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A RENEWAL THEOREM FOR AN URN MODEL!

By PrRaNAB KUMAR SEN

University of North Carolina, Chapel Hill

For an urn model (arising typically in the sequential estimation of the
size of a finite population), along with an invariance principle for a partial
sequence of nonnegative random variables, a renewal theorem relating to
some stopping times is established. A representation of these random variables
in terms of linear combinations of some martingale-differences provides the
key to a simple solution.

1. Introduction. The following urn model arises typically in the sequential estima-
tion of the total size of a finite population. An urn contains an unknown number N of
white balls and no others. We repeatedly draw a ball at random, observe its color and
replace it by a black ball, so that before each draw, there are N balls in the urn. Let W, be
the number of white balls observed in the first n draws,n =1 (Wy =0, W, =1and W, =<
k, k= 2). For large N (and n, satisfying n/N — a:0 < a < ), the limiting normality of the
standardized form of W, has been studied by a host of workers; we may refer to Rényi
(1962) where other references are also cited. For every ¢ > 0, consider the stopping
variable

(1.1) t.=inf{n:n=(c + 1) W, },
so that ¢. can take on only the values [(c + 1)k], £ =1, 2, --. , and W, = m whenever ¢.
=[m(c + 1)].

In the context of sequential estimation of N, Samuel (1968) has considered the stopping
variable ¢, and [see her (5.10)] made a conjecture that the standardized form of ¢, is
asymptotically (as N — ) normally distributed, for every (fixed) ¢ > 0. Since W, = W,,_;,
for every n = 1, a renewal theorem on the W, would naturally provide an affirmative
answer to her conjecture. :

With this motivation, we consider an invariance principle for the partial sequence { Wy,
k = n} and incorporate the same in the formulation of the renewal theorem on the stopping
times {Z.; ¢ > 0}. In this context, we consider a representation of W, in terms of a linear
combination of some martingale-differences and this provides us with a simple tool for
the derivation of the main results.

Along with the preliminary notions, this representation and the main theorems are
presented in Section 2 and their proofs are then considered in Section 3. The last section
deals with some general remarks.

2. The main results. We may write

(21) Wn = W,,_l + Wn, n = 1, Wo = Wy = 0, W1 = 1,
where
2.2) w. = 1, if a white ball appears at the nth draw,

) " 0, otherwise; forn = 1.
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Also, note that conditional on the W,,j < n — 1, w, can assume the two values 1 and 0 with
respective conditional probabilities (N — W, _;)/N and N™'W,_,. Thus, if we let

(2.3) Y.=w.— NN - W,), n=1,

then the Y,, n = 1 form a martingale-difference sequence. From (2.1) through (2.3), we
obtain by induction that

W.=1+Y,+1-NHYW,_ = ...
(2.4) =y - N—l)j_IYn—j'i'l + ¥ (1 - N7t
=N{1-Q1-NH"}+ Y (L= NYY, n=1.

This representation is a key to our subsequent analysis.
Now, for every K(0 <-K < ») and N (= 1), we consider a stochastic process Z, = {Zx(¢),
t € [0, K]} by letting

(2.5) Zn(t) = N7 {(Winy— N1 — (1 = NH™M)), te[0, K],

where [s] stands for the largest integer contained in s. Then, Zy belongs to the D[0, K]
space, endowed with the Skorokhod oJi-topology. Let Z = {Z(t), t € [0, K]} be a Gaussian
function with zero drift and covariance function

(2.6) EZ(s)Z(t)=e{1— (1 +s)e™}, for 0<s=<t=<K

Then, we have the following.

THEOREM 2.1. For the given urn model, for every K:0 < K < o, as N — o,
2.7) Zn — 4 Z, in the Ji-topology on D[0, K.

Note that a(x) = e* — (1 + x), x = 0 is a continuous and monotone function of x. Thus,
if Z* = {Z*(t), 0 = t = K*} be defined by letting

(2.8) Z*(t) = e 9Z(a'(t)), O0=t=K*=a(K),

then, by using the transformation in Section 5 of Doob (1949), we obtain that EZ*(¢) = 0
for every ¢ and

(2.9) EZ*(s)Z*(t) = s\t, forevery s,tin [0, K*].
Thus, Z* is a standard Wiener process on [0, K*]. Hence, on letting
(2.10) H(t) = e “Zy(a7'(t)), O0<t=<K*
we obtain from (2.7), (2.8) and (2.9) that
(2.11) Z% —o Z*, in the Ji-topology on D[0, K*].

Let us next consider a renewal theorem for the W,. Note that [by (2.4)]
(2.12) EW,=N{1-(1-N"H"}=N{1-e""}

is a nonlinear function of n, and hence, the usual renewal theorem [a dual to Theorem 2.1]
(see Billingsley, 1968, page 148, or Vervaat, 1972) may not be applicable to thé sequence of
stopping times in (1.1). For this reason, we consider the following.

Let I'* = [a, b] be a subinterval of [0, 1], where 0 < a < b < 1. For every m € I'*, deﬁne
tn by the solution of the equation

(2.13) m={1—-e"}/t,, meI*.

Note that ¢, = 0, while, as m moves from 1 to 0, ¢,, monotonically goes to . Further, mt,,
=1-e*=1, for every m € [0, 1]. Then, for every N(= 1), we consider a stochastic
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process Xy = {Xny(m), m € I*} by letting
(2.14) Tam=inf{n(=1):mn=W,}, Xn(m) = NV {txm — Nta}, me I*.

Note that the W, depend on N and m plays the role of (1 + ¢)™'in (1.1). Finally, let X =
{X(m), m € I'*} be a Gaussian function with 0 drift and covariance function

(2.15) EX(m)X(m')=e {1 -1+ ty)e ™}/ {(m—e)(im' —e ™)}, for m=m'.

Then, we have the following

THEOREM 2.2. Forevery0<a<b<1,as N—

(2.16) Xn— X, in the Ji-topology on D[a, b].
The proofs of the theorems are considered in the next section.

3. Proofs of the theorems. We need to prove that for Zy (and Xu), the finite-
dimensional distributions (f.d.d.) converge to those of Z (and X) and that Zy (and Xy) are
tight. For the case of Zy, for arbitrary r(= 1),0 <t < .- <t,=Kand A= (Ay, ---, A)’
# 0, let n, = [Nt,], 1 =j < r and consider the linear compound Z¥(t, A) = ¥/-1 A:Zn (1)),
where, by (2.4) and (2.5), we have

(3.1) Z/ 4N = N2 A Y (1= NTY Y, =Y enYy, say,

where n = n, and the cn, depend on N, ny, ..., n, and A. Since the Y; are bounded r.v.’s
and are martingale differences, we may use the dependent central limit theorem of
Dvoretzky (1972) and for this, we need to show only that

(3.2) vE =3k cE(Y?| Bin) > v, as N— o,
where 8,1 =%(Y,,j<i—-1),i=1,
(3.3) Y2=NpA and »= ((EZ(Wt)Z(t)))j=1...r-

Note that by (3.1), max;<,ck; — 0 as N — o, and hence, the boundedness of the Y;
eliminates the need for the verification of the conditional form of the Lindeberg condition
in the Dvoretzky theorem.

Note that by (2.3),

(3.4) E(Y?| Bio)) = Wei(N — W) /N?,  forevery i=1,

so that on using the representation for the W, in (2.4), we may express yf, as the sum of a
principal (non-stochastic) term and two other stochastic terms which are respectively
linear and quadratic functions of the Y,. This non-stochastic term converges to y?, while
each of the two stochastic terms converges in mean square to 0. Hence, Yz%/ converges in
mean square to y® and this ensures (3.2). This completes the proof of the convergence of
the f.d.d.’s of {Zy} to those of Z.

Note that by definition Zy(0) = 0, with probability 1, for every N = 1. Hence, to
establish the tightness of Zy, it suffices to show that for every (1=<)k < q = k + r(=NK),

(3.5) E[Zn((k + r)/N) — Zn(k/N)]* = C*r*/N?,

where C* is a finite positive constant, independent of N; see Theorems 12.3, and 15.6 and
(14.9) of Billingsley (1968) in this context. By (2.4) and (2.5), we have for every r = 1,
k=1,

(3.6) Zny((k+r)/N) —Zy(k/N)

=N"¥ (1 =N"Y"Yesris1— {1— (1= N}Zn(k/N),
where .
(3.7) 1-(1-N""Y=r/N, forevery r=1.
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Note that the Y; are martingale differences (and bounded r.v.), so that by (2.3) and a
theorem of Dharmadhikari, Fabian and Jogdeo (1968), we have

E[NT % 1= N)""Yeurir]* < (Cr ¥ics (1 = NYPEY R 4rir)/N?

(3.8) =Cr[1—- Q1 —-NHY3]/N[1—- (1 - N
=Cr[1- (1 —NYHY]/N1- (1 - N1
=4Cr?/N?% by (3.7). (C < o)

Similarly, by using (2.4), (2.5) and the same theorem of Dharmadhikari, Fabian and Jogdeo
(1968), we obtain that

(3.9) EZ4(k/N) < N2CE S, (1 — N DEY} ., < 4Ck?/N™

Therefore, by (3.6) through (3.9), we obtain that (3.5) holds with C* = 8C. This completes
the proof of Theorem 2.1. In fact, we have actually shown that in (2.7), one may also take
the uniform topology instead of the </;-topology.
To prove Theorem 2.2, we consider the function g(¢, m) =mt + e* — 1, m € (0, 1),
€ (0, ). Note that g(0, m) = 0 for every m and gio(t, m) = (3/dt)g(t, m) =m — e 'is
with g10(0, m) = m — 1 <0, for every m < 1. Thus, by (2.13), we obtain that 0 = g(¢,,, m)
= g(tw, m) — g(0, m) = [§ giolt, m) dt, so that gio(¢,, m) > 0 for every m € (0, 1). In fact,
for every 0 < a < b < 1, we have :

(3.10) inf{gio(tn, m):a<=m= b} =gH >0,
where g, may depend on a and b. Also, by Theorem 2.1, for every K (< ),
(3.11) sup{| Zn(¢)|:0=t =K} = O,(1),
and, by (3.6) and (3.11),
(3.12) max{| Zn((k + 1)/N) — Zy(k/N)|:0 <k = NK} < N"V*(maxi<k<nx | Yz |}
+ N '{maxicp<nk | Zn(R/N)|} = N2+ N7'[0,(1)] = O, (N'7).
Further, we may rewrite 7y, in (2.14) as
(3.13) m = Inf{n:Zn(n/N) = N2mN'n— 1 - (1= NH")).

Note that for every m € [a, b], Tvy < Tvm =< Tna, Where, for every (fixed) K (< ), {N 'rnq
>K} e {(Zy(n/N)>N"*(@N"'n— (1 - (1 - N"")), V¥ n= K} and, by (3.10), for every
a > 0, there exists a finite K,(¢, < K, < ), such that N'*(aK, — (1 — (1 — N")Nke)
+00 as N — «. Consequently, by Theorem 2.1,

(3.14) P {supm=olN 'Tnm > K.} = P{N'7n. > K.}
=P{Zy(K,) > N"*(aK,— (1 — (1 - NH )} 50, as N— oo.
Similarly, for every b < 1, there exists a K, (0 < K, < &), such that

(3.15) P{inf,<sN 'tnn < Kp} = P{(N"'tamp < K3} - 0, as N — oo,
From (3.12), (3.14) and (3.15), we conclude that
(3.16) sup {| Zv(N""ram) — Zn(N Hrvm — 1))|:@a = m < b} = O,(N~'72).

Further, note that for every C > 0, {N 'ty > t, + N"V?C} & {Zn(n/N) > N'* (mN'n
- 1-@0-NM"YH),Vn= N, + N2C)}, where, by (3.10), for n = [N(t, +
N7'2C)], N*mN'n — (1 — (1 — N™")") can be made greater than C* + O (N /%), where
C* = Cgty, for every m € [a, b]. A similar case holds for {N 7y, < £, — N"/2C}. Hence,
for every C > 0,

(3.17) P{supasmsb | N_l‘er — tm I > CN_VZ} = P{Nhl'TNb <K, or N_ITNa > Ka}
+ P{supk,<t=x. | Zn(t)| > C* + O(N"V?)}.
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By (3.14) and (3.15), the first term on the right hand side of (3.17) converges to 0, while, by
(3.11), the second term can be made arbitrarily small by choosing C adequately large.
Thus, we obtain from (3.17) that

(3.18) sup {| N "rvm— tm | : a =m < b} = O, (N %),

Let Zy = {Zn(t), t € [0, K]} be defined by letting Zy(t) = (k + 1 — Nt)Zn(k/N) +
(Nt — k)Zy((k + 1)/N), for k(/N<t=<(k+1)/N,k=0,1, ---, [K]. Then, by (3.11) and
(3.12),

(3.19) 0(Zn, Zy) =sup{| Zn(t) — Zn(t)| : 0= t< K} —>,0, as N — oo,

Since the process Zy belongs to the C[0, K] space, (3.5) actually ensures the tightness of
the process with respect to the uniform topology. Hence, if we define the modulus of
continuity ws(Zn) as sup {|ZN(t) - ZN(s)| :0=s<t<s+8=K}, d>0,then, for every ¢
>0 and 1 > 0, there exist a § (> 0) and an N,, such that

(3.20) P{ws(Zn) > €} <1, V N = No.
Further,
P{supasn=s | Zn(N"'15m) = Zn(tn)| > ¢}
321) =P {supesn=s| N7'TNm — tn | > 8} )
+ P{supasm=t | N"'Tam — tw | = 8, SUPasm=s | Zn (N 7vm) — Zn(tn)| > €}
=< P{suPasm=b | N 'Tvm — tm | > 8} + P {ws(Zn) > ¢}.
Hence, by (3.18), (3.20) and (3.21), we conclude that as N — oo,

(3.22) SUPa<m<s | ZN(NTnm) — Zn(tn)| — 0, in probability.
By virtue of (3.16), (3.19) and (3.22), we have
(3.23) sup {| Zn(N'Tym) — Zn(tw) : @ < m < b} — 0, in probability.

On the other hand, by (2.5), (3.11), (3.12) and (3.13), we obtain by expanding (1 —
N7Y™ as (1= NHM + (tnm — Nt,)(1 — N~') V. log(1 — N7') plus higher order terms
that for everym:a =m < b,

(3.24) Zn(N7'tym) = NN Wy, — (1= (1= N7}
= Nl/z{(m - e—tm)(N—l'TNm - tm)} + &,

where, by (3.12) and (3.18),
(3.25) sup{| éxnv | : @ =m < b} — 0, in probability, as N — co.
Thus, by (2.14), (3.23) and (3.24), we obtain that as N — o,
(3.26)  sup{| Xn(m) — (m — e ™) Zn(tn)| : @ = m < b} — 0, in probability,
and hence, (2.16) follows from (3.26) and Theorem 2.1. 0

4. Some general remarks. Samuel’s (1968) conjecture (5.10) about the asymptotic
normality of the standardized form of ¢ in (1.1) follows directly as a corollary to our
Theorem 2.2. She has also made a second conjecture (5.11) on the asymptotic normality
of the maximum likelihood estimator of N for the randomly stopped sample size ¢..
Invariance principles for partial likelihood ratio statistics relating to sequential sampling
tagging were studied by Sen (1982) and in view of our (3.18) and these invariance principles,

(5.11) of Samuel (1968) also holds. We conclude this section with the remark that
technically we have limited ourselves to m < b where b < 1. Note that for m = 1, 7, is



A RENEWAL THEOREM FOR AN URN MODEL 843

equal to one, with probability 1, so that we have a degenerate case, while, for m very close
to 1, the Poisson distribution considered in Samuel (1968) works out well.
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