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CONTINUITY OF GAUSSIAN LOCAL TIMES

By Jack Cuzick

Oxford University

Continuity in the time parameter is considered for a natural version of
the local time for stationary Gaussian processes. Bounds are given for the
local and uniform modulus of continuity which are applicable in cases not
covered by Kono, notably when the incremental variance is a regularly varying
function of index two.

Introduction. In this note we consider continuity in the time variable for a particular
version of the local time of a stationary Gaussian process X(¢). Assume that X has mean
zero, is separable and jointly measurable and is defined on the probability space (2, %, P).
By a local time for X we shall mean any jointly measurable function a’(x, ¢, w) which is
non-decreasing and right continuous in ¢ for all x and all w € € and which satisfies

t

f a(x, t, w) dx = f Ixs,wepy ds
B

0

for every Borel set B and a.e. w. This definition allows a° to be any right continuous non-
decreasing function for x in a set of Lebesgue measure zero. Thus if we wish to study the
local time as a function of ¢ for any fixed x we must be more careful about specifying a
version of «°. If we let 0%(t) = E(X(¢) — X(0))?, then Geman (1976) has shown that when
[6 ds/a(s) < o, there exists a version which is a.s. continuous in ¢ for a.e. x and, as all
versions must agree for a.e. x, it follows that every version has this property. It is then
possible to produce a modified version (by taking a(x, ¢, w) = 0 for x in the exceptional set)
which is a.s. continuous for every x. However, it is not at all clear how to construct this
version from the sample paths of X. In this note we study a natural version of the local
time which is directly computed from the sample paths of X, viz. we shall denote by
a(x, t) the right continuous modification of

t

L1
(1) lim, joinf % J' I x(5)-x|<¢) ds.

0

It is well-known that the limit actually exists for a.e. x and that « is a version of the local
time when one exists. We show below (Lemma 1) that the limit exists a.s. for every fixed
(x, t). For this particular version (1) of the local time we are able to establish that for each
fixed x, a(x, t) is a continuous function of ¢ a.s. when

1
(2) f ds/o,(s) < .
0

Here 0%(s) is the conditional variance of X(¢) given the past, i.e. if %7 is the P-completion
of the o-algebra generated by X(s), —o < s < T, then 02%(¢) = Var(X(¢) | %). Although not
strictly comparable (see [4, Section 3]), under regularity conditions this condition is weaker
than the conditions under which Berman (1973) established the joint continuity of a(x, £).
In particular, by framing our assumptions in terms of ¢, instead of ¢, we avoid the explicit
assumption of local nondeterminism used by other authors. In the final section we give
some examples of processes which are not locally nondeterministic but to which our results
can be applied.
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Upper bounds for the local and uniform modulus of continuity of the local time are also
obtained. These bounds are applicable in certain cases not covered by Kono (1977), notably
in certain cases when o(¢) is a regularly varying function of index one. Our bounds for the
local modulus, as well as Kéno’s when his additional assumptions are granted, are also
shown to hold at stopping times and we use this fact in combination with a result of Taylor
and Wendel (1966) to obtain a lower bound for the Hausdorff measure function of a level
set. This extends a result of Davies (1976, 1977) who considered processes with spectral
density proportional to (a? + A%)~*/? (0 < a < %. A comprehensive review of local time
theory has been published recently by Geman and Horowitz (1980).

1. Mainstream. We begin by showing that with the exception of a set of measure
zero the limit in (1) exists for any fixed ¢.

LeEmMA 1. If X(¢, w) is a jointly measurable stationary Gaussian process, then

T

. . 1

a(x, T) = lim.yo — f Tx(s)-x=g ds
2¢ o

exists for any fixed (x, T') a.s. and
a(x, t) = limry, reqa(x, T)

exists for all t a.s. where Q is the set of all rational numbers, and T |, t means that T is
strictly decreasing to t.

PRrROOF. A result of Klein (1976) allows us to write X(s) = Xo¢(s) + Y(s), where ¢(s) is
analytic, ¢(0) > 0, X is a standard normal variable, and Y(s) is a centred (non-stationary)
Gaussian process independent of X,. Choose § > 0, rational, so that inf;<s ¢(s) > 0. Then
for any fixed (x, T') with T'< §

T

T
(3) (2e)" f I(x(s)-x=g ds = (2¢)" f T (v -0/p6)+ Xy e /057 S
0 0

Now for fixed x, it follows from the theory of differentiation (cf. Geman and Horowitz
(1980, page 13)) that

T

lim,o(2¢) ™" J Lvsy-s /a6 +x1=eptsy AS
0

exists for a.e. y when y(s) is constant. This result is easily extended to functions y which
are piecewise constant and then to bounded continuous functions by the usual approxi-
mation arguments. In particular we may take y(s) = 1/¢(s) and conclude that for fixed x,
the limit exists for a.e. y. As X, and Y(¢) are independent, it follows that for fixed x, the
limit as ¢ | 0 of (3) exists a.s. When T' > §, let n = [T/§] and split the integral over [0, T']
into the sum of integrals over [(k — 1)§, k6], k =1, - - -, n, [nd, T']. Because X is stationary,
we also have the representations X(k8 + s) = X&¢(s) + Y*(s), k = 0, ---, n, and the
preceding argument can be applied separately to each term. Thus the limit in (1) holds for
any fixed ¢ a.s., and so also for all rational ¢ a.s. As (1) is nondecreasing in 7, the final
statement of the lemma is also seen to hold.

Define %+ = Nse Z. If 7 is a stopping time relative to %+, i.e. {1 <t} € %, define
the o-algebra % as those sets B such that B N {r <t} € % . We shall need to work with
a version of the conditional local time. In keeping with the version (1) chosen for the
unconditional local time, we shall assume that when Ea(x, t)* < o for all ¢ the process

4) &(t, by w) = E({alx, t + A) — alx, 1)}"| #+)

is right continuous in ¢ and # and non-decreasing in 4 for a.e. w and that for any stopping
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time 7
E({a(x, 7+ h) — alx, 7)}* | &+)

is defined as g(7(w), A, w). The existence of these versions follows from the general theory
of processes (see e.g. Dellacherie (1972, page 101)). The following lemma extends Davies’
(1976) Lemma 14 and the proof is more straightforward.

LEMMA 2. Let v be any as. finite stopping time relative to { ¥, } and assume
E(a(x, t)*) < o for all t. Then for all x, all h > 0, and almost every w

®) E({a(x, 7+ h) — alx, 7)}"| #++)

6) =n!@r)™"? f . J' det™*Cov(X(t;), i =1, ---,n; %) dt --- dt,
cee<ty=h

0=f1<---
where det Cov(X(t,),i =1, ---, n; %) is the determinant of the conditional covariance
matrix of (X(t1), ---, X(t.)) given .

ProoF. On a set of unit measure, it follows from Lemma 1 that for all ¢

(alx, t + h) — alx, t))"

= limpy, reqlim,on ! (2¢) ™" J Tyx(r+t)—xisep=1,...,ny dt1 -+« dt,.

o<ty <tp=h
It then follows by Fatou’s lemma that g(¢, 4, w) is less than or equal to

7 limTu,TEQlimewn!&e)"" f P(|X(T +t) — x|

0<ty- - -<tp=h

=gi=1 .-, n| Fr+)dty --- dt,.
The density of (X(T' + t1), --- X(T + t,)) given %+ can be written as
(8) ((27)" det A)™'/2 exp {—Y(y — u)’A™H(y — w)} < (27)"*(det A)™"/?

wherey = (y1, «++, Yu)y 0= (U1, -+, ), . = E(X(T + t,) | #7+) and A is the conditional
covariance of (X(T + t.), ---, X(T + t,)) given Fr+. As A does not depend on T, the
lemma is seen to hold for non-random ¢ by applying (8) to (7). If 7 is a stopping time with
a countable set of values {s,}, the result can be established from the relation g(7(w), x, w)
= Y21 g(s,, %, w)I-s). For general stopping times 7 let 7,(w) = smallest number of the
form 227" which is greater than or equal to 7(w). Then the {r,} are stopping times and the
lemma follows from the assumed right continuity of g.

LEMMA 3. Assume that Y(¢) = [§ ds/a,(s) exists for all t. Then
J det COV_I/Z(X(tl)) i= 1’ LR (Y %) dtl b dtn
(9) o<ti<...<tp=sh
-1
= J [H5‘=1 0, (t— t._l)] dt, -+ dt, = (Y(h))".
O=ty<t1<---<lp=h

Proor. The first inequality follows from the fact thatforO0 <t < ... <,
(10) det Cov(X(2.), -+, X(t1); %) = [[}=1 Var(X(8) | X (%), k < J, X(s), s=< 0)
and that each factor of (10) is greater than or equal to

Var(X(t) | % _,) = 0%(t, — t—1).
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The second inequality follows from the change of variables s; = ¢, — ¢,_1 (¢, = 0) and
integration over the larger domain (si, - - -, s,) € [0, A]".

THEOREM 1. Let 7 be any as. finite stopping time relative to the o-algebras { %}
generated by X(t). If (2) holds then for any fixed x

alx, T+ h) — a(x, 1) - 1

1) V27

h)log log| ——

Y(h)log g( i h))

where Y is defined as in Lemma 3. Following Koéno (1977) if we assume

(11) limposup a.s.

(12a) o0,(t) is a nearly regularly function of index a, 0 < a < 1, i.e. there exist constants
0 < C, = C; < » and a regularly varying function r(t) of index a such that Cir(t)
=< 0,(t) = Cor(¢) for t in some positive neighbourhood of the origin,

(12b) t/o,(t) is non-decresing, and

(12¢) o0,(t) is differentiable for t > 0 and there exists an ¢ > 0 such that to’,(t) < Bo,(t)
for some B <1andallteE (0, ¢],

then

ax, T+ h) — alx, 7)

(13) limnosup 2 e Tog 1/7)

a.s.

Proor. Leth,= ¢ ((1+6)™),8>0and Y, = alx, 7 + h,) — alx, 7). By Chebychev’s
inequality, Lemma 2 and Lemma 3 we have that for any ¢ > 0 and n > max(0, —log log(1
+8))

1+¢)
o

It follows from Stirling’s formula [1, (6.1.38)] that (14) is less than

(14) P(Y,, > Y(h,)log n) = inf,, m!{(1 + €)log n}™™.

(15) v2mm exp{—m(l - ﬁ)}[m/{(l + ¢)log n}™].

If we let m be the integer part of (1 + ¢)log n then, for large n, (15) is less than a constant
times n~"*/?_ It then follows by the Borel-Cantelli lemma that for all sufficiently large n

Y, < (1 + €)(2m) " "%Y(h,)log n.

Now log n = log log (1/¥(h.)) — log log(1 + &) and ¥(h,)/Y(h.—1) = (1 + §)7' and, as
a(x, t) is non-decreasing in ¢, (11) follows by considering # in the interval [A,, A.-1]. The
final statement can be established by using Kono’s (1977) estimates starting at (9).

As Theorem 1 has been established for stopping times, we can use the argument of
Taylor and Wendel (1966) to obtain a lower bound for the exact Hausdorff measure
function for the level sets. See also Davies (1977).

COROLLARY. Under the conditions of Theorem 1, Y(t)log log 1/y(t) is a lower bound
for the Hausdorff measure function of the level set X '(X(s)) with probability one for
each fixed s. If in addition X is ergodic (iff its spectral measure has no atoms) then the
result holds for X '(u) a.s. for any fixed u. If we also assume that (12a-c) hold, then a
sharper lower bound for the Hausdorff measure function of this set is h/o,(h/log log 1/
h).

THEOREM 2. If (2) holds, then for every fixed x, a(x, t) is continuous in t a.s. Also

alx, t) — al(x, s)

limg 10SUPo0<t—s=5 Y(8)log(1/8)

Proor. It is convenient to work with a left continuous modification a*(x, t) =
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lim,;, a(x, s). Of course this is continuous exactly when « is. Define a sequence of stopping
times {r,} with respect to {%-} via the recursion

To = 0
T, = inf {1,—1 + 1, first ¢ = 7,1, such that a*(x, t) — a*(x, To-1) =€}, n=1

Since E(a*(x, t)) < t$(x/0)/o where ¢ is the standard normal density and ¢* = EX?(0),
a*(x, t) < o as. so that 7, — « a.s. It is easily checked that Theorem 1 applies to a* so
that 7, — 7,-1 > 0 a.s. and since a* is left continuous a *(x, 7.) — a*(x, T.—1) < € so that this
function can have no jumps of size greater than e. Since & was arbitrary it follows that a*
(and «) is a.s. continuous.

To bound the uniform modulus of continuity we note that, as «a is non-decreasing,

SUPo<t—s=s,0=t,s=1(a(X, t) — a(x, S)) =< supy< =1 (@l RE) — alx, (B — 2)t,))
for 8 <t, =y '(27") sothat whent,., <8 =<¢,
P[sup;—s=s,0=t,s=1(a(x, t) — a(x, 8)) > 2 log(¢:")Y(t.)]
= ([£2'] + D P(alx, 2t,) > 2 log(t: " )¥(tn))

which, using the methods of Theorem 1, can be bounded by a constant times ¢,. The proof
is now completed by an application of the Borel-Cantelli lemma.

REMARK. The method used to establish the modulus of continuity provides an
alternative proof of continuity without the use of stopping times or conditional expectation
under the stronger hypothesis that y(¢) log(1/t) > 0ast | 0.

2. Lower bounds for o%(#). Crucial to the application of Theorems 1 and 2 is the
need to find lower bounds for o, (¢) at least in some neighbourhood of the origin. This has
been taken up in Cuzick (1977). We say that X is strongly ¢-nondeterministic if there exists
a non-decreasing function ¢, with ¢(0) = 0 such that lim,inf o%(¢)/¢(¢) > 0. The main
result is that if the process X(¢) has a spectral measure whose absolutely continuous
component has a density f(A) which satisfies

- . *log A(\) dA
(16) fN) = tp(H)R()  with J; e

then X is strongly ¢-nondeterministic. For example if
17) fA) =K1 +A)™ forsome 1l<a<3, K>0

then (16) holds with ¢(¢) = ¢*7". In this case when the inequality is replaced by equality in
(17) then X is locally nondeterministic and our results for local time are essentially
contained in the work of Berman (1973) and Koéno (1977). By contrast if

fA) =1 +N3loghle+A), B=0

then it can be shown that

a’(t) = Ct* log’*“(%)(l + O(log”(%)))

for some C > 0 and the lemma given below shows that the process is not locally
nondeterministic. However (16) does hold with ¢(¢) = t? logf(1/¢t) and the lemma shows
that this lower bound for ¢2(¢) is of the correct order of magnitude. For this example,
Theorem 2 establishes that a(x, ¢) is a.s. continuous in ¢ if 8 > 2 and Theorem 1 shows that
an upper bound for the local modulus of continuity is log~#/*""(1/t) log log log (1/t). These
results are new.
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LEMMA 4. Assume that o%(t) = ¢* log*(1/t)(1 + O(log™'(1/t))), a > 0. Then o5 (¢) <
Kt? log*'(1/t) for some K < o.

Proor. Forall¢>0,
(18) o2 (t) = Var(X(t) | X(0), X(—¢)).

As 6%(t) = 2(1 — EX(0)X(t)), it follows from standard multinormal expressions that the
right hand side of (18) is equal to

1/02(2¢) . . 1,
5(—020) )(40 () — o°(2¢t)) 3 o(t)o”(2t).

The last term of this expression is seen to be negligible and, as

-] o) o )
- o<t2 1og«—l<%)) ,

REMARK. We have used the term strongly ¢-nondeterministic here to distinguish the
fact that the variance of X(¢) is conditional on all of the past (X(s), s < 0) as opposed to
the local ¢-nondeterminism of Cuzick (1978) and local nondeterminism of Berman (1973)
(when ¢ = ¢2) in which X(¢) is conditional on only a finite number of prior observations
confined to an arbitrarily small interval in the immediate past. The example given in
Cuzick (1977) shows this distinction is important. The results of Theorems 1 and 2 can be
shown to hold under the weaker assumption of strong local ¢-nondeterminism if we
redefine o2 (¢) to be the variance of X(¢) given X(s), s € [—¢, 0], for some (fixed) ¢ > 0.

the result follows.
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