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Let {Xn}nez« be a stationary Gaussian process. It is proved that for all
finite subsets / of Z and complex-valued measurable functions fi,JEJ, ofa
real variable,

| E([TiesFi(X5) | = e | i(Xo) || s

where p = Ynezi [| E(XoXn) |/E (X5)] is independent of J. A continuous
version of this inequality is proved for stationary Gaussian processes
{X:}«Egu. It is shown that for all bounded measurable subsets A of R and
complex-valued measurable functions V of a real variable,

IE(exp<f V(X dt)) | =< |l exp(V(Xo)) |5,
A

where | A | is the Lebesgue measure of A and p = [z« [| E (XoX.) | /E (X3)] dt.
Similar inequalities are proved for stationary Gaussian processes indexed by
periodic quotient groups of Z¢ and R“.

1. Introduction and theorems. If Fy, F,, - .., F, are independent random variables,
then

| E(qT= Fo) | < [T || F s
for general random variables one can do no better than Hélder’s inequality:
(*) | E(]=1 F:) | = 1T [| il

where p = n. In particular, p cannot be picked independently of the number n of random
variables unless p = . (Here || F||, = (E(| F|"))"”” for 0 < p < o and || F||.. denotes the
essential supremum of F).

But we can do better in the case where each F; = f;(X;), a function of a Gaussian random
variable X; (all Gaussian random variables will be assumed to have mean zero), and the
random variables X; form a stationary Gaussian process. We will prove inequalities like
(+), where p will be independent of the number n of random variables; p will be related to
the degree of independence (or decoupling) between the Gaussian random variables.

The germinal result was obtained by Nelson in the context of the development of a
mathematically rigorous Quantum Field Theory. It is known as Nelson’s best possible
hypercontractive estimate (Nelson [6, 7]; see also Gross [3], Beckner [1], and Brascamp
and Lieb [2] for other proofs), and can be reformulated as follows:

Let X, Y be a Gaussian system of identically distributed random variables. Then for
any measurable functions f and g of a real variable,

|E(f(X)g(Y) = fX) .1 &(Y) lq,

where (p — 1)(¢g — 1) = [E(XY)/E(X»1. In particular, we can take p=q=1+
| E(XY)|/E(X?. O
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Nelson’s result is stated for the Ornstein-Uhlenbeck process, i.e., the Gaussian process
{X,}ier with covariance E(X;X,) = (2m)'e™!™*l, (m > 0), where it says that
|E(f(X)g (X)) | = | f(X) ||l &(Xo) |l¢ if (p — 1)(g — 1) = e ?*!*"*|. This result was
extended by Guerra, Rosen, and Simon [4; Lemma III.11], who showed that for the
Ornstein-Uhlenbeck process,

| E(I%1 £ (X)) | = 111 || i (Xo) s

for all n € N, where a > 0 and p = (1 — e™)"}(1 + e ™). They derived this inequality
from Nelson’s best possible hypercontractive estimate and the Markov property (which
holds for this particular Gaussian process). From this inequality it follows that

T
’ E(exp(f V(X.) dt)) ’ < [l exp(V (X)) |I7,
0

where p = 2/m and V is a measurable function of a real variable such that V(Xy) is
integrable (Klein and Landau [5; Theorem 6.2 (ii)]). Those inequalities are actually proved
for Euclidean free fields, which are generalized Gaussian processes of which the Ornstein-
Uhlenbeck process is a special case (e.g., Simon [8]).

In this article we prove similar inequalities for arbitrary stationary Gaussian processes
indexed by Z? and R, and by their periodic quotient groups. Let us recall that a stochastic
process indexed by an abelian group G is said to be stationary if the processes {X,}zecand
{X,+1}gec are equivalent for all 2 € G.

Let us start with Z¢. We will write n =(ny, ---, ns) € 2% 0= (0, - -+, 0).

THEOREM 1. Let {X,}nez¢ be a stationary Gaussian process, and let { fo}nez be a
family of complex-valued measurable functions of a real variable. Then, for all finite
subsets J of Z°,

| E(Ts5es X)) | = Ties | iXo) I,
where p = Ynezi[| E(XoXn)/E(X3)]. O

Notice that if the random variables X,, are independent, then p = 1. If they are totally
dependent (i.e., X, = Xp foralln € Z ), then p = . If X and Y are identically distributed
random variables which are jointly Gaussian, then | E(XY) | is a measure of the decoupling
(or degree of independence) between X and Y. Thus p is a measure of the total decoupling
between the X,,’s.

For the Ornstein-Uhlenbeck process we recover Guerra, Rosen, and Simon’s result.

We will now state a continuous version of Theorem 1. We wil write t = (¢, - - -, t4) €
R |t|=@i+t3+ .- +t3)Y% dt =dti dty - - - dty. If A is a bounded measurable set in
R, we denote its Lebesgue measure by | A | If r(t) is a real-valued, continuous function on
R?, we will say that r(t) is Riemann approximable if lim, o Ynezr a?| r(an) | = [ | 7(t) |
dt. For example, if | r(t) | = C(1 + | t|)~**?, for some C, ¢ > 0, then r(t) is Riemann
approximable.

THEOREM 2. Let {Xi}cer be a stationary Gaussian process, continuous in quadratic
mean, whose covariance function E (XyX;) is Riemann approximable. Let V be a complex-
valued measurable function of a real variable such that V (X,) is integrable. Then, for
all bounded measurable subsets A of R?,

’ E(exp(f V(Xy) dt)) ’ = |lexp(V(Xo)) I,
A

where p = [r[| E(XoXo) |/E(X3)] dt. O
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Notice that since V(X,) is integrable, and the Gaussian process is stationary and
continuous in quadratic mean, V(X;) is a continuous function from R? to L' of the
underlying probability space of the stochastic process. Thus [, V(X;) dt makes sense as a
Lebesgue integral with values in L'. Notice also that 0 < p < w, but in general we do not
have p = 1. For example, in the case of the Ornstein-Uhlenbeck process we recover p =
2/m. Here | F||, = [E(| F|?)]"/? for any 0 < p < oo; for p = o we have the standard
definition.

Theorem 1 will be proven from a similar result for cyclic Gaussian processes which is
of interest on its own. Given positive integers Ny, « - -, Ny, let N= (N}, - - -, Ny), and let Lx
be the lattice generated by (N}, 0,0, ---,0), (0, N5, 0, --+,0), ---, (0,0, - -+, 0, Ny), i.e., the
subgroup of Z¢ generated by these vectors. Let ¥ = Yy be the quotient group Z%/Ly. We
will call }, the cyclic quotient group of Z° with period N € N°. We will denote a general
element of ¥ by o; the identity element of ¥ will be denoted by 0. A stochastic process
{X.}oexy will be called a cyclic stochastic process.

THEOREM 3. Let {X,},ex be a cyclic stationary Gaussian process, and let {f,}.cs be
a family of complex-valued measurable functions of a real variable. Then

| E(HUEZ f;(Xa)) | = HGEE " ﬁl(XO) "P’
where p = Yies [| E (XoX,) |/E(X3)].0

This theorem also has a continuous version. Given positive numbers by, -- -, by, let b
= (by, - -+, ba), and let T}, be the subgroup of R generated by (1,0, - - -, 0), (0, b, 0, -, 0),
<e+, (0,0, ---, by). Let T = T}, be the quotient group R%/Ty. Then T is a d-dimensional
torus, a periodic quotient group of R with period b. We will denote a general element of
T by 7; the identity element will be denoted by 0. A stochastic process {X;}.er will be
called a periodic stochastic process with period b. It may be viewed as a stochastic process
{X:}tere such that Xi,a = X, forallt € R°and a € Th,. WerefertoI'= {t e R4 0<t; <
bifori=1, ..., d} as the fundamental index set of the periodic process {X¢}ter«.

THEOREM 4. Let {X.}ter be a periodic stationary Gaussian process, continuous in

quadratic mean. Let V be a complex-valued measurable function of a real variable such
that V (Xo) is integrable. Then, for all measurable subsets A of the fundamental index T,

({0 )

where p = [r [| E(XoX) | /E(X3)] dt. O

= llexp(V(Xo)) [I;*',

2. Proofs of theorems. We will first prove Theorem 3. The main input is a result of
Brascamp and Lieb [2]. Theorem 1 will then follow from Theorem 3 by approximating
stationary Gaussian processes by cyclic Gaussian processes with arbitrarily large periods.
Theorems 2 and 4 will follow from Theorems 1 and 3, respectively, by a discrete approxi-
mation.

Proor or THEOREM 3. Let C be the covariance matrix for the cyclic stationary
Gaussian process {X,}.cy; i.e., Cs,.0, = E(X,,X,,). Here we label the rows and columns of C
by the elements of Y. Then C is a positive semidefinite matrix. We will assume that C is
actually positive definite and hence invertible. This can be done without loss of generality,
for if I is the identity matrix and C, = C + &¢I, ¢ > 0, then C. is a positive definite matrix
which is the covariance matrix of a cyclic stationary Gaussian process. If Theorem 3 holds
for processes with positive definite covariance functions, then letting ¢ — 0 we obtain the
result for a process with the (possibly) positive semidefinite covariance matrix C.

Let x = (x,).ey be a vector in the vector space RZ, and let dx = [Ioex dx,. Then the
joint probability density of {X,}.ey is

du(x) = (27)""*(det C) /% exp (—(1/2)(x,C " 'x)) dx.
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Here (X, y) = Yoex X, is the usual inner product in RZ, and n is the cardinality of Y.
To prove Theorem 3, it suffices to show that

f [Tlees fu(xn)Jexp(=(1/2)(x,C~'x)) 2n) ""*(det €)""* dx
(1) .
= HGEX ( f fa(x)p exp (—(1/2c)X2)(2,”)—1/zc—1/2 dx)

for all families { f,}.ey of non-negative measurable functions of a real variable. Here ¢ =
C,,=E(X?)=E(X}) foralle €Y.
This can be rewritten as

J [Toes (fs(x.)exp(—(1/2pc)x?))]exp(—(1/2)(x,Bx)) dx
(2) 1/p
= @m)"* P2 (det C)'? [Loes [ J (f.(x)exp(—(1/2pc)x?))” dx] ,

where B = C™' — (1/pc)1.
If we let g,(x) = f,(x)e” /%% then (2) can be rewritten as

(3) J’ [Tloey 8o(x.)]lexp(—(1/2)(x,Bx)) dx

1/p
< (2m)"21=VPe=%(det €)' [[oey < f g.(x)” dx) )

By a result of Brascamp and Lieb [2; Theorem 6], we have

1/p
J [[Toes &-(x.)lexp(—(1/2)(x,Bx)) dx < Ep [[oey ( J 8o (x)? dx) s

where B is a positive definite matrix and Ej is the best possible constant for the case when
all the g,’s are Gaussian, i.e.,

J' [[Toex exp(—(1/2)b,x2) Jexp(—1/2(x, Bx)) dx

4) Ep = sup(s,>0,ey)
[Toes f (exp(—(p/2)b,x*) dx)""

Let

J [[Toey exp(—(1/2)b,x2)Jexp(—(1/2) (x,Bx)) dx

q)(b)l/Z —

’

1/p
[Toes <J exp(—(p/2)b,x?) dx)
where b = (b,).cy. Then a calculation gives
j exp(—(1/2)(x,(B+bI)x)) dx

HGEE (2'”/pba) &S

where b/ is the diagonal matrix whose values on the diagonal are the corresponding values
of b.

For a positive definite matrix B, we can write B = U(AI)U’, where A = (A,).ey With all
A, > 0, and U is some real orthogonal matrix. We set B(d) = U(dI)U’ for all d = (ds)oey
with all d, > 0. In particular B = B(A).

o(b)* = = (2m)"?""Pp"/[det(B + bI)] ™" [[oey b5/,
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Let us now define
Y(b, d) = 2m)™""Pp"P[det(B(d) + bI)]™ [lees 85%.

As shown by Brascamp and Lieb [2; Equation (2.13)], In ¢ is a concave function of {In b,,
Ind,; 0 €Y}. Let y,=In b,, z, = In d,, (y, 2z) = In Y(b, d). Then ¢ is a concave function
of (y, z). For 0 € ), let o act on y by permuting its coordinates: the o’ coordinate of oy is
the o + ¢’ coordinate of y. As g is concave,

1 1
(5) ; ZaEE ‘P(Uy, Z) = q)(; ZGEZ ay, Z) .

But (b, A) = ®(b). Since the Gaussian process is stationary with respect to the group ¥,
the covariance matrix C commutes with the linear operator y — oy for all 0 € ¥ and hence
so does the matrix B. Thus ®(sb) = ®(b) for all 6 € ¥ Thus for 5, =1n A,,

ploy, n) = oy, n).
Thus (5) gives
(6) oy, n) < oy, n),

where § = (1/n) Yoey oy has all its coordinates equal to y = (1/n) Yoy, ¥.. Let b= €7, and
let b be the vector all of whose coordinates equal . Then (6) gives

@(b) < @(b).

We can thus conclude that in expression (4) for Ep we need only consider vectors b all of
whose coordinates are equal, say, to . Thus

) Ep = suppso(2m)™21-VPpn/2[det(B + bI)]"V/2b"/>,

if B is positive definite. Since B = C™' — (1/pc)I, this is equivalent to C < pcl or to the
following condition on the operator norm || C|| of C:

®) I Cll <pe.
If 1 < p satisfies (8), it follows now from (7) that to prove (3) we must show that
sups>o( pbe)?[det(C~' — (1/pc)I + bI)det C] ' <1,

ie.,
9) supsso( pbe)P[det(I + (b — 1/pc)C)] ' = 1.
Let A1, Az, ---, A, be the eigenvalues of C; since C is positive definite, all A, > 0. From
(8) it follows that A, < pe. Notice that (9) is equivalent to
(10) (n/P)In(pbe) — YieiIn(1 + (b — 1/pe)A;) =0

for all b > 0. Let us fix b > 0, and consider
E(Ai, - -+, An) = (n/p)In(pbc) — Yy In(1 + (b — 1/pc)A,)

for 0 = A\, < pc, }\1 +Az+ -+ + A, =tr C = nc. By compactness, g attains its maximum
at some (A, -+, An ). Suppose there are two Ns, say A, < )\,, not equal to either 0 or pc.
Then let us replace X, by Ai — ¢ and )\ by }\ + ¢. For sufficiently small ¢ > 0, all conditions
are still satisfied but the function g mcreases Thus at most one of the A/’s is neither 0 nor

pc. Thus we find (reordering if necessary) Ai=.o.= )\k = pc, )\k+1 = gpc for some 0 < ¢
<L Ape=--=A,=0. Moreover, (k + ¢)p = n since Ay + - -+ + A, = nc. Thus to prove
(10) we must show that

(11) (& + &)In(pbc) — k In(pbe) — In(1 — e + epbc) < 0.

Let us consider the left-hand side of (11) as a function of ¢, 0 < ¢ < 1. This function is
convex, and equals 0 for ¢ = 0 or 1. Thus it is always < 0 for 0 < ¢ < 1 so (11) follows.
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To finish the proof of the theorem, we will now investigate condition (8). Let | C| be the
matrix with entries | C|,,.,, = | Cs,0,| for 61, 62 € ¥. Then | C| is a self-adjoint matrix with
nonnegative entries and || C|| < ||| C|||. Since C is invariant under the action of ¥, i.e., Cy o,
= Cy,+0,0,+c for all o1, 03, 0 € Y, it follows that & = Y,e5 | C,.» | is independent of o. Thus, if
Q is the column vector all of whose coordinates are 1, then | C|Q2 = af2. Since | C| is self-
adjoint and € has positive coordinates, it follows from the Perron-Frobenius Theorem that
el = e

Thus we have proved the inequality of Theorem 3 for p > a/c = Yes [| Cos|/Co0). By
taking the limit as p | a/c we obtain the desired result. 0O

ProOF OF THEOREM 1. Let {Xu}nezv be a stationary Gaussian process. Then its
covariance function r(n) = E (XoX,) is a function of positive type on R?¢. Without loss of
generality we can assume that Y,ez¢ |7(n)| < . To use Theorem 3 we will need the
following.

LEMMA. Let r(n) be a function of positive type on Z ? such that Ynez« | r(n)| < . Then
for all positive integers N,

ry(m) = Yxez? r(n + NK)

is a well defined function of positive type on Z°, periodic in each variable n, i=1,
d, with period N, and such that limy_..ry(n) = r(n) for alln € 7. 0O

ProoF. The only nontrivial part is that rn(n) is a function of positive type on Z¢, i.e.,
that given ¢y, ---,cn € C,ny, - -, n,, € Z% we have

(12) Yo Geiry(m; —ny) = 0.

So let us fix M > 0, and for each pair (i, s), where i =1, --., m and s = (81, + -+, Sq) With
$,=0,1,..-,M—1for k=1, -.., d, we define the complex number a5 = ¢, and the
vector in Z¢ ns = n; + Ns.

Since r(n) is a function of positive type on Z¢, we have

Y
M~ Ya.q agores —ng, o) =0,

where the summation is over all pairs (i, s) and (J, t) as above. Explicitly calculating the
above sum, we get

(13) Yo=1 Gy Yot sum—r-n [T=1 [(M — | s¢|)/M1r(n, — n, + Ns).

Let Ay (s) = HLI [(M—|s:|)/M]fors= (s, -+, 84) withs,=—(M—-1), ..., M —1
fork=1, ..., d, and hu(s) = 0 otherwise for s € Z%. Then 0 < Ap(s) < 1, and hu(s) - 1
for all s € Z? as M — . We can rewrite (13) as

Yri=1 C.€; Ysezd hayr(s)r(n; — n, + Ns) = 0.

Letting M — o and applying the Lebesgue dominated convergence theorem in ¢, we get
that

Yij=1Ci¢; Ysezd r(n; — m; + Ns) = 0,
ie., Yr-1 Gory(n, — n;) =0,
which is (12). O

To prove Theorem 1, let N > 0 be chosen greater than any coordinate of any j € J,
where J is a fixed finite subset of Z¢. Let r,(n) be defined as in the Lemma, and let
{XN:n}nezs be the stationary Gaussian process with covariance function E(XniXn;) =
rn(j —i). Since rn(n) is periodic in each variable with perlod N, rv(n + k) = ry(n) for any
n € Z¢ and any k € Ly, the lattice generated by (N, 0, 0, - - -, 0), O, N,O, ---,0), ---,
0, 0, » 0, N). Let Yn be the quotient group Z%/Ly. We can consider {XN,,.},,EZA as a
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cyclic stationary Gaussian process indexed by Y. We now apply Theorem 3 to get
| E ([Iies 5(Xn)| = [lies | (Xn0) |l oy

where py = Y [rn(j)/rn(0)], the summation being over all j = (jy, - -, ja) with j, =0, 1, 2,
oo, N—1fork=12,.-.,d.
Passing to the limit as N — o, we obtain the conclusion of Theorem 1. 0

Since the proof of Theorem 4 from Theorem 3 is similar to the proof of Theorem 2 from
Theorem 1, we will only present the proof of Theorem 2.

ProoF oF THEOREM 2. Without loss of generality we assume that [g« | E(XoX¢)| dt
< o, We can also assume that V is real-valued.

Let us first consider the case when A is a bounded open set in R? For N a positive
integer, let Ay be the set of k € Z¢ such that the closed cube of side N~ centered at N "'k
with edges parallel to the coordinate axes is contained in A. Since A is bounded, Ay is a
finite set; let ay be its cardinality. Then we have

J’ V(Xt) dt = IMN_M ZkeAN N_dV(XN_‘k)’
A

the limit being in L' of the underlying probability space. By Theorem 1,

E (exp[Tkean NV (Xv-1)]) = E ([Teay exp(N "V (Xn-1))
(14) ‘
= TTkea. | exp(N~V (X)) |, = [l exp(V(Xo)) |

where p, = Yxezi [| E(XoXn-w)|/E (X3)].
As N — o, N%y — |A|. As E(X,X,) is Riemann approximable, N %N — p =
[re[| E(XoX:)|/E(X3)] dt as N — . By Fatou’s Lemma and (14),

E<exp(f V(X.) dt)) = lim inf,...E (exp[ Ykeay N7V (Xn-1)]) < || exp(V(Xo))||5*'.
A

As an arbitrary bounded measurable set is, up to a set of measure zero, the intersection
of a decreasing sequence of bounded open sets, the general result follows. [
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