} — Fy{I*}| < K(F ”A{,I }) log N)

> P(max;,veuﬁ,l Fn{In} — Fn{In}| <K(sz(1)) log N — 4 FN{I})

(3.9)

1/2
>P<ma§;~eﬁv|FN{IN} —FN{IN} |== K(Fl\;\gI}) log N)

=1 - Yres P(|NFy{In} — NFy{Iy} | > %KN"*(Fn{I})"*1log N).

Since %KN"*(Fy{I})"*1log N = 1, Theorem 5 in Hoeffding (1956) is applicable, so that we
may assume NFy{Iy} in (3.9) to be a binomial rv with parameters N and Fy{Iy}. From
Bernstein’s inequality (see, e.g., Bahadur (1966), page 578) it follows that for K = 8, N =
3 we have

P(|NFy{Iy} — NFy{In}| > %KN"2(Fy{I})"2log N)

g e LK?NFy (I} (log N)?
P\ ONFn(In} + KN (Fy(I}) 7 log N
1K*(log N)®
2+ %K log N(NFy (1)) 7

14K*(log N)?
2log N + 4K log N

= 2N—(1/4)K2/(2 + (1/3)1()‘

(3.10) =2 exp(—

=2 exp(—

Noting that the number of elements in .y is bounded above by 625N°®, we obtain from
(3.9) and (3.10)

F N {I } v 8—(1/4)K2%/(2 + K/3)
P| suppcs| Fn{I*} —FN{I*}|<K log N} =1 - 1250N R
which completes the proof of the theorem. [

Finally, we shall give a useful theorem which is a direct consequence of Corollary 3.1 in
Ruymgaart and van Zuijlen (1978b) (with ¢ — s replaced by Fn(f) — Fn(s)). We define for
O0=s<t=1

(3.11) Ili = {x € R?| Fn(x) € (s, ]}
(3.12) IY={xER|Fyx)<t)
(3.13) Xn(t) = N'A(Fn{IY} — Fn{IM}).
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THEOREM 3.3. For every § = 0 there exists K = K(8) > 0 such that for every array of
continuous underlying df’s Fin, Fon, +++, Fyn, N= 3,4, .., for every N = 3,4, ... and
for every 0 < 7 < 1 we have, with s and t restricted to [0, 1],

(3.14)  P(sup (s, Fyty -Fy iy 1=n-7 | Xn(t) — Xn(s) | = KN"?log N)=1—- N3,

_ Proor. Let Wy be the empirical df based on Wiy, Wan, -+, Wy, where Wy =
Fn(Xun),n=2,1, ..+, N. The tlleorem is immediate from Corollary 3.1 in Ruymgaart and
van Zuijlen (1978b) with Fy=Wyand Fy(¢) = 1/N YN, P(W,n < t) for t € [0, 1] since

F_'N(XnN) = t@XnN EI{V

and hence
Wait) = N7 # [Fy(Xow) < t] = % # [Xon € IV] = Fn{I'},
NSV, P(Wow=<t)=N"'YV, P(Fn(X.n) <t) = NIV, PX.nEIY) = Fy{IY} 0O

REMARK 3.1 Applications. As an example we shall demonstrate first how Corollary
2.6 can be used in the theory of rank statistics. )
For N € N let Jn:(0, 1) - R be such that

| In(s) | = C(s(1 — 8))™ = Cre(s)
for some C € (0, x), a € (0, %) and let
Dy ={x€ R*|Fn(x) =3N'}.

One of the remainder terms in the decomposition of a suitably standardized Kendall-type
statistic as given in (1.6) is By, where

N

(3.15) By=N'? j J JN( FN) dFn.

= N+1

Dy
Because of Corollary 2.6 we have on a subset, say v, of € with very high probability

|By| < N7'2 By Cre N Fn(Xan)
= el N+1 "

(3.16) < C'N7'2¥x ,eb, (K log N)*(Fn(Xun))™

< C”"N"%(log N)“J J F3* dFy.
By

With Hélder’s inequality, taking ¢ = 1 + (4a)™", p = (1 — ¢~1)7", we find on &y for (3.16)
the upper bound

1/q
C”N"*(log N)"(FN{B,,})‘/"< j f Fare dFN> .

Since p < 2 and qa < %, (3.15), (3.16) together with Theorem 3 in Sen (1970) yields for Fy
€ % on QN
| Bn| = C”N'?*(log N)*(Fy{Dn})""(log N)'/*

(3.17) 3 3. 3\”
< C///Nl/Z(log N)a*‘l/P(N — N log N) — O, as N — o,
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Note that this example demonstrates that we only have to control the multivariate
empirical df in the observations X,n,n=1, 2, .-+, N.

Finally, we shall give two corollaries of the theorems from this section which can be
applied directly when dealing with the other remainder terms in the decomposition of
Kendall-type statistics. To avoid technicalities Corollary 3.2 will be formulated under the
hypothesis that Fy = Gy X Hy. For the proofs of these corollaries we refer to van Zuijlen
(1979).

Let Dy = {x € R*|Fy(x) € [%, 1 —%]} and for N € N let Jx:(0, 1) > R be such
that
[T | = Mre+ivl, i=0,1

for some M € (0, ), a € (0, %), where J® = Jy and where J¥ denotes the derivative of
the measurable functions /.

COROLLARY 3.1. For every 8 = 0 there exist K = K(8) € (0, ) and No = No(a) € N
such that for every array of continuous underlying df’s Fin, Fon, + -+, Fnn, N = Ny and
for every N = N, we have

(3.18) P( f (r(F))/**dFy = f f (r(Fn)*/**= dFy + 2) >1- N
Dy Dy

COROLLARY 3.2. For every 8 = 0 there exist Ny = No(a, 8) € N and K, = K,(8) € (_1,
) such that for every array of continuous underlying df’s Fin, Fon, « -+, Fyn, with Fy
= Gy X Hy, N = N, and for every N = N, we have

(3.19) P(‘ J' f Vandn(Fy) d(Fy — Fy) | < KaMN"/"‘V‘“) =1—- N3
Dy

where

(3.20) Vi(x) = NV2(Fn(x) — Fy(x)), x € R

Acknowledgement. The author is indebted to W. R. van Zwet for some helpful and
stimulating discussions. Also note the acknowledgement of Wellner below the proof of
Theorem 2.5.
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