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A LOG LOG LAW FOR MAXIMAL UNIFORM SPACINGS!

By Luc DEVROYE

McGill University

Let X, X;, --- be a sequence of independent uniformly distributed
random variables on [0, 1] and K, be the kth largest spacing induced by X;,
+++, Xp. We show that P(K, < (log n — logsn — log 2)/n i.0.) = 1 where log,
is the j times iterated logarithm. This settles a question left open in Devroye
(1981). Thus, we have

lim inf(nK, — log n + logsn) = —log 2 almost surely,
and

lim sup(nK, — log n)/2 logan = 1/k  almost surely.

1. Introduction. Consider a sequence X, X;, - - - of independent identically distrib-
uted random variables with a uniform distribution on [0, 1], and let S;(n), - - -, Sp+1(n) be
the spacings induced by X;, ---, X, on [0, 1]. Let K, be the kth largest spacing among
S.(n), 1 =i =n + 1. Devroye (1981) has shown that

(1.1) lim sup(nK, — log n)/(2 log:n) = 1/k  as.,
and that
(1.2) lim inf(nK, — log n + logzn) = ¢ as.

where —log 2 =< ¢ =< 0. The strong upper bound (1.1) is now completely known for the case
k = 1. In fact, we have for p = 4,

2
P(nK,, =logn + % logen + logsn + -+ + log,—1n + (1 + 8)log,n i.o.)
_ )]0 when § > 0 (Devroye, 1981)
~ |1 when8<0andk =1 (Deheuvels, 1982).
The purpose of this paper is to show that the constant ¢ in (1.2) is —log 2.

THEOREM. Let M, be the maximal spacing among Si(n), 1 <i<n + 1. Then

PM, =< (log n — logsn — log 2)/n i.0.) = 1.

CoROLLARY Since K, = M., we may combine this result with Theorem 4.2 of Devroye
(1981):

1 whené=0

P(K, =< (log n — logsn —log 2 — §)/ni0.) = {0 when 8> 0

2. Some Lemmas.

LeEmMma 2.1. [Tail of the gamma distribution] (Devroye, 1981, Lemma 3.1).
If X is gamma (n) distributed, then for all ¢ > 0,

P(X < n(l1 — ¢)) = exp(—ne?/2).
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LEMMA 2.2. [Tail of the binomial distribution] (Dudley, 1978, page 907).
If X is a binomial (n, p) random variable wheren =1, p € (0, 1), then

&
PX=Fk) = (%) el P, k =np, Finteger.

Proor. See Dudley (1978). The proof is based upon one of Okamoto’s inequalities
(Okamoto, 1958).

LEMMA 2.3. [Tail of the binomial distribution].
If X is a binomial (n, p) random variable wheren =1, p € (0, 1), then

2 3

P(X=np +¢) < exp(— ¢

+——), e>0, np=e
2np 2n2p2> ¢ np=e

Proor. We use Lemma 2.2 and note that (np/k)*e*™ is decreasing in % for % > e.
Thus, by the inequality log(1 + u) > u — u*/2, u > 0,

np np+e € 82
P(XZ np + 8) = <np T 5) et < exp<—(np + £)<n—p - W) + 8)

Ez 83
= — + ——].
exp( 2np 2n2p2)
LEMMA 2.4. [Inequality for the multinomial distribution].
If Xy, ---, X, are iid. random variables uniformly distributed on [0, 1] and Ny, - -,

Ny are the number of X’s in the intervals (0, a), (a, 2a), - - -, ((k — 1)a, ka) respectively
whereka<1,k=1,a=0, then

1-@a- a)n)k = P(min<;<,N; = 1)

= (1 — exp(—an(1l — ¢)))* — exp(—ne?/2), all ¢€ (0, 1).

Proor. The upper bound follows from Mallows’ inequality (Mallows, 1968)
P(min<;<;N; = 1) = [[& P(N: = 1).

The lower bound can be obtained by considering the i.i.d. sequence X;, Xz, - - of uniform
[0, 1] random variables, and an independent Poisson (n(1 — ¢)) random variable Z. Clearly,
X1, - -+, Xz can be considered as the arrival times in a homogeneous Poisson point process
on [0, 1] with intensity (1 — ¢). Also, if N1, ..., N} are the cardinalities of the intervals
0, a), (a, 2a), ---, ((k — 1)a, ka) obtained from Xj, - --, Xz, then

Pmin;<xN;=1) = (1 — exp(—an(l — ¢)))* < P(min;<<xN; = 1) + P(Z > n).
If G is a gamma (n) random variable, then, by Lemma 2.1,
P(Z = n) = P(G < n(l — ¢) < exp(—ne?/2).

LEMMA 2.5. Let u> 0 and let k = 1 be integer. If K, is the kth largest spacing Si(n),

l<i<n+1, then
PK,>u)=e "+ P(Z=F)

where Z is a binomial (p, n) random variable and p = ¢ """,

Proor. We use the fact that {S;(n), 1 =i=<n + 1} is distributed as {E;/T,1<i<n

+ 1} where Ei, .-, E,;; are ii.d. exponentially distributed random variables and T' =
U E,. If Ey, is the kth largest of the E/’s, then
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P(K,>u) = P(Ew>u Y E) < P(TE E.<n —n”*) + P(Ew > u(n — n**)
< exp(—vn/2) + P(Z=F)

by Lemma 2.1.
LEMMA 2.6. [A strong law for the k,.th largest spacing].
Let
un, = (log n — (1 + c)logsn — log 2)/n, c=2,
DPn = exp(— nu, + n**u,),
8, = V2np,-V2logn + (2 + ¢ + O)logsn, 0>0,
and k, = m (" is the ceiling function).

If K, is the k,th largest spacing among S,(n),1 <i<n+ 1, then
P(K,>u, fo)=1.

Note. We will need good asymptotic estimates of p,, 8, and %, in what follows. A
quick check shows that

2(logzn)'*e log n
ooz

8, = (V8 + o(1))(logzn) '*/2,
and

= 2(log2n)“°<1 + 0<log1/4 )) + O((logzn)'*/*)

= 2(logzn)"**(1 + O((logen)~?))
~ 2(logen)'*".

Proor. Note that u, and %, are monotone for n > N. Thus, for n > N, we have

P(K, > un)2knlins, kn = kn11,
P(K,. > uy) kn < ki1,

By Lemma 1* of Barndorff-Nielsen (1961), it suffices to show that

P(K,, > Un, Koo = upa) < {

(2.1) P(K,>u,) >0 as n— oo,
and that
(2.2) Zr=1 P(Kn > Up, Kn+1 = u,,+1) < 00,

By Lemma 2.5, P(K,, > u,) < O(exp(—n'®)) + P(Z = k,) where Z is binomial (p,, n). By
Lemma 2.3, P(Z = k,) < P(Z = np, + 8,) < exp(—82/(2np,) + 83/(2n°p2)). Now,

83/(2n2p2) ~ V8 (logon) /2.
Thus, if b = e,

P(Z = k) = (b + 0(1))/((log n)*(logzn)****?),
so that (2.1) holds. Furthermore,
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(® + o(1))
(log n)*(logzn)****
26+ 0(1)

" nlogn (logan)™"

P(Kn > un)knun-H =

-2 + o(1)) (logzn)'. 1287
n

which is summable in . To conclude the proof of (2.2), we need only show that
Zn:k"<kn+l P(Kn > un) < o,

Clearly, k., = 3(logsn)'* for all n large enough. For such n, we have log n =
exp((k,/3)""*). By our upper bounds for P(K, > u,) obtained above it suffices to check
that

2+c+0

Yriby<tn (10g 1) *(logon) " = T2, exp(—=2(j/3)/*9)(j/3) " < .

This concludes the proof of Lemma 2.6.

3. Proof of the theorem. The proof is based upon the following implication:
[M,. < (log n — logsn — log 2)/n i.0.]
3.1) D [K;, > (log n; — (1 + c)logsn; — log 2) /n; f.0.]
N [A, i0.] N [M, > (log n + 3 logsn) /n f.0.]
where
(i) nj is a monotone subsequence such that n;.; — n; > pn,, all j large enough, and
pn = cn logsn/log n, some c=2

(— is the floor function);

(ii) K., px, 6, are defined as in Lemma 2.6;

(iii) A, is defined as follows: let m, = (log n — 4 logsn)/n. Let By, -- -,Bs, disjoint sets
of [0, 1] with the property that each B, is a finite union of intervals whose boundaries
are measurable functions of X, - - -, X,, only; each B; has Lebesgue measure m,; and
B, either covers the ith largest spacing among S.(n), 1 < i < n + 1, or covers the
interval of length m,, centered at the middle of this spacing (when the spacing itself
is larger than m,). We let A, be the event [all the B/s, 1 < i < k,, are occupied by
at least one X; from X141, « -+ X4, 1.

In (3.1) we are using the fact that if A, occurs, M, = (log n; + 3 logzn,)/n,, and K, =
(log n, — (1 + ¢)logsn; — log 2)/n;, then

3.2) M+, = K, = (log nj — (1 + c)logsn, — log 2)/n,

= (log(n, + p») — loga(n, + pn) — log 2)/(n; + Pn,)-
The last inequality in (3.2) follows from our choice of p, because
+ pn
_nTp_ (log n — (1 + c)logsn — log 2) — (log(n + p,) — logs(n + p,) — log 2)

+ pon
n

pogn _
n

n n
= % logn—c logsn < clogsn(l —1) — ¢
The first inequality in (3.2) is valid because each of the &, largest intervals among S.(n;),
1 =i=n;+ 1, is either smaller than m,, or is split into two intervals of length at most
(1/2)(ma, + (log n; + 3 logen;) /n,) = (log n; — (1/2)logen;)/n;. In either case, for n, large
enough, all the new intervals at time n, + p,, are smaller than (log n; — (1/2)logsn,)/n, <
K,,.
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We have to show that the three events on the right-hand side of (3.1) have probability
one. By Lemma 2.6,

P(K,, > (log n, — (1 + c)logsn; — log 2)/n; fo.) =1.
By (1.1),
P(M, > (log n + 3logen)/n fo.) = 1.

The Theorem follows if P(A,, i.0.) = 1. Let % be the o-algebra generated by A,,, - -, A,
(i.e., it is the o-algebra generated by X, X», - -+, X, +5,,) . Since nj+1 — n; > p, for j large
enough, we have

P(A, | %) = P(A,) as.
for all large j. Thus, P(4, i.0.) = 1 when
(3.3) 71 P(A,) = »

(see for example Serfling (1975), Theorem 2 or Iosifescu and Theodorescu (1969), page 2,
for a more general statement of this type). We are still free to choose n; within condition
(i). Let us define

n, = exp(v2c’jlog,j), somec’ > c. .
Let us first check that n;.; — n; > pn, for all j large enough. A trivial analysis shows that
pn, ~ cnjlogsn;/log n; ~ n;jv(logsj/2%j)c/ Ve

Also,

nj+1 — n; = nifexp(v2¢’(j + Dloge(j + 1) — v2¢jlogej) — 11— 1

~ n;[V2¢'(j + Dloga(j + 1) — V2¢/j logzj] — 1
=nilognj[1+o(1)][VI+1/—-1]—-1
~ n;log n;/2j
~ nj/(logzj/2)Ve'.
Thus, (i) holds in view of V¢’ > ¢/Vc'.
We conclude the proof by showing that for this choice of n,, (3.3) holds. A helpful lower

bound for P(A,) is provided in Lemma 2.4 if we set ¢ ;= n™/*, a := (log n — 4 logsn)/n,
n := p, and % := k, in the formal inequality obtained there. This gives

ky
PA,) = (1 - exp(—(w>pn(l - n_l“))) — exp(—pa/2vVn).

n
We note that

<log n — 4 log:n

5cl 1
o )p,.(l —n"*) = clogsn — € J08 (08t €

log n = 2 logan,
all n large enough.
Also, exp(—pn/2vn) = exp(—cvVn logsn/2 log n) < exp(—n"?) for n large enough. By
combining these estimates, and using the inequality log(1 — v) = —u/(1 — u), u € (0, 1), we
have
P(A,) = exp(—£, exp(—[c logsn — 5¢ logsn logsn/log n])/(1 — exp(—(c/2) logsn)))

— exp(—n'?)

= exp(—2 logan(1 + O((logan)™%))) — exp(—n'/?).
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We used the asymptotic estimate for k&, given in the Note following Lemma 2.6. Replacing
n by n, gives

P(A,) = exp(—2 logv2c’j logzj(1 + O((log j)?))) — exp(—n;”*)

1 14+0((log ) ~¢/?)
S P — O(e™).
[2c'jlog2j] (™)

The last expression is not summable in j when ¢’ > 0, ¢ = 2. This concludes the proof of
(3.3) and the Theorem.
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