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LAPLACE’S METHOD FOR GAUSSIAN INTEGRALS WITH AN
APPLICATION TO STATISTICAL MECHANICS

By RicHARD S. ELLIS! AND JAY S. ROSEN?

University of Massachusetts

For a new class of Gaussian function space integrals depending upon n
€ (1,2, - - .}, the exponential rate of growth or decay as n — o is determined.
The result is applied to the calculation of the specific free energy in a model
in statistical mechanics. The physical discussion is self-contained. The paper
ends by proving upper bounds on certain probabilities. These bounds will be
used in a sequel to this paper, in which asymptotic expansions and limit
theorems will be proved for the Gaussian integrals considered here.

L. Introduction. Let g(y) be a continuous function on R which tends to +o suffi-
ciently fast as | y| — o. Laplace’s method yields [Erdélyi (1956) Section 2.4]

1
limp .o - In f exp[—ng(y)] dy = —infyer [g(¥)].
R

One of the purposes of this paper is to extend Laplace’s method to the class of Gaussian
integrals on C[0, 1] considered in Theorem 1.1. In the Appendix, we show how to modify
our arguments to handle analogous integrals on a Hilbert space.

C[0, 1] denotes the space of real-valued continuous functions Y (¢), ¢ € [0, 1], endowed
with the supremum norm. Let P be a mean zero Gaussian measure on C[0, 1] and { P,} a
sequence of mean zero Gaussian measures which tend weakly to P(P, = P). Let {F,} be
a sequence of suitably bounded and continuous real-valued functionals on C[0, 1] which
tend in a suitable sense to a functional F on C[0, 1]. Denote by I the entropy functional of
P, defined in (4.1). Except in the Appendix, all integrals with respect to P, { P,} are over
C[0,1] unless otherwise noted. P,( Vn.) stands for the measure P,( «/;5”):=
P.(Y:Y/Vn € &) for ¥a Borel subset of C[0, 1].

THEOREM 1.1. Assume that P and {P.} are mean zero Gaussian measures on
C[0, 1] such that P, = P (Hypothesis 3.1). Assume that F and {F,} are real-valued
functionals on C[0, 1] which are bounded below in the sense of Hypothesis 3.2 and are
continuous in the sense of Hypothesis 3.3; assume that the { F,} tend to F in the sense of
Hypothesis 3.4. Then

. 1 .
(1.1) lim, e n In f exp[—nF,(Y)] dPn(\/—r;Y) = —infyecpoy[F(Y) + I(Y)].
Further, inf[ F + I] over C[0, 1] is finite and is attained at some point in C[0, 1].

The new element in Theorem 1.1 is the treatment of sequences of measures and
functionals. Results of Donsker and Varadhan allow us to change some of the hypotheses
on the functionals F, {F,} in Theorem 1.1. This alternate form of Theorem 1.1 will be
stated below in Theorem 1.4.
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The present paper was inspired by a model in statistical mechanics, called the circle
model. We first define the circle model, then show how Theorem 1.1 yields useful
information about it. The physical content of the following definitions will be discussed in
Section II. (Readers interested only in Theorem 1.1 and its proof can skip Section II with
no loss in continuity.)

Let % be the family of all continuous, real-valued functions defined on a circle of
circumference one. We identify % with the closed subspace of C[0, 1] consisting of all
functions Y (¢), 0 < ¢ = 1, which satisfy Y (0) = Y (1). A function J (s, ¢), s, t € [0, 1], is said
to be a covariance function in % if ¢J is the covariance function of a mean zero Gaussian
measure on %. Now let {H,; n =1, 2, ---} be a sequence of functions in # and {J,; n =
1,2, ---} a sequence of covariance functions in %. Let p be a Borel probability measure on
R which satisfies

1.2) I exp(cx?) dp(x) < forall c=0.
R

The circle model is defined by the sequence of probability measures {I',; n=1,2 ---} on
{R™ n=1,2, ...}, where for  a Borel subset of R"

Lon 1o (2 DNxxvyem (B x| m .
L exp[§ 21,1—1 n Jn (n > n) X;X] + 2¢=1 Hn (n) X,] H,=1 dp(X,)

(1.3) Tn(2) = A

Z, is the normalization constant
(1.4) Z, = X 12“~ 1J ‘ i XX;+ Y H, i Xi | [ dp (X))
. n = Rme P 2 ;,j=1n n n'n iAj =1 4In 7 i =1 i)y

called the canonical partition function. The integrals in (1.3)-(1.4) converge because of
(1.2). A quantity of considerable physical importance is the specific (Helmholtz) free
energy, defined by f:= — lim,_..n"'InZ,. Under the hypothesis that the { H,} and {,}
converge suitably as n — o, Theorem 1.2 below gives f explicitly.

The connection between Theorem 1.1 and the circle model arises because the canonical
partition function Z, can be represented as a Gaussian integral of the form considered in
(1.1). For y real, define

(1.5) ¢(y) =In f exp(yx) dp(x),
R
and let P, be the mean zero Gaussian measure on % with covariance function /,,. Then
(1.6) Z, = f exp(—nF,(Y)) dP,(V¥nY),
@y
where

w.7) Fu(Y) =~ 157, ¢(Y(£) + H(ﬁ))

To see this, note that for s, ¢t € [0, 1], J.(s, t) = E,.{Y(s)Y(¢)}, where E, denotes
expectation with respect to P,. Then

Z, = f En[exp{%n SEL Y (i) X+ H, (}L) X,-}] T do(X))
R

_ En[exp{2?=1 o (%n Y (ﬁ) +H, (g))}]

as claimed.
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We next derive the specific free energy for the circle model as an application of Theorem
1.1. The fact that the specific free energy equals the infimum of a functional on # s related
to the Gibbs variational principle, which is well-known in statistical mechanics (Ruelle
(1969) Section 7.4, Simon (1979) Section 19).

THEOREM 1.2. Assume that in (1.4) H, € ¥ and J, is the covariance function of a
mean zero Gaussian measure P, on %. Assume that there exists a function H € % and a
mean zero Gaussian measure P on % such that H, — H uniformly and P, = P. Define
the functional F on % by

1
(1.8) F(Y)=- f ¢(Y(u) + H(w)) du,
o

where ¢ is defined in (1.5). Then the specific free energy f of the circle model is given by
f=—lim, .. % In Z, = infyey [F(Y) + I(Y)],

where I is the entropy functional of P. Further, inf(F + I) over % is finite and is attained
at some point of ¥.

In future work, we plan to prove asymptotic expansions and limit theorems for the
integrals in (1.1). When specialized to the circle model, these results yield detailed
information on the asymptotic behavior of the sum of random variables with joint
distributions given by (1.3) [Ellis-Rosen (1979)]. This sum is called the total spin and is an
important physical quantity. In Section V, we prove the following crucial estimate needed
for these asymptotic expansions and limit theorems. It will be proved as a consequence of
Theorem 1.1 and Varadhan (1966) Section 3.

THEOREM 1.3. Let P, { P}, F, {F,} satisfy the hypotheses of Theorem 1.1. Define
probability measures (for sufficiently large n)

f exp[—nF,(Y)] dPy(VRY)
kg

(1.9 @ () =
f exp[—nF,(Y)] dP.(VnY)

for & a Borel subset of C[0, 1]. Assume that o/ is a closed subset of C[0, 1] such that for
some § >0

(1.10) infye.[F(Y) + I(Y)] — minyecpoy[F(Y) + I(Y)] > 6.
Then for all sufficiently large n
(1.11) Qu(f) =e™.

We discuss results in the literature related to ours. In the special cases where all the
P,;’s equal P and all the F,’s equal F, (1.1) has been proved by a number of people (Schilder
(1966), Pincus (1968), Donsker-Varadhan (1976), Simon (1979) Section 18). All these
sources but the third impose strong conditions upon the covariance function of P. Section
IV of the present paper proves Theorem 1.1 by extending the methods of Simon (1979)
Section 18 but with only the minimal hypothesis that P, => P; otherwise, P, { P,} are
arbitrary. Our extension is highly non-trivial. For special cases, we have a more elementary
proof of Theorem 1.1 than the proof presented here; see Ellis-Rosen (1979) Section V.

A possible alternate approach to Theorem 1.1 is contained in Varadhan (1966) Section
3. Assume that for any closed subset .« of C[0, 1]

(1.12) lim Supn_. % In P, (Vnst) < —infye I(Y)
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and for any open subset 4 of C[0, 1]
(1.13) lim inf, ... % In P,(Vn#) = —infyc,(I(Y).

Then it is proved that for suitable F, {F,}, (1.1) holds. The bounds (1.12)-(1.13) are
derived in Donsker-Varadhan (1976) with C[0, 1] replaced by any separable Banach space
Z and P, = P, = -.. = P, any mean-zero Gaussian measure on Z. However, since these
bounds have not yet been proved for a sequence of Gaussian measures, (1.1) requires
separate proof.

Our proof of (1.1) has the virtues of being direct and almost completely self-contained.
Besides, (1.1) can be shown to yield the bounds (1.12)-(1.13). In fact, (1.12), which will be
useful in the proof of Theorem 1.3, is derived directly from (1.1) in Section V. We are
therefore in the following interesting situation. Although (1.12)-(1.13) have not been
proved directly for a sequence {P,} tending weakly to P, they can be derived indirectly
via (1.1). By Varadhan (1966) Section 3 and Donsker-Varadhan (1976) Lemma 6.4, we
have the following alternate version of Theorem 1.1.

THEOREM 1.4 Assume that P and { P} are mean zero Gaussian measures on C[0, 1]
such that P, = P. Then (1.12)-(1.13) are valid. Also (1.1) holds if the functionals F, {F,}
satisfy Hypothesis 3.4 and

(1.14) lim; ,.lim sup, .. ! In f exp[—nF,(Y)] dP,(VnY) = —w.
n (Y:—F,(Y)=L}

The second assertion in Theorem 1.1 holds if F is lower semicontinuous on C[0, 1].
Finally, if o(s, t) denotes the covariance function of P, we have

. 1
lim, o = In P.{Y :supo<e=1| Y(¢)| = «/;} = - % R where a:= supo<<10(t, t).

One can prove that (1.14) holds if for all sufficiently small » > 0 there exists C; = C;(»)
= 0 such that each F, satisfies (3.2). (This is a stronger form of Hypothesis 3.2 than is
needed for Theorem 1.1) That the lower semicontinuity of F implies the second assertion
in Theorem 1.1 follows from the proof of Lemma 4.5(d). The last assertion in Theorem 1.4
generalizes a result of Marcus-Shepp (1972).

Section II of this paper gives some physical motivation for the circle model. Section ITI
states the hypotheses for Theorem 1.1 and proves Theorem 1.2. Sections IV and V prove
Theorems 1.1 and 1.3, respectively. Section VI extends Theorems 1.1, 1.3, and 1.4 to a
separable real Hilbert space.

II. Circle Model in Statistical Mechanics. The circle model is a special case of a
class of systems called spin systems, which we define in some generality.

Let A be a subset of R%, d € {1, 2, --.}, consisting of a finite number of points, called
sites. A spin system on A is a special family of random variables {X?;j € A). Each X}
represents the spin, or magnetic moment, of the individual atom at the site j in a magnetic
crystal with shape described by A. When the crystal is kept at a fixed temperature, the
joint distribution of the {X}} is given by

(2.1) dTa(Xy, -+, Xja)

= Zi,\ eXp[B {% Yoiea Ja(l, NX X, + Yiea HA(i)Xi}] [Liea dp(Xi).
This measure is also known as the Gibbs measure of the system.

We define the symbols in (2.1). | A | denotes the number of sites in A. The number 8 is
proportional to the inverse absolute temperature, so 8 > 0. The symbol p denotes a Borel
probability measure on R which satisfies (1.2). For 8 = 0, the {X} are independent
random variables, each distributed by p. J, is a real-valued function on R? X R% if J, is
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non-negative, we say that J, is ferromagnetic. The summand J4 (i, j)X;X; denotes the
interaction strength between sites i and j with spins X,, X;, respectively. H, (x) is a smooth
function of x € R% H, (i) denotes the strength of an external magnetic field applied at site
i. The summand H, (i)X; denotes the interaction strength between the external field and
the spin at i. Z, is the normalization constant

(2.2) Zy = j eXp[B {% Yoea Ial, ))XX; + ZJ‘EAHA(i)Xt}:I [Lea dp(X3),
RIAI
which converges because of (1.2). Z, is called the canonical partition function.
Important physical quantities are the total spin Sa = Y;ea X and its expected value,
E {Sa}. Macroscopic properties of the spin system are studied by letting A become large
in a suitable way; in particular, | A| — . For example, a useful approach to critical
phenomena and phase transitions is to study the asymptotic behavior of Sy and E {S,} as
| A| — . See Cassandro-Jona-Lasinio (1978) for a detailed discussion.
We define the quantities

1
\I’A = ‘I’A(B, HA) =——=In ZA,
(2.3) B
1 1 1
— InV¥,=-—=- —
A" B [A]
known, respectively, as the (Helmholtz) free energy and the specific free energy of the
system. The limit defining f exists under suitable natural hypotheses on {A}, {4},
{Hxr}, and p, Ruelle (1969). Among other reasons, these quantities are useful because of
their relation to Sy and E {S,}. For example.

In E{exp(rSa)} = —B[¥a(B, Hr + r) — YA (B, H,)], rreal,
and if H, = h, a constant, then

fl = lim|,\|_,°° lim|A|_,w In ZA,

E{S\}=-8 % YA (B, h).

Similarly, fis useful in studying the asymptotic behavior of S, and E{Sx} as | A| — .

The circle model (1.3)-(1.4) fits into the framework of (2.1)-(2.2). Indeed, the sequence
of measures (1.3)-(1.4) defines spin systems on the subsets A, == {j/n;j=1, ---,n},n=
1,2, ..., of [0, 1] (alias a circle of circumference one). For notational convenience, we have
set 8 = 1in (1.3). We do not require ¢/ to be ferromagnetic.

Because of the factor 1/n multiplying o, (i/n, j/n), (1.3)-(1.4) define a so-called mean
field type model. The choice / = 1 and H = h, a constant, defines the Curie-Weiss model,
Brout (1968), Kac (1968) Section 3. The asymptotic behavior of Sy, as n — o has been
studied in great detail for this model (Ellis-Newman (1978a), (1978b), Ellis-Newman-Rosen
(1980)).

III. Hypotheses for Theorem 1.1. After some preliminaries, we state our hy-
potheses for Theorem 1.1, and then we prove Theorem 1.2.

We write L? for L*[0, 1]. L* and C[0, 1] are regarded as spaces of real-valued functions.
We denote by || — ||, | — [z, and (=, —) the supremum norm on C[0, 1], the L%norm, and
the L>-inner product, respectively. All functions belong to C[0, 1] unless otherwise noted.
Given a sequence {Y,} and an element Y, the notation Y, — Y means | Y — Y, || — 0. All
constants are independent of n unless otherwise noted.

Let P, {P,} be mean zero Gaussian measures on C[0, 1] with covariance functions
a(s, t), {on(s, t)}, 0 = s, t = 1. We denote by % { %} the covariance operators on L>
corresponding to P, { P,}. We have for Y € L?

(3.1 FY(s) =f

0

1

a(s, )Y (¢)dt, % Y(s) =J a.(s, t)Y(¢) dt.

0
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# and each 4, are positive, symmetric, trace class operators, Gihman-Skorohod (1974)

Theorem 1, page 350. None of these operators need be strictly positive. We denote by 7
and J, the closed subspaces of L? on which #and £,, respectively, are strictly positive, and

by 7 and 7, the orthogonal projections onto Zand 7, respectively. The subspaces .7 and

I, are, respectively, invariant subspaces for #and 4,.

HyporHesis 3.1. P, {P.} are mean zero Gaussian measures on C[0, 1] such that
P,= P.

HypoTHESIS 3.2 F, {F,} are real-valued functionals on C[0, 1]. There exist numbers
v and C; satisfying 0 < v < 1/(2| #|l2) and C: = 0 such that for all Y € C[0, 1] and all
sufficiently large n

(3.2) F(Y)=z—»|YE—C;, Fu(Y)=—v|Y|§ - C.

HypoTHESIS 3.3 There exists y € (0, 1] and, for each R > 0, there exists C(R) > 0
such that if | X|| = R, | Y| < R, then for all sufficiently large n

(33) |F(X)-F(Y)|=CR)|X-Y|) |F(X)-F(Y)|=CR)|X-Y|}.

HYPOTHES.S 3.4 Let 9 be the domain of #7'% the inverse of the square root of
F(2c C[0, 1] by Lemma 4.3(d)). Given Y € 9 and {Y,} a sequence such that Y, — Y,
then F,(Y,) » F(Y).

REMARK 3.5. The inequality (3.2) implies that for all n sufficiently large
J exp(=nF,(Y)) dP,(VnY) < e,

ProoOF oF THEOREM 1.2. We shall prove Theorem 1.2 as an application of Theorem
1.4. As noted in the Introduction, Theorem 1.4 is a consequence of Theorem 1.1. By
Theorem 1.4, it suffices to prove that F and the { F,} satisfy Hypothesis 3.4, that the { F,.}
satisfy (1.14), and that F is continuous. The functionals F and {F,} are defined in (1.8)
and in (1.7), respectively. Concerning Hypothesis 3.4, we have that | ¢’(y) | is bounded for
¥ in a fixed compact set. Hence there exists a constant C (depending on Y, { Y, }) so that

o [o(ro ) <o 5 () 1 ())

g
sC¥M Jn

J-1
n

IF(Y) _Fn(Yn)I =

Y(u) + H(u) — Y(i) - H (i) du.
n n

Since Y, — Y and H, — H uniformly, we conclude that | F(Y) — F,,(Y,) | — 0. To prove
that the {F,} satisfy (1.14), we first show that for any » > 0 there exists C; = C;(») = 0
such that foralln € {1,2, ---} and YE %

(3.4) F.(Y)=—»||Y|? - C..
For any » > 0, and x, y real, we have yx < »y%/2 + x%/(2»). Thus,

o(y) =< gyz + B,

where B := In [ exp[x?/(2v)] dp(x). B is finite because of (1.2). Thus, for n € {1,2, ---}

and YE %
. 2 . 2
Vgn Y| _Vyn AN
nonaz3s [+ ()] - [0 -

= | Y|? -G,
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where C, := »| H|* + B. This proves (3.4). To show (1.14), we note that because of (3.4)
and (4.4) later, we have for all sufficiently large L

L
(3.5) P AVn{Y:=F,(Y)=L)} = P,,{ Y:|Y|P= %} = Cexp[—n,8<5>],
where C > 0, B > 0. Again by (3.4), the integral in (1.14) is bounded above by

enC][Pn{\/;{Y:_Fn(Y) > L}}]m[f

2

Now (1.14) follows from (3.5) and (4.5) (ii) below, provided » is sufficiently small. Since F
is obviously continuous on %, the proof of Theorem 1.2 is complete. 0

1/2
exp(2r || Y|[?) dPa( Y)] )

IV. Proof of Theorem 1.1. We first define the entropy functionals of the measures
P, {P.}. Let %, { %} be the covariance operators corresponding to these measures; see
(3.1). We denote by «[;“, {\[f_,, } the unique symmetric, positive square roots of % {){,}.\5‘7
is invertible on a dense subset of 7 with inverse #"/% each /¢, is invertible on a dense
subset of 7, with inverse £,/ (Z7and J, were defined after (3.1)). We denote the domains
of these inverses by 2, {2,}, respectively. 2 and 9, are subsets of C[0, 1] (Lemma 4.3(d)).
We define the functionals (entropy functionals of P, {P,}) ;

_JRlFTYE,  Yeg
(4.1) 1Y) := {+ , Y € C[o, 11\2,
= |%lFYNE, YE D,
(4.2) L(Y) = {+ , Y € C[0, 1\Z..
We also define
(4.3) G(Y):=F(Y)+I(Y), Gu(Y):=Fu(Y)+ L(Y).

REMARK 4.1. The entropy functional of a Gaussian measure on a general Banach
space is defined in [Donsker-Varadhan (1976) Theorem 6.2]. One may check that for C[0,
1], their definition reduces to (4.1). See also Freidlin (1972) and Wentzell (1972).

We denote by (A}; j=1,2, --.} and {AJ.; j= 1,2, ---} the eigenvalues of #and each
Fnandby {§;/=1,2,---}and {{n;7=1,2, - - -} corresponding orthonormal eigenfunctions.
The eigenvalues are repeated according to multiplicity and arranged in decreasing order.
We denote by {7\}’; Jj=12, ..., N}, N =< o, the distinct positive eigenvalues of ¢ by
{(Nn;j=1,2, .-+, N(n)}, N(n) < o, the distinct positive eigenvalues of #,; by ®; the
orthogonal projection onto the eigenspace corresponding to A%; by ®@;, the orthogonal
projection onto the eigenspace corresponding to 7\3,,

Next, we prove four lemmas which refer in turn to P, {P.}; % {%); I, {I.}; G, {G.}.
There are followed by a lower bound (4.19) and an upper bound (4.20) which together give
the theorem. Our proof extends that of Simon (1979) Section 18, where ( 1.1) is proved in
thecase Fi=F,=... =F,P,=Py= ... =P, .

LEMMA 4.2
(a) There exist positive constants 8 and C so that for all n
(4.4) PAY:|Y|>a)=Ce™®, alla>0.

(b) For each p. > 0 and each sufficiently small i >0

(4.5) (i) sup. f exp(p| Y) dP.(Y ) < o, (ii) supn f exp(i | Y||?) dP.(Y) < oo,

(c) There exists a constant K so that

(4.6) |on(s, 2)| = K, alln, 0=s,t=<1.
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(d) We have
4.7) lim ol f£— 4|3 < lim,_.. JI J‘ | a(s, &) — 0a(s, t)|* dsdt = 0.
0
(e) Define the incremental variance \l/,,(os, t) for P, by
(4.8) Yn(s, t) := f (Y(s) — Y())? dPu(Y) = 0uls, S) + 0ul(t, t) — 204 (s, ).

Given € > 0, there exists § > 0 so that if | s — t| < §, then y.(s, t) < ¢ for each n.
(f) The measure dP,([I + &jn]-) is absolutely continuous with respect to P, with
Radon-Nikodym derivative

dP.([I + Vn#]-)
dP, ¥)

(g) Given Y € 2 and positive constants 0, Cs, define
(4.10) Hn(0, Co) == {Y:|| £X2Y — 727 |2 <60, || Y| <Cs).
Then for any 6 € (0, 1), there exists Cz = C2(0) so that
(4.11) lim inf, .. P.{#;(6, C2(6))} > 0.

(4.9) = det(I + Jﬁﬁ)exp[—g (LY, Y) = Vn| YII%]-

PrOOF.

(a) Let @ be any mean zero Gaussian measure on C[0, 1]. The proof of Theorem 1.9 in
Marcus-Shepp (1972) shows that if ¢ > % and S > 0 have the property that @{Y:|| Y| =
S} =g, thenforalla > S

(4.12) QY| Y| > a} = e?
where 8 = B(g) := (24S*'In[q/(1 — g)]. We apply this to the present set-up. Fixing q >
%, pick S > 0 so that

P{Y:|Y|=S}=gq, P{Y:Y|=S}=0.
Since P, = P, we have

P.{Y:|Y||=S} > P{Y:|Y||=S}

by Billingsley (1968) Theorem 2.1(v). By increasing S, if necessary, we guarantee that for
some 8§ > 0 sufficiently small and all n
(4.13) P{Y:|Y|=S}=q—-8>%

Hence (4.12) holds with @ replaced by any P, with fixed 8 := 8(q — 8). The inequality (4.4)
follows with this 8 and C := exp(8S?).

(b) This is an immediate consequence of (4.4).

(c) Since | 6a(s, 8)| < [ || Y| dPa(Y) < [ exp(v2 || Y||) dP.(Y), this follows from (4.5)(i).

(d) P. = P implies 6, — o pointwise. This, (4.6), and the Lebesgue dominated
convergence theorem yield (4.7).

(e) By Prohorov’s theorem [Billingsley (1968) Theorem 6.2], P, = P implies that given
€ € (0, 1) there exists a compact set #; so that P,(#;,) =1 — ¢ for all n. By the Arzela-Ascoli
theorem [Billingsley (1968) page 221], the functions in .#; are equicontinuous. Now

(4.14) Ynls, &) = {f +j } (Y(s) — Y(2))* dP,(Y).
X Cl0,1]\X;

For the first integral we use the equicontinuity of Y € 2#,. We bound the second integral
by

1/2 1/2
(4.15) JE{ f (Y(s) — Y(t))“‘dP,,(Y)} = JE{ f exp[5||Y||]dPn(Y)} .
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The proof is done because of the arbitrariness of £ and (4.5)(i).
(f) The proof of Simon (1979) Lemma 18.6 works here.
(g) We define the subset of C[0, 1]
H (@, C) = (Y| £*Y —#72Y | <0, | Y| <C}.

In Simon (1979) Lemma 18.9 it is proved that for any 8 € (0, 1) there exists C. = C2(8) so
that P{#10/2, C;)} > 0. We claim that for all n sufficiently large #,(4, Cz) D #1(6/2, Cq).
Given Y € #16/2, C>)
|£YY = 5728 o< | 282 = 5 [al Yo + |52 =57 |
=Gl g% - 22 + 6/2.

Since || #%* — #%||s — 0 (to be proved in Lemma 4.3(b)), the claim is proved. The set
H10/2, C,) is open and P, = P, so that by Billingsley (1968) Theorem 2.1(iv)

lim info . Pa(#0(6, Cp)) = lim inf, . Po(#16/2, C2)) = P(#10/2, C2)) > 0. O

Part (a) of the next lemma refers to the projections 7, 7,, which were defined in the
third paragraph of Section III.

LEMMA 4.3.
(a) For each j, Ajn— A}, | @ — ®jnllz— 0, | 7 — 7all2 > 0 as n -,

(b) || \/}— ‘/fn [l2— oO.
(c) %m det(I + Vng,) — 0.

(d) \5", {@} map L? into C[0, 1], so that D, {2,)}, the domains of the inverses of these
operators, are subsets of C[0, 1].
(e) Forall YE L*?

“16) @ IAYI= KNVl @ INAYI=VEIYls @) 1AY < VEINAY ],
where K is the constant in (4.7). The same bounds hold with ¢, replace by ¢.

Proor.

(a)-(b) I — 7, is the spectral projection onto the nullspace of %,; similarly for I — 7.
Since || £ — 4|3 = 0 by (4.7), (a) follows from Riesz-Sz.-Nagy (1955) pages 370-373 and

(b) from (a).
(c) By Gohberg-Krein (1969) Theorem III. 8.5 and page 114 and by (4.7), we have

1

Tr =Y A= f on(s, 8) ds< K,

0
where Tr denotes trace. Thus, since 4, is positive,
Tr 4%
.
n

05%111 det(I + V) = - n [T1 (1 -+ VAN s%mezﬁ% - 0.

(d)-(e) These are proved in Simon (1979) Lemma 18.4. O
We next prove some facts about the functionals I, {I,}.

LEMMA 4.4.

(a) Let Y, {Y,} be functions in C[0, 1]. If Y, — Y, then lim inf,_,.I.(Y,) = I(Y). In
particular, I is lower semicontinuous on C[0, 1].

(b) Let {Y.} be a sequence in C[0, 1]. If sup I.(Y,) < «, then {Y,} has a convergent
subsequence. In particular, for any L € (0, ), the set {Y:1(Y) < L} is compact.

(c) If I(Y) < o, then there exists a sequence {Y ™} with the properties that Y™ €
D, Y 5 Y, L(Y™) = I(Y), I(Y™) > I(Y).
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Proor.
_ (a) Since | Y = Y, <||'Y — Y,[| - 0, Lemma 4.3(a) implies || ®;, Y2 — || ®,;Y ||2. Since
A}, — A}, Fatou’s lemma implies

lim inf I,(Y,) = lim inf % 3, A;2(| ©;,. Y. |13
=% Y A2 0,Y |3 = I(Y).
The second assertion follows from the first with all the I,’s replaced by I.

(b) Let D := 2 sup I,(Y,) <  and define X, := #,"?Y,. By Mercer’s theorem [Riesz-
Nagy (1955) Section 98], we have for each s, ¢ € [0,

On(s, t) = 2]‘ Af‘,n{j}n(s){j,n(t)‘

If Xo(t) = X Bin&in(t), Bin = (Xa, §n), then
| Yal®) > = | (VA > < | ) Binhindin(8) |

= |1 Xal13 2, AZa[$n(0) ] < Don(t, t).

Similarly,
| Yau(s) — Ya(®)|? < || Xz |13{0n(s, 8) + 0n(t, t) — 20,(s, £)} =< Dyn(s, t).

The first part now follows from Lemma 4.2(d), (e), and the Arzela-Ascoli theorem. The
second assertion follows from the fact that the set {Y:I(Y) = L} is conditionally compact
and closed. The conditional compactness follows from the first part with all the I,’s
replaced by I; the closure follows from the lower semicontinuity of I.

(c) Define the sequence Y ™ := v/, #7/2Y. We first verify the statements about I,(Y"),
then prove Y™ — Y. We have

L(Y®) =% |1 gAY |3 < % | £72Y 3 = 1Y)

since 7, is an orthogonal projection. Also, I,(Y ™) — I(Y) since |7 — 74|l — 0 (Lemma
4.3(a)) and 7£72Y = #72Y. Since Y € 9, Y = V£#7/?Y. Thus,

1Y = Y @2 = [(VF= VENIT2Y) |2 = | NE = Al F 7Y o,

which tends to zero as n — o by Lemma 4.3(b). We prove that any subsequence {Y '}
has a subsubsequence which tends to Y in C([0, 1]. Then Y™ — Y and {Y ™} is the
desired sequence. The statement about any subsequence {Y '} follows from || Y — Y ™|,
— 0, I,(Y™) = I(Y) < o for all n’, and part (b) of this lemma. 0

We now prove facts about the functionals G, {G,} defined in (4.3).

LEMMA 4.5.

(a) Let Y be an element and {Y,} a sequence of elements in C[0, 1]. If Y, — Y and
I(Y) < oo, then lim inf, ,.Gx(Y,) = G(Y). In particular, G is lower semicontinuous on
2.

(b) Given I(Y) < o, let {Y™} be the sequence constructed in Lemma 4.4(c). Then
G.(Y™) > G(Y).

(c) G is finite on 2 and G, is finite on 9,. There exist constants 8§ > 0, C; > 0, so that

(4.17) GY)=8I(Y) - C, Ye g
and for all sufficiently large n
(4.18) G(Y)=8L.(Y) — C, Y € 2.

(d) Inf G over C[0, 1] is finite; inf G, over C[0, 1] is finite for all sufficiently large n.
There exists at least one point Y* € 9 and for all sufficiently large n, at least one point
Yr € 2, s0 that

G(Y") =infyecponG(Y),  Gu(Y3) = infyecpoGa(Y).
(e) Gu(Y7) > G(Y™).
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Proor.
(a)-(b) These follow from Hypothesis 3.4 and Lemma 4.4(a), (c).
(c) To prove (4.18), we have from (3.2) for Y € 2,, n sufficiently large,

Gu(Y) = —»|| Y3 — Ci + L(Y) = L(Y)[1 — 2| %|=] — Ci.

Since by (4.7) 2v || 4 ||z = 27| 7|2 < 1, (4.18) follows. The bound (4.17) is proved similarly.

(d) We prove the statement for G; G, is handled similarly. Let U := inf G over C[0, 1];
U= -C, > — » by (4.17). Define #:= {(Y:Y € 2, G(Y) = U + 1}. Since G is lower
semicontinuous on 9, Zis closed. For YC % I(Y) < § (U + 1 + C)) by (4.17), so Fis
compact by Lemma 4.4(b). A lower semicontinuous function achieves its absolute minimum
on a compact set [Berger (1977) Theorem 6.1.1], so we are done since infyecpo,)[G(Y)] =
infye s[G(Y)].

(e) We first prove lim sup,_.-G.(Y %) = G(Y *). This follows from the bound G.(Y}) <
G.((Y*)™) and part (b) of this lemma, where {(Y*)™} is the sequence constructed in
Lemma 4.4(c) for Y:=Y *. In order to prove lim inf,, . G.(Y }) = G(Y *), it suffices to prove
that any infinite subsequence {Y 7} has a subsubsequence {Y }-} so that lim inf G,-(Y }-)
= G(Y*). By Hypothesis 3.4, F,(0) — F(0). Thus,

sup G (Y %) = sup G.(0) = sup F,(0) < oo,

By (4.18),_sup I,(Y,) < . By Lemma 4.4(b), there exists a subsubsequence {Y -} and an
element Y € C[0, 1] so that Y* — Y. By Lemma 4.4(a), I(Y) < «. Hence, by part (a) of
the present lemma, lim inf G.-(Y %) = G(Y) = G(Y *), as required.

We now prove Theorem 1.1. The second assertion of the theorem is proved in Lemma
4.5(d). We prove (1.1). Define the functional

A(Y) = F,,(——y; +j,,Y) + L Y5+ 1 (%Y, Y)

Vn YJZ 2
1
= Gu(A4Y) +F,.<—+f,.Y) - Fa(%Y) +—| Y|3.
7 &II 11

Changing variables Y — (I + vn %)Y in the integral in (1.1), we find by Lemma 4.2(f)
J’ exp(—nF,(Y)) dP.(VnY) = det(I + vn#) J exp(—nl,(Y)) dP.(Y).
By Lemma 4.3(c), we obtain (1.1) once we show
%ln J' exp(—nA.(Y)) dP.(Y) - — G(Y™).
We do this by proving the lower bound
(4.19) lim inf, .. % an' exp(—nlA,(Y)) dP.(Y) = —G(Y'¥)

and the upper bound

(4.20) lim sup,—« % In j exp(—nl.(Y)) dP.(Y) = — G(Y™).

ProoF oF LOWER BouNnD (4.19). We work with the sets #,(0, C;) defined in (4.10),
setting Y = Y *. Assume 0 < <1 and let {(Y *)™} be the sequence of elements constructed
in Lemma 4.4(c) for Y = Y*. Given arbitrary ¢ > 0, we prove below that there exists § =
8(e) € (0, 1) such that for Y € #;(8, Cs), n sufficiently large,

(4.21) | Go(£#Y) — G.(Y*)™)| <.



58 RICHARD S. ELLIS AND JAY S. ROSEN

C, = C.(0) is picked so that (see Lemma 4.2(g))
(4.22) lim inf,_.P.(#(8, Cs)) > 0.

We now prove that there exists Cs = C3(f) such that for all sufficiently large n

(4.23) A(Y) = Go((Y*)™) + ¢ + % all Y € 4,0, Ca),

where v is the number in Hypothesis 3.3. Then

J exp(—n4,) dP, = J exp(—n4,) dP,
H(6,C2)

n

(4.24)
= exp[-n(a,.((Y*)<">) +et %)]an(é, )

and (4.19) follows from G,((Y *)™) - G(Y*) (Lemma 4.5(b)) and (4.22). To prove (4.23),
we have by (4.16)(i) for any Y € #,(9, C.)

max(m, Y + l
Vn

Jn
Hence, if n is sufficiently large, then by (4.21) and (3.2),

) S| AY|+|Y|<R = (K+1)Cs.

Y 1
A(Y) = Gu(4Y) + Fn<—— +/%Y> —-F.(%Y)+—| Y3

Jn VR
CR)

= G.((YH™) +e+ =

1
Iz +— 1Y
" Vn

S Gu((YH™) + e+ %

where C; := C(R)C} + C3. This proves (4.23).
We now prove (4.21). Define R := VK (|| # /Y * |2 + 1), where VK is the number in
(4.16)(iii). Then by (4.16)(iii), for any Y € #,(6, C,)

I4Y = VK| V&Y. < VE(|#F72Y *[. + 1) = R.
Also, | Y*|| < VK || #72Y * |l2 < R. Hence if n is sufficiently large, then by (3.2), (4.16) (iii)
[Gn(A4Y) = Ga((YN)™)| = | L(AY) — LAY *™)| + |Fu(£4Y) — F.(YH™)|

Cs
=5 INAY =72 + CR) IAY = (V)™
= (5 + cornE) 1 EY -y,

where

Cy = sup{[NAY [lo + £ (Y ") [:n, Y € #a0, C)).
But #;A(Y*)™ = 1, #?Y*, s0 that Cs < 2] £7/*Y *|| + 1 < . For Y € %:(6, C2)

|Gi(AY) — G.((YH)™)| = (% + C(R)«/_I?Y>07.

This can be made less than ¢ by picking 8 € (0, 1) sufficiently small. This proves (4.21) and
completes the proof of the lower bound (4.19).
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PROOF OF UPPER BOUND (4.20). For R > 0, define the subsets of C[0, 1] which partition
Clo, 17

7= (Y| AY| =R, | Y| = RVn},
(4.25) '@ .= (Y:| Y| > RVn},
v .= {Y:|.%Y| > R}.

We prove that there exists a constant Cs > 0 so that for all sufficiently large R and n

43y
exp(—nG,(Y %))exp <C5n“‘2*>, i=1,
(4.26) J exp(—nA,) dP, <
v P exp(—nG(Y'*)), i1=2,3,
where vy is the number in Hypothesis 3.3. This yields (4.20) since G.(Y ¥) = G(Y *) (Lemma
4.5(e)) and (4 — 3y)/4—2y) < L.

Upper bound, region 1. For any Y € ¥, max,{| Y/Vn|, | Y/vn + 4Y|} =< 2R.
Hence, for sufficiently large n, by the minimizing property of Y # and (3 2)

vn n
e C2R) [Re
2 2
= Gu(v ) - o vy + 1T
/2 \/;

For any numbers r >0, s >0, p > 1, ¢ > 1 with p ™' + ¢”' = 1, we have the inequality

q
r"—sr2—£<£) .
q\p

Letr:=| Y|, s:= C2Rn" "2 p .= 2/y, q:=2/(2 - y). Then
2
Y|} C@2R)
" "2 1’2 I "2 ==
7 Y \/_

—v/22-7)
E—Csn ¥/ n,

(1Y [z - CerRn="2| Y|y

where Cs depends on y. Inserting this into (4.27), we obtain (4.26) for i = 1 and all
sufficiently large n.

Upper bound, region 2. For any Y € C[0, 1] and n sufficiently large, (3.2) implies

Y
A,,(Y)=F,,(—+/,,Y>+—— Y3+ 5 (an Y)
vn «/7;" I

1 1
= —o| Y/Vn + 4Y - Ci + VARLASIA L
n

But
I Y/Vn+ £Y |} = (4Y, 4Y) +7n VAY |3 +—||Yn2
(Ilfnllz+7> RAUEE
Hence n(Y)>an"\/_.Y"2+b Y3 - Ci,

where
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1 2v
(4.28) an:==—v| 4l ——, : .
2 vn n I
For all sufficiently large n, we have a, =0, b, = 0, and so A,(Y) = —C,. Thus by (4.5)

J’ exp(—nA,) dP, < exp(nCy)P.(¥v"?) < C exp(—-n(BR? — C))).
)

If we pick R so that BR* — Ci(y) = G(Y*), then (4.26) for i = 2 holds for all R = R and all
sufficiently large n.

Upper bound, region 3. For any Y € 7\, (4.16)(iii) implies | VAY|3=
K ' 4Y|? = K'R® In (4.28), there exists & > 0 so that for all sufficiently large n, a, =
8, b, = 0. Thus on 7", A,(Y) = 8K'R? — C, which can be made to exceed G(Y *) by
taking R large enough. Thus, (4.26) for { = 3 holds for all sufficiently large R and n.

This completes the proof of the upper bound (4.20) and thus of Theorem 1.1.

V. Proof of Theorem 1.3. We first state Lemma 5.1, then show how Theorem 1.3
follows directly from it. Afterwards we prove the lemma. The proof of the lemma depends
in part upon the bound (1.12), which we deduce from (1.1).

LEMMA 5.1. Define the measures {A,} on C[0, 1] by

(5.1) dA,(Y) ;= exp(—nF,(Y)) dPn(\/ﬁ).
Then
(5.2) lim, rlz In A, {C[0, 1]} = —infyeco,1; G(Y)

while for any closed subset of of C[0, 1]

1
(5.3) lim sup,—w o In A, {«} = —infye, G(Y).

Proor oF THEOREM 1.3. Let &/ C CJ[0, 1] be closed. Then by (5.2)-(5.3)
. 1 L 1 A {}
lim sup, .« o In @,.{«} = lim sup,_,» o In <m)
=< —infyeo [G(Y)] + il’lfygc[o,l] [G( Y)]

Thus if o/ also satisfies (1.10), then we can find a positive number N so that @, () < e™
for all n = N. This is (1.11). 0

Proor oF LEMMA 5.1.  The limit (5.2) is exactly (1.1). In Varadhan (1966) Section 3,
(5.3) is shown to hold if (1.12) is valid, if the F, {F,} satisfy Hypothesis 3.4, and if (1.14)
holds. We save the proof of (1.12) for last. We now prove (1.14). For all sufficiently large
n and L, (3.2) and (4.4) imply

L
(5.4) P.(¥n{Y: - F,(Y)=L}) =< P,,{Y: Y| 2';—V} = Cexp[—nﬁ(é)] .
We pick g > 1 so that gv < 1/(2||.#|]2) and let p satisfy p~' + ¢ ™' = 1. The functionals ¢F,
{qF,} then also satisfy Hypotheses 3.2-3.4. We have by Theorem 1.1 (applied to these

functionals) and by (5.4) that for all sufficiently large n the integral in (1.14) is bounded
above by

1/q
[P.(Vn(Y: = F(Y) = L})]‘/”{j e‘""F"‘Y’dPn(\/ﬁY)} = CeXp[_Tn'B <%)]eXp(nD),

where D is some real number. Now (1.14) follows.
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To prove (1.12), we need another lemma.
LEMMA 5.2. Given &/ C C[0, 1] closed and & > 0, define the subset of C[0, 1]
o= {Y:d(Y, ) > 6},
where d(Y, /) := infxe || Y — X||.. Define the functional

- d(Y, o)
(.5) &) =gy +aw, 2

Then for any number b =0

(5.6) lim, .. % In J exp[—nbdP;(Y)] dP,(VnY) = —infyecp,[0Ps(Y) + I(Y)].

Proor. We show that
@o=d:(Y)=<1 for all Y € C[0, 1],

(57)  (b) | Ds(X) — Bs(Y) | = % IX=Y|. forallX,Ye C[0,1],

(c) if Y€ CI0, 1], {Y.} C C[0, 1], and Y, - Y, then ®;(Y,) - D;(Y).

Then for b= 0, F, = F; = ... = F := b®; satisfy Hypotheses 3.2-3.4 and so (5.6) follows
from (1.1). Property (5.7)(a) is obvious and (5.7)(c) follows from (5.7)(b) and || X — Y| =
|| X = Y|. To prove (5.7)(b), we have

[d(X, ) = d(Y,#)]d(Y, #°) + [d(Y,&°) — d(X,«/°)]d(Y, /)

D5(X) — @s(Y) = [d(X, &) + d(X, L) [d(Y, &) + d(Y,°)]

Thus,

1 1 2
| @:(X) = Ds(Y) | =5 |d(X, &) —d(Y, )| +5 |d(X, %) —d(Y—ﬂs)IS-é: I1X = Yl,.
o

We are now ready to prove (1.12). We must show that for &/ C C[0, 1] closed
(5.8) lim Supn_« % InP, (Vnet) = —infye[I(Y)].

We note that
(5.9) B A=0, O} #°=1 0=d;=<1 on C[0,1]
This and (5.6) imply that for any number b = 0

lim Sup,_.or % InP, (Vns/) < lim sup,_.» % In f exp[—nbd®s (Y)] dP, (VnY)
o

(5.10) =lim, ;Ll- In f exp(—nb®;(Y)) dP,(vVnY)
= —infyecpo, n[dPs(Y) + I(Y)].
Since the left-hand term in (5.10) is independent of b, 8, we find

(5.11) lim supp—e % InP,(Vne) < —lim sups;o (Sups=o infyecpo,y[0Ps (Y) + I(Y)]).

Define the subset o := {Y:d(Y, &) < 8} and the number r := limso (infye [1(Y)]); ris
well-defined (0 = r < ) since the .{</} are decreasing as § | 0. Together with (5.11), the
facts
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(5.12) Sups=o innyc[o,I][b(I)s(Y) + I(Y)] = il’lf}’e.w6 [I(Y)]
and
(5.13) r = infye,[1(Y)]

will yield (5.8). We first prove (5.12). By (5.9), we have for any b = 0
infyeq, {(0@s(Y) + I(Y)] = infye,[I(Y)],
infyes[bDs(Y) + I(Y)] = b + infyes[I(Y)].
Thus,
Sups=o infyecpo,[6Ps(Y) + I(Y)]
= supe=o min {infye, [6Ps(Y) + I(Y)],  infye.s[dPs(Y) + I(Y)]}
= min {infye,[1(Y)], supe=0(b) + infyes[1(Y)]} = infye,[I(Y)].

This is (5.12). To prove (5.13), we note that since &/ C & for each § > 0,
(5.14) infye [I(Y)]=r.
Thus, if r +co, (5.13) is automatic. Assuming r < «, we are done once we prove
(5.15) r =z infye [I(Y)].
For each & > 0, define i(8) := infyc, [1(Y)]; we have i(8)1r as 80.
Since r < « by assumption, we see that 0 < i(§) < . Now clearly
infyes[I(Y)] = infyez[I(Y)], where s:=o40N (Y:I(Y)<i@)+1}. O

Since . is closed in Clo, 1], &l is compact by Lemma 4.4(b). Since I is lower semicontin-
uous, there exists Y; € o so that I(Ys) = i(8). Let {8;} be any sequence tending to zero.
Then

(5.16) lim; o £(8;) = lim,,.. I(Y3) = r.

By Lemma 4.4(b), {Ys) is conditionally compact, so there exists a subsequence {Ys}
and an element Y € N,/ &/5 C «/so that Y, — Y. The lower semicontinuity of I and (5.16)
imply r = lim; . I(Ys') = I(Y) = infye[1(Y)], which is (5.15).

APPENDIX
Laplace’s Method and Related Results for a Separable Real Hilbert Space

We prove analogues of Theorems 1.1, 1.3, and 1.4 for a separable real Hilbert space

We denote the norm of s#by || — || and the inner product of # by (—, —). Given elements
Y, {Y.) of #, we write Y, — Y if (Y,, X) > (Y, X) forall XE #and Y, — Yif| Y — Y,
— 0. Let A, {A.} be bounded linear mappings from # to # We write || A || to denote the
operator norm of A. We write A, — Aif A, Y — AYforall YE #, A, — AifA, Y > AY
forall Y€ s, and A, > Aif|A — A,||— 0.

Let P, {P,} be mean zero Gaussian measures on J# with covariance operators ¢, {/%.}.
For any Y1, Y, € 5#, we have [Gihman-Skorohod (1974) page 341]

(Al) (fY, Y,y = f (Y1, Y)(Y2, Y) dP(Y), (4 Y1, Ys2) =f (Y1, Y)(Y2, Y) dP.(Y).

In this Appendix, all integrals with respect to P, {P,} are over s unless otherwise noted.
# and each ¢, are positive, symmetric, trace class operators. We denote by 7, 7, the
orthogonal projections of # onto the subspaces {Y:#Y # 0}, {Y:4.Y # 0}; by «/} ,
.{@} the unique symmetric, positive square roots of %, {%.}; by 2, {2,} the ranges of
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these operators. v/¢ is invertible on 2 with inverse # /% each V4, is invertible on 9, with
inverse ¢, /%, We define the entropy functionals I, {I,} of P, {P,} by

. % Iy i Yea,
a |+ ifYen\9,
A |+ it Y € #\ 9.

The entropy functional of a Gaussian measure on a general Banach space is defined in
Donsker-Varadhan (1976) Theorem 6.2. One may check that for a Hilbert space their
definition reduces to the above. See also Freidlin (1972) and Wentzell (1972).

We now state the hypotheses under which the theorems of this section will be proved.

HypoTHESIS A.1. P, {P,} are mean zero Gaussian measures on 3 such that P, = P,

HypoTHESIS A2. F, {F,} are real-valued functionals on #, There exist numbers v
and C; satisfying 0 <v < 1/2||.#|) and C > 0 such that for any Y € s# and all sufficiently
large n

F(Y)=—y|Y|P-C, F.(Y)=—¢|Y|P-C.

HypoTHESIS A.3. There exists y € (0, 1] and, for each R > 0, there exists C(R) > 0
such that if | X|| = R, || Y|| = R, then for all sufficiently large n

|FX) = F(Y)|SCR)|X-Y|, |F.(X)—-F.(Y)|=C®R)|X-Y]|".

HypoTHESIS A4. Given Y € @ and (Y.} a sequence such that Y, — Y, then F,(Y,)
— F(Y).

The following three theorems correspond to Theorem 1.1, Theorem 1.4, and Theorem
1.5, respectively.

THEOREM A.5. Assume that P, {P,}, F, {F,} satisfy Hypotheses A.1-1.4. Then

(A.2) lim, e % In f exp[—nF,(Y)] dP,(VnY) = — infye[F(Y) + I(Y)].
Further, inf[F +I] over # is finite and is attained at some point in ¥,

THEOREM A.6. Let P, {P,}, F, {F.,} satisfy Hypotheses A.1-A.4. Define probability
measures @, on # as in (1.9). Assume that o is a closed subset of # such that for some
§d>0

infye [F(Y) + I(Y)] — minye »[ F(Y) + I(Y)] > 6.
Then for all sufficiently large n, Q,(f) < e™.

THEOREM A.7. Assume that P, {P,} satisfy Hypothesis A.1. Then for any closed
subset o/ of #

1
lim sup, o — InP, (Vns/) < — infyey I(Y)

and for any open subset # of #

lim inf,_, % InP, (Vn®#) = —infycI(Y).
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Also, (1.1) holds if F, {F,} satisfy only Hypotheses A.4 and the F, satisfy (1.14). The
second assertion in Theorem A.5 follows if F is lower semicontinuous on H. Finally, we
have

1 1
lim, .o —In P,{Y:|| Y| = Vn} = ———.
n 1Yl A

Much of the work needed to prove these theorems has already been done. Except for
changes in notation and in the proofs of several lemmas, these theorems are proved in
exactly the same way as their analogues in Section I. The changes in notation are obvious:
replace C[0, 1] and L” by 5 and replace the supremum norm on C[0, 1] and the L?norm
| = ll2 by || = [, the norm on #. We now state those facts needed to prove Theorems A.5-A.7
for which the proofs given earlier in this paper do not immediately generalize.

LEMMA AS8.
(a) There exist positive constants B and c so that for all n
(A.3) P.{Y:| Y| > a) > Ce?, alla>0.

() L n det(I + Vi 7n) — 0.

(c) /n g

(d) Vg, +> V2

(e) Let {Y,} be a sequence in #. If sup I,(Y,) < =, then {Y,} has a convergent
subsequence. In particular, for any L € (0, ), the set {Y:I(Y) = L} is compact.

(f) For all Y € # and A equal to ¢ or arf]')'_jn, there exists a constant K > 0 so that
IAY | < K| Y|, [VAY| = VK| Y|, |AY | <VK| VA Y||.

Proor oF LEMMA A.8.
(a) Let @ be any mean zero Gaussian measure on 5. We prove below that if ¢ > % and
S > 0 have the property that

(A4) QLY:|Y|=8S}=gq,
then there exists 8 > 0 such that for all a > S
(A5) Q{Y:|Y||>a} = e

Using this fact, one completes the proof of (a) exactly like the proof of Lemma 4.2(a).
Since # is separable, there exists a countable set {e,} in # such that for any Y € #

| Y|| = sup.(Y, e.).

Hence the proof of Theorem 1.9 in Marcus-Shepp (1972) can be used to show that (A.4)
implies (A.5).
(b) We define

(A.6) K := sup, j I YI? dP.(Y);
K is finite because of (A.3). By (A.1) Tr#, < K and so this part is proved like Lemma

4.3(c).
(c) We prove that

(A7) limy el — o, || = lim supp—epxj=<1| ((J — J»)X, X) | = 0.

Let ¢ > 0 be given. Since P, = P, Prohorov’s theorem [Billingsley (1968) Theorem 6. 2]
implies that there exists a compact subset K, of # such that P(K¢) <e¢, P,(K¢) < ¢ for all
n. By (A1),
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[((J — )X, X)| =

j (X, Y)? dP(Y) —f X, Yy dPn(Y)‘
(A.8) K K
+ f (X, V)2 dP(Y) + f (X, Y)? dP,(Y).
K¢ K¢

By (A.3) sup. [ || Y||* dP.(Y) < . Hence uniformly in n

1/2
Supxj=1 j (X, Y)*dP,(Y)<[P. (Kf)]l/z[f I Y|P dPn(Y):| =0E");
K

the same bound holds for sup;xj<1 [x: (X, Y)* dP(Y). We prove that there exists N > 0 so
that foralln = N

(A.9) Sup|xj=1

f (X, Y)? dP(Y) —f X, Y)? dPn(Y)l <e.
K, K,

Since ¢ > 0 is arbitrary, (A.7) follows. To prove (A.9), let & be the set of all functionals f on
K, of the form f(Y) = (X, Y)? for some X satisfying || X|| = 1. We prove below that & is
compact in the topology of uniform convergence on K.. Because of the compactness, we
can find elements g1, - - -, gu € &, some M < «, with the property that for each f € & there
exists an i € {1, - -+, M} such that

(A.10) supyek |f(Y) — g:(Y) | <e/2.
Since P, = P, there exists N >0such thatforallie (1, ..., M},alln=N

(A11) f &(Y) dP(Y) — f &(Y) dP,,(Y>(<f.
KC Kr 2

Together, (A.10)-(A.11) imply (A.9). We now prove the compactness of &. Let {f,} be an
arbitrary sequence in &. Then f, (Y) = (X,,, Y)? where each || X, | = 1. By Berger (1977)
(1.3.12)(iii), there exists a subsequence {X,,} and an element X € # so that X, — X.
Defining f(X) := (X, Y)? we prove f,, — f, which will complete the proof. If the latter were
false, then there would exist 8 > 0, an infinite subsubsequence {ns}, and elements {Y,}
of K, such that for all n;

(A.12) | Xy, Ya,)? — (X, Y| = B.

Since K. is compact, we can assume that the {Y,} converge strongly to some element Y
of K.. But then both inner products in (A.12) tend to (X, Y) and so (A.12) cannot hold.
(d) This is implied by (c).
(e) Define X, := #,"2 Y,. Then D := sup,|| X, ||*> = 2 sup, I.(Y.) < . Hence there
exists a subsequence {X,-} and an element X € H such that X, — X. We show Y, =
\[Z X, — \/}X, which completes the proof. We have

INEX = N X | < W(NF = o) X | + | NP X — NIX|
= VD||NF = V|| + | X — VX ||

The first term tends to zero by (d) and the second term tends to zero because X, — X and
\[;4 is compact.

) EL(A‘I) we have that sup.|| % || = K, where K is defined in (A.6). We are done since
sup.||\4 | = VK, £l = K, | V¢l = VK.O
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