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ALMOST SURE INVARIANCE PRINCIPLES FOR WEAKLY
DEPENDENT VECTOR-VALUED RANDOM VARIABLES

By HEROLD DEHLING' AND WALTER PHILIPP?
University of Illinois, Urbana

We obtain the almost sure approximation of the partial sums of random
variables with values in a separable Hilbert space and satisfying a strong
mixing condition by a suitable Brownian motion. This is achieved by a
modification of the proof of a similar result by Kuelbs and Philipp (1980) on
¢-mixing Banach space valued random variables. As by-products we get
almost sure invariance principles for sums of absolutely regular sequences of
random variables with values in a Banach space and necessary and sufficient
conditions for the almost sure invariance principle for sums of independent,
identically distributed random variables.

1. Introduction. Let {x,, » =1} be a sequence of random variables with values in a
real separable Banach space. Let .# % denote the o-field generated by the random variables
Xa, Xat1, -+, Xp. The sequence {x,, » = 1} is said to satisfy a strong mixing condition if
there exists a sequence of real numbers p(n) | 0 such that

(1.1) | P(A N B) — P(A)P(B) | = p(n)

for all A € #% and B € M., and all k, n = 1. A sequence {x,, » = 1} is called absolutely
regular if for some B(n) | 0

(1.2) E{suppe.«x, |P(B|A?1)— P(B)|} = B(n)

for all £, n = 1. (The supremum in (1.2) is measurable since in a Polish space it is sufficient
to extend the supremum only over countably many sets B. This observation is also useful
for the following two remarks.) Finally, the sequence {x,, » = 1} is called ¢-mixing if for
some ¢(n) | 0

(1.3) | P(A N B) — P(A)P(B) | = ¢(n)P(A)
forall A € .#%and B € 43, and k, n = 1. Since (1.3) is equivalent with
(1.3) | P(B| M%) — P(B) | < ¢(n)

with probability 1 for all B € /5., and all k, n = 1 we note that every ¢-mixing sequence
is absolutely regular. We also note that (1.1) is equivalent with

(L1) E|P(B|.4}) — P(B)| < p'(n)

for all B € #%.» and all k, n = 1; here p(n) < p’(n) < 2p(n). In other words a strongly
mixing sequence is ¢-mixing in L'. Consequently every absolutely regular sequence is
strongly mixing.

On the other hand, by comparing the spectral densities of weakly dependent stationary
Gaussian sequences it is clear that there are examples of strongly mixing sequences which
are not absolutely regular, and of absolutely regular sequences which are not ¢-mixing.
(See Ibragimov and Rozanov (1978), Chapters 4 and 5.)
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690 HEROLD DEHLING AND WALTER PHILIPP

In a recent paper [7] Kuelbs and Philipp established several almost sure invariance
principles for sums of ¢-mixing random variables with values in a separable Banach space.
However, in the strongly mixing case only results for R“valued random variables were
obtained. In order to facilitate subsequent “research” the argument in [7] was set up in
such a way that once the proper generalization was obtained for Theorem 2 of [1] Berkes
and Philipp to strongly mixing sequences of random variables with values in a Polish
space, the generalization of most of the results of [7] would become rather trivial.

Unfortunately, this hoped-for generalization of Theorem 2 in [1] cannot hold. As a
matter of fact, H. Dehling (1982) recently constructed examples of strongly mixing
sequences of #2-valued random variables X, which cannot be approximated by independent
random variables Y} in any useful way. By this we mean convergence of X, — Y, to zero
in probability. Consequently, in order to prove almost sure invariance principles for sums
of strongly mixing random variables with values in an infinite-dimensional space, some
new ideas will be needed.

As indicated in the abstract, the purpose of this paper is threefold. Our foremost goal
is to prove the following result.

THEOREM 1. Let {x,, v = 1} be a strictly stationary sequence of random variables
with values in a real separable Hilbert space H, centered at expectations and with finite
(2 + 8)th moments where 0 < 8 < 1. Suppose that the sequence satisfies a strong mixing
condition (1.1) with a mixing rate

(1.4) p(n) < n-(++2/5)

for some 0 < & < 1. Then the two series defining the covariance function T of the sequence
{x,, v =1}, defined as

(Tx, y) = E{(x, 1 (¥, %1)} + Yom2 E{(x, 2x1)(¥, %)} + V=2 E{(x, %,)(¥, 1)}

converge absolutely for all x, y € H. Moreover, without changing its distribution we can
redefine the sequence {x,, v = 1} on a new probability space on which there exists a
Brownian motion {X(t), t = 0} with covariance structure given by T such that with
probability 1

I Zome %, — X(2) || = o((¢ log log )'/*).

NoTtE. Proposition 4.2 in [7] implies the central limit theorem under the hypotheses
of Theorem 1.

The proofs of most of the results in [7] were based on Theorem 6 of [7]. However, for
the proof of Theorem 1, instead of Theorem 6 of [7], we have to use the following stronger
variant which, at the same time, is also much simpler. Let B be a separable Banach space.

THEOREM 2. Let {x,, v= 1} be a weak sense stationary sequence of B-valued random
variables centered at expectations and with (2 + §)th moments with 0 < § < 1 uniformly
bounded by 1. Suppose that {x,, v = 1} satisfies a strong mixing condition (1.1) with
mixing rate given by (1.4). Then the series defining the covariance function

T(f, 8 = E{f(x1)g(x1)} + =2 E{f(x1)8(x,)} + X=eE{f(x,)8(x1)}, f,8E B*
converge absolutely. Moreover, suppose that
(1.5) E|Y % x| <o’n

for some 6 and alla = 0,n = 1. Let S, = ¥,<x x,. Then the following two conditions are
equivalent.

(i) There exists a mean zero Gaussian measure u with covariance function T and
{(n log log n)™/%S,,, n = 1} is with probability 1 relatively compact.
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(i) Without changing its distribution, we can redefine the sequence {x,, v =1} on a new
probability space on which there exists a Brownian motion {X(t), t = 0} with covariance
function T such that with probability 1

(1.6) (| Soee x, — X () || = o((¢ log log £)'/?).

Theorem 2 is proved in Section 4 by a modification of the proof of Theorem 6 in [7].
Using the same kind of ideas, we modify in Section 6 the proof of Corollary 3 in [9] to get
necessary and sufficient conditions for the almost sure invariance principles for indepen-
dent identically distributed random variables.

THEOREM 3. Let {x,, v =1} be a sequence of independent identically distributed B-
valued random variables centered at expectations. Then the following two statements
are equivalent.

() x: is pregaussian and {(n log log n)""/?S,, n = 1} is with probability 1 relatively
compact.

(i) Without changing its distribution we can redefine {x,, v = 1} on a new probability
space on which there exists a Brownian motion (which necessarily has the same
covariance function as x,) such that with probability 1, relation (1.6) holds.

In view of Theorem 1.1 of Pisier (1975), the following corollary is immediate.

COROLLARY. Let {x,, » = 1} be a sequence of independent, identically distributed
random variables. Then {x,, v = 1} satisfies an almost sure invariance principle (1.6) if
and only if it satisfies the compact law of the iterated logarithm and x: is pregaussian.

The interesting feature in Theorem 3 and its corollary is that explicitly no assumptions
on the finiteness of moments of order higher than one have to be made. On the
other hand, the compact law of the iterated logarithm, the relative compactness of
{(n log log n)/2S,, n = 1} and the condition that x, be pregaussian all implicitly contain
assumptions on these moments.

Our third goal, finally, is to generalize most of the results of [7] to absolutely regular
equences of random variables. We list these results as well as Theorem 5 below, on which
their proof rests, only for the sake of completeness and easy reference. The proofs for
which no new ideas are needed will be given in Sections 8 and 7 respectively.

THEOREM 4. Let {x,, v=1} be a weak sense stationary sequence of B-valued random
variables with uniformly bounded (2 + 8)th moments. We assume 0 < 8 < %. Suppose
that the sequence satisfies the absolute regularity condition (1.2) with rate B(n) bounded

by
B(n) < n—(1+e)(1+2/5)

for some ¢ > 0. Then Theorems 1 and 2 and Corollaries 1 and 2 of [7] all remain valid.

Note that for small § the rate of decay for B(n) can now be even somewhat slower than
in [7].

THEOREM 5. Let {By, ms, k = 1} be a sequence of Polish spaces. Let % denote the
Borel field of B, let {Xy, k = 1} be a sequence of random variables with values in B, and
let % be a non-decreasing sequence of o-fields such that X, is Fi-measurable. Suppose
that for some sequence { B, k = 1} of non-negative numbers

(1.7) E supac 4| P(Xr € A| %ur) — P(X, E A) | = B
for all k = 1. Denote by F, the distribution of Xi and let {Gr, k = 1} be a sequence of
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distributions on B, such that
(1.8) Fr(A) < Gx(A™) + 6 forall AE %.

Here p;, and o, are non-negative numbers and A° = Usea { ¥ : mr(x, y) < &}. Then without
changing its distribution we can redefine the sequence {Xy, k = 1} on a richer probability
space on which there exists a sequence {Y, k = 1} of independent random variables Y}
with distribution Gy, such that for allk =1

(1.9 P{mu(Xn, Y2) = 2(BY? + or)} = 2(B¥* + o).

In general, if (1.7) is replaced by

(1.7%) EYP{..}?<f, 1l=p=ow

then (1.9) is to be replaced by

(1.9%) P{mu(Xs, Yi) = 282 7™ + p,)} = 2(BP* + a1).

REMARK. For p = « we obtain Theorem 3 in [9] as a special case.

Finally, a comment on the proofs of Theorems 1 and 4, which might be useful in
connection with proofs of almost sure invariance principles in similar circumstances. As is
evident from Sections 5 and 8, in view of Theorem 2 the proofs of Theorems 1 and 4 can
in effect be reduced to the proof of a bounded law of the iterated logarithm. For sequences
of Hilbert-space valued random variables satisfying the hypotheses of Theorem 1, such a
bounded law of the iterated logarithm will be established in Section 3.

2. Lemmas on mixing random variables.

LEMMA 2.1. Let {£,, v = 1) be a sequence of random variables with values in a
separable Banach space satisfying a strong mixing condition (1.1) with mixing rate (1.4).
Suppose that their (2 + 8)th moments are uniformly bounded by M, where 0 <§ =1 and
that (1.5) holds. Then for alla =0 and all 0 = a < &§/8

E " z;:g_‘_l g” " 2+a < nl+a/2(02+a + M)

where the constant implied by < only depends on ¢, § and the constant implied by < in
(14).

The proof as given in Sotres and Malay Ghosh (1977) still works for B-valued random
variables. The bound for a can be obtained by a careful analysis of their proof and of
Serfling’s (1968) paper on which their proof rests.

LEMMA 2.2. Let F and % be two o-fields. Define

o( % 9) =sup|P(A N B) — P(A)P(B) |

the supremum being extended over all A € ¥ and B € %. Let ¢ and n be random
variables with values in a separable Hilbert space H measurable & and ¥ respectively.
If ¢ and v dare essentially bounded then

2.1 |E(¢,m) — (E& En) | =10p(F 9) [ €]l 7]l

Here || - | . denotes the essential supremum with respect to H. Moreover, let r, s, t > 1
with r™' + s7' + ¢! = 1. If £ and 7 have finite rth and sth moments respectively then

(2.2) |E(, n) — (B, En) | < 150(Z 9) | &Ml m s
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Proor. For real-valued random variables, (2.1) with 10 replaced by 4 is due to
Volkonskii and Rozanov (1959), (2.2) is due to Davydov (1970). The proof as given in Deo
(1973) shows that (2.1) implies (2.2). It still works for H-valued random variables. Hence
it remains to show (2.1).

The proof of (2.1) combines the fact that (2.1) holds for real-valued random variables
and the following theorem which is due to Grothendieck. For its proof see Lindenstrauss,
Tzafriri (1977), page 68.

THEOREM. Let (ay, 1 < i, j < n) be a matrix of real numbers such that

(2.3) | Yisiojsn aiSity| = 1

for all real numbers s;, t; with |s;| <1, |t;| =1 (1 < i, j < n). Then for all vectors x, y;
(1 =<1i,j=<n)in a Hilbert space,

(2.4) | Zisi jmn (i, 37) | < Ko maxisisn || i || - maxisy=a || ;|-
Here K; < %(exp(%7n) — exp(—Y%w)) < 2.5.
For the proof of (2.1) we assume without loss of generality that £ = Y.<, x;14, and =

Ys=n Y18, where {A;, 1 =i =<n} and {B;, 1 = j = n} are partitions of the sample space and
where A, € Fand B,€ 4 (1<, j=<n). Putp=p(% ¥) and

(2.5) a; = 4—1p (P(A; N B)) — P(A))P(B))).

To verify (2.3) let s;, t; be real numbers with |s,| = 1 and | 4| = 1 and define the random
variables X= Zisn S; lA; and Y = stn tj 13,' Then

1
|Y aisiti| = % |Y sit;(P(A; N B;) — P(A,)P(B)))| = ™ |EXY — EXEY|=1
0
since, as was observed above, (2.1) with 10 replaced by 4 holds for real-valued random
variables. Hence by (2.4) and (2.5)
|E, 1) — (E¢, En)| = | Yi=ij=n (%, %)(P(A.N B;) — P(A;)P(B;))|
= 4pKc max| x; || - max | ;|| <10p || ]|« | n]l~. O
LEmMA 2.3. Let {x,, v =1} be a sequence of H-valued random variables, centered at
expectations and with (2 + §)th moments uniformly bounded by M (say) and where 0 <

8§ = 1. Suppose that {x,, v = 1} satisfies a strong mixing condition with mixing rate (1.4).
The (1.5) holds with

(2.6) o’ < T\ MY E),

Here the constant implied by << only depends on the constant implied by < in (1.4).
For a proof see e.g. the proof of Lemma 2.3 in [7].

3. A bounded law of the iterated logarithm. In this section we prove the following
theorem. Without loss of generality we assume that in (2.6), o = 1.

THEOREM 6. Let {x,, v = 1} be a sequence of H-valued random variables, centered
at expectations, with (2 + §)th moments uniformly bounded where 0 < § < 1. Suppose
that {x,, v = 1} satisfy a strong mixing condition with rate (1.4). Then with probability
1

lim supy_.(N log log N)™2 || T.en %, || < 200(e8) /2.

For the proof of Theorem 6 we define inductively blocks H;, I,, j = 1, 2, ... of
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consecutive integers leaving no gaps between the blocks. Each block H; and I, consists of
[j#]integers, j =1, 2, - .. where

3.1) B= 1—?

The order is Hi, I, Hs, I,, - - .. We write

(3.2) tn = Y j=n card(H; U I,).
Then

(3.3) nf <« t, < nftl,

LEmMA 3.1. There is a constant A > 0 such that as n— ®
maxy <v=tp || Yocterr & | < 877, as.
In view of Lemmas 2.1 and 2.3, we observe that the proof of Lemma 3.1 is the same as
the proof of Proposition 2.2 in [7]. Note that the discussion preceding (2.25) in [7] becomes

now redundant.
Next we define random variables y, and z; by

(3.4) Ye=Dwer, X and 2, = Y,en X, k=1,2,..-.
Because of Lemma 3.1 it is enough to show that with probability 1
(3.5) lim SupP,w(t, log log £.) ™2 || 3 j=n 35 || < 100(e8) /2.
We truncate y; by setting
(3.6) Y=y {5l =%
and observe that by Lemma 2.3 and Chebyschev’s inequality we have
P(Y;# ) = Pl %1 > %) < |
Hence by the Borel Cantelli Lemma we have Y; = y; with probability 1 for all sufficiently
large j. Consequently, and in view of (3.5) for the proof of Theorem 6, it is enough to prove
the following proposition.
PROPOSITION 1. As n — ® we have with probability 1
lim sup,_.«(¢, log log .) ™% || Y= Y; || < 100(e8) %2

In the proof of Proposition 1, we make heavy use of ideas of Goodman, Kuelbs and Zinn
(1981). Writing

3.7 Wo=Y< Y;
we obtain
(3.8) | Wall? = Zjzn | Y I + 2 3y2n (Y5, Wiaa).

In Lemma 3.2 we prove that the first sum is small. The estimate of the second sum depends
on the observation that it is close to a real-valued martingale to which, when properly
truncated, the standard exponential bounds apply. We now carry out this program in
detail.

LEMMA 3.2. As n — « we have with probability 1

= || Y ||? < nf*.
Y=l Y5l
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Proor. Define U, = | Y;|* — E | Y;||%. Since by (3.6) and Lemma 2.3
(3.9) E|Y;|*<j*
we get
L= E| Y;|* < nf
Hence it suffices to show that with probability 1
(3.10) Y jen Uy < nf*,

We first apply Theorem 1 of Berkes and Philipp (1979) to the sequence {j #Uj;, j =1} and
distributions G, = £(j~* U;), j = 1 and the o-fields % = .#%. By (3.17) below we have for
all u

E|E{exp(iul;) | #-1} — E{exp(iulU;)} | = 20a(j*).
Using Lemma 2.1 and Markov’s inequality we get
Glu:|u| =T} < T;'"2,

We choose T; = 10° \/ j% Then by Theorem 1 in [1] we can find a sequence of
independent random variables V; having the same distribution as j #Uj such that

P{| j U - Vi|zaj} =

where

o< T, log T; + a2 Ty + T2 < j~2.
Hence
(3.11) Y1l PU— V| <, as.
Since E | V|12 = j-1+/DE | U,|"**/* <« 1 by Lemma 2.1, we obtain
(3.12) S o SR | V| < oo,

Hence by a standard stability result (see e.g. Corollary 2.8.5 of Stout (1974), page 67) we
get

Y17 'Vi< oo, as.
Hence by (3.11) and Kronecker’s lemma
Y, Ui =0(nf*"), as.

This yields (3.10). O

We now put
(3.13) Z; = (Y;, W) L{|(Y;, Wm) | = 7%}
and

(3.14)
M, = ¥=n(Z; — E(Zj| %-1))

where as before %5 = .#% Then {M,, %, n = 1} is a martingale. Moreover, we have the
following lemma.

LEMMA 3.3. As n — o we have with probability 1
Mn - stn(Yj) VVJ—I) < nﬁ+l-
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Proor. By Kronecker’s lemma, (3.13) and (3.14) it is enough to show that

(3.15) Y= JFE{(Y, Wo) | 1{| (Y, W) | > jF1) ) < o
and
(3.16) Yimt JFTVE|E((Y;, Wis) | Fia) | < o

Applying Lemma 2.1 and (2.2) and (3.9) we see that a typical term of the series in (3.15) is
bounded by

j—(B+1)(2+a)E{ " YI " 2+a " VVJ—I " 2+a}
K jTEVEE| Y, IPE | W [P+ | YIE | Wima |20 (7))
< j—(ﬁ+l)(2+a)(j(2ﬁ+1)(l+a/2) + j(2ﬁ’+3)(2+a?]'—3/3) < j—l—a/2.
Next we observe that by Lemma 2.2 and (1.4) we have for any bounded random variable
¢ with mean zero and measurable with respect to %,
E¢| 1)
EVEG 50| = B( B 570, 28172

-
- E(s%) <10[1£] - o).

(3.17)

Hence by (3.6) and Lemma 2.2
E || E(Y;| #-0) || < E|| E(Y;| #5-) — EY;|| + | EYS||
< ORI  E{ % 1 1y = 750
K TR E | 5]
<jre
Hence by (3.6) we see that a typical term of the series in (3.16) is bounded by

FIEWA Wil - N B Z5) D) < 5 Wit < 770

LEmMMA 34. Put
sn = Yj<n max(| W, I’E(|| Y1 [1*| %), 4(B + 1)j%* log log j)
and
(3.18) ra = Lin max2 || W, 177, 4(8 + 1);%*" log log ;).
Then with probability 1
lim supn—ewsn/rn < 1.
Proor. Using (3.6), (3.17), (1.4) and Lemma 2.3 we obtain
PEE(| Y, 17| #j-0) = 2%} < P{IE(| Y;|1*| %5-1) — E|| Y, ||?| = %j*}
<J N Yil%e (P < 572

The result follows now from the Borel Cantelli Lemma.

LEmMMA 3.5. With probability 1

lim sup,_.«(s2 log log s,)™*M, < 2.

Proor. Recall that by (3.13) and (3.14) M, is a martingale with
Mn - Mn—l = 2n’3+1.
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Moreover,
E{M, — M,1)?| Fo-r} < E{(Yn, Woe1)?| a1} < | Ward |PE(|| Y ||| Foi)-

Now the proof of the lemma can be completed in the same way as the proof of (4.32) in
Goodman, Kuelbs and Zinn (1981) subject to the following minor changes.

Let A and c be positive constants with A¢ =< 1. Then {V,, n < n,} is a supermartingale.
Here n, satisfies n§*' < % c. We follow the argument in [5] until (4.43) and observe that

Sne1 = Yjzn 4(B + 1)7%* log log J.
Hence for n sufficiently large
s2=20"'n**]oglog n
and thus
T8 < %" (log log §%*)'/2,
The remainder of the proof is the same as in [5]. O

The following lemma is also a minor modification of Lemma 4.4 in [5], and so is its
proof.

LEmMA 3.6. Let {c.} be a sequence of positive numbers such that for some non-
negative constants p and v and for all sufficiently large n
Ch < pn” Ye<n Cr 10g 10g (Tken ci).

Then

C
n <p.

lim SUpPr—w m =

We finally can finish the proof of Proposition 1. Using (3.8), (3.18), Lemmas 3.2, 3.3, 3.5,
and 3.4 we conclude that with probability 1

(3.19) lim sup,_.(r2 log log 7)™ || W, ||?> < 4.
Next we observe that by (3.18) we have for § > 1
ri=20""n**?loglogn
for sufficiently large n and hence
r2 log log r, = 207 'n***(log log n)*> = (20(8 + 1)?)'b2

where b2 = 4(8 + 1)’2%**(log log n)2. Consequently we have for § > 1 and all sufficiently
large n

(]| Wall? v 62)* < 20(8 + 1)°r2 log log
=20%(B + Dn Tcalll Wil1% v b)) - log log(Z,< | Wil|I* \/ b;)

by (3.19) and (3.18). Proposition 1 follows now immediately from Lemma 3.6 and (3.3).
This concludes the proof of Theorem 6.

4. Proof of Theorem 2. The proof that in Theorem 2 (i) implies (ii) is a minor
modification of the proof of Theorem 6 in [7]. We first apply Theorem 3.1 of [8] Kuelbs
(1976). In view of the classical law of the iterated logarithm for mixing sequences of
random variables, which is easily obtained from Theorem 4 in [7], we conclude that
Condition (3.1) in [8] is satisfied since the lim sup is with probability 1 TYA(f, f) =
supxex f(x). Here K is the unit ball of the Hilbert space H, as described in Lemma 2.1 of
[8]. Hence in view of (i), Condition (4.3) in [7] is satisfied.
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Let Ily be the maps associated with g, as described in Lemma 2.1 of [8]. Then {IIyx;,
J = 1} is a weak sense stationary sequence of random variables centered at expectations
with (2 + §)th moments uniformly bounded by | I1y || **°. Hence by Proposition 2.1 in [7]
for any fixed a = 0 the sequence {IIyx,.., j = 1} satisfies the central limit theorem with
limiting Gaussian measure p o II5'. Thus u has the properties required in Theorem 6 of
[71.

Hence {x,, » = 1} satisfies two out of the three basic hypotheses of Theorem 6 in [7].
With regard to the third one, it might, perhaps, come as a surprise that Condition (4.2) of
[7] can simply be replaced by Condition (1.5) of the present paper. Indeed, in the proof of
Theorem 6 in [7] the only use of Condition (4.2) was made in the proof of Proposition 4.1
of [7]. Consequently the only thing that remains to show is Proposition 4.1 of [7] under the
hypothesis (1.5) of the present paper. We shall do that by modifying the proof of
Proposition 2.2 of [7] instead. We define F(r, s) by (2.25) in [7], replacing 5, by x,. We
follow the argument in [7] until (2.28), replacing (2.28) by

Gi(m, ¢) = (F(m2'*", 2') = (tx/l0gt:) "} .
Then Lemma 2.9 in [7] remains valid. Indeed, using Lemma 2.1 we have
P(Gr(m, ¢)) < exp(—(1 + Y%a)k/ )32, 9¢Utas2)
and thus
P(Gh) < exp(—(1 + %a) R/ 1O)R3/2 Y, 270D gm~t

< k3a/20k—(l+a/2)(l—a/10) < k—l—a/ZO‘

Hence applying the Borel Cantelli Lemma we conclude that with probability 1
max,,l<N5,k+lF(0, N — tk) < nk(tk/log3tk)1/2 < (tk/log tk)l/z.

This completes the proof of Proposition 4.1 of [7] under the hypotheses of Theorem 2.
There are no more changes necessary. This concludes the proof that (i) implies (ii).

The proof that (ii) implies the existence of a Gaussian measure u with covariance
function T is a minor modification of the corresponding proof in Section 5 in [7]. The only
change necessary is the application of the law of the iterated logarithm for mixing random
variables, an immediate consequence of Theorem 4 in [7], instead of the classical law of
the iterated logarithm.

The compact law of the iterated logarithm for Brownian motion and (1.6) imply that
with probability 1 {(n log log n)"/?S,, n = 1} is relatively compact.

5. Proof of Theorem 1. The proof of Theorem 1 is the same as the proof of Theorem
1 of [7] except for two minor modifications. First we apply Theorem 2 instead of Theorem
6 of [7]. Second, in order to establish relative compactness of {S,/a,, n = 1}, we argue as
follows. Let {e,, i = 1} be a complete orthonormal basis for H. We write

X1 = Y1 (X1, €)e,
and
Pyxi = Y,n(x1, @)e,.
Then for each p > 0 there is an Ny(p) such that
(5.1) E | x — Pyx: ||** < p**?

for all N = No(p). We set A, = Py, and observe that by Theorem 6 and stationarity the
sequence {az"' ¥,=n Ay(x,), n = 1} is with probability 1 relatively compact. We apply now
Theorem 6 to the sequence {x, — A,(x,), » = 1} and obtain that for some constant C(e, §)

lim sup,—ew ar' || Toen x, — A,p(%) || < pCle, 8)
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with probability 1. This establishes the relative compactness of {S,/a., n = 1}. Finally we
observe that in view of (5.1) and Lemma 2.3, Proposition 4.2 of [7] applies. O

We observe that Theorem 1 remains valid for weakly stationary sequences {x,, » = 1}
satisfying (5.1) uniformly for all random variables x,. We also observe that Corollary 3 of
Kuelbs and Philipp (1980) remains valid for H-valued random variables satisfying an
absolute regularity condition with mixing rate (1.4). The required changes in the proof of
Corollary 3 are routine.

6. Proof of Theorem 3. We first prove that (i) implies (ii). Let
a,= (2nloglog n)'? S,=Y,<nx

and let K denote the unit ball of Hy., as defined in Lemma 2.1 in [5]. Then by Theorem
1.1 of Pisier (1975), K is a compact set and

(6.1) lim, .| Sn/a. — K| =0, as.

Here | x — K| = inf{||x — y||: y € K}. Let IIy be the maps as defined in Lemma 2.1 of
[5] and let I be the identity map on B. Since the map I — Il is continuous, we have by
(6.1)

[ @z'(S, = MInS,) — I — TIN)K|| > 0, as.
Since K is compact and since N> (I — IIy)K = {0} we obtain for each n > 0
I-TIMKC{xEB:|x|<n}

for all sufficiently large N. Hence the conclusion of Lemma 3.1 in [9] remains valid.

Since IIyx; is a R™-valued pregaussian random variable we conclude that IIyx; has
finite second moment. We pick up the proof of Theorem 1 in [9] at Lemma 3.2 and as we
go along, reinterpreting {X(¢), ¢ = 0} as a Brownian motion determined by the Gaussian
measure p having the same covariance function as x;, we obtain (ii).

Conversely, suppose that (ii) holds. Since {X(¢), ¢t = 0} satisfies the compact law of the
iterated logarithm we conclude that with probability 1 the sequence {S,/a., n = 1} is
relatively compact. Hence with probability 1 the sequence {f(S.)/a., n = 1} is relatively
compact for each f € B*. The Kolmogorov zero-one law therefore implies that for some
constant ¢ < ©

(6.2) lim sup,—«f(S.)/a. = ¢, a.s.

Thus by Strassen’s converse of the law of the iterated logarithm (see Stout, 1975, page
297), E(f*(x1)) < «. Hence the constant c in (6.2) is ¢ = (E(f3(x,)))/? = T"(f, f). We
follow the remainder of the proof of the corresponding statement of Theorem 3 in [7],
Section 5 and conclude that x; is pregaussian.

The relative compactness of {S,/a., n = 1} follows as in the proof of Theorem 2.

7. Proof of Theorem 5. The proof of Theorem 5 is a minor modification of the
proofs of Theorem 2 in [1] and of Theorem 3 in [9] with some of the ingredients from the
proof of Theorem 1 in [1] added. As usual, we can assume without loss of generality that
the o-fields % are atomless.

We first prove Theorem 5 in the case that the random variables X, are all discrete and
that the distributions Gy are equal F.. We follow the proof of Theorem 2 in [1], page 33
replacing the last line on page 33 by

(7.1) E supae s | P(Xr € A| G-1) — PXr € A) | = Bs

where %,_, is the o-field generated by Y, ---, Y—;. This follows from (1.7) and Lemma
2.6 in [1] since % -, C %-;. If (1.7*) holds then (7.1) is to be replaced by a corresponding
relation. Let . > 0. Then by (7.1)
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SupAeB;,IP(Xk EAI 4, ) — P(X, € A)[ =&

except on a set Ar with P(A:) < . = Bi/er. For each atom D € ¥,_, we either have
DCA,orDC A5 Hence

supaes, | P1(A) — P3(A)| < e

where

,[=1 if DCA.
¥ l=¢, if DCAS.

Hence the Prohorov distance of P, and P, as defined in (2.1.2) of [1], does not exceed ¢.
We follow now the proof of Theorem 1 in [1], page 40 starting from (2.3.10), but choosing
& = BF? at the end. We thus obtain a sequence {Y}, £ = 1} of independent random
variables having the same distribution as the (discrete random variables) X such that

(7.2) P(| X, — Yi| = 2B¥%) = 2B}

If (1.7*) holds, then the exponent % is to be replaced by p/(p + 1).
For the proof of the general case of Theorem 5, we copy the proof of Theorem 3 in [9]
except that we replace relation (2.1.7) of [1] by (7.2) substituting B8'/ for ¢ as we go along.

8. Proof of Theorem 4. In view of relations (1.7) through (1.9) of [7], the proofs of
the results mentioned in Theorem 4 reduce to a proof of a bounded law of the iterated
logarithm. This follows at once from Theorem 2. Indeed (1.7) through (1.9) of [7]
immediately imply condition (1.5), and the existence of a mean zero Gaussian measure
with covariance function T follows from Proposition 4.2 in [7]. Finally the proof of Lemma
4.6 of [7] shows the relative compactness of {a,'S,, n = 1} provided that we have a
bounded law of the iterated logarithm.

But as the proof of Theorem 5 in [7] shows, for this purpose we only need an exponential
bound such as the one given in Proposition 3.1 of [7]. In the proof of Proposition 3.1 of [7]
there were only two places where the ¢-mixing condition was used decisively. The first one
occurred when Lemma 3.1 of [7] was applied. We replace it by Lemma 2.1 which holds in
the present set-up since condition (1.5) holds as already observed in the previous paragraph.
That 8 is to be replaced by o does not matter (as long as a > 0). The second use of the ¢-
mixing condition was made when Theorem 2 of [1] was applied in (3.9) of [7]. We replace
it by Theorem 5. The slight worsening of the mixing rate (8 instead of ¢ ) is compensated
by the restriction of § to 0 < § < %.

This concludes the proof of the exponential bound and thus the proof of Theorem 4.

Acknowledgment. We are grateful to V. Goodman, J. Kuelbs and J. Zinn for showing
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