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EXACT CONVERGENCE RATES IN SOME MARTINGALE
CENTRAL LIMIT THEOREMS

By E. BOLTHAUSEN

Technische Universitdt Berlin

Convergence rates are derived in central limit theorems for martingale
difference arrays. The rates depend heavily on the behavior of the conditional
variances and on moment conditions. It is also shown that the rates which are
obtained are the exact ones under the stated conditions.

1. Introduction and statements of results. We consider sequences X = (Xi, .-,
X,,) of real valued random variables which are square integrable and satisfy

(1.1) EX,|%-1)=0as.forl<si<n
where % is the o-algebra generated by X, - - -, Xj.

Let M, denote the class of all such sequences of length n and M = U,ey M,. Let us fix
some notation: If X = (X;, ..., X,,) € M,, we write

=EX}|%-1), 6 =EX])
8% =3j-16]
Xy = maxi<n|| X[, for 1=p=e

=Xj-10//s
S=25-1%.

We sometimes write o7 (X), 57(X) etc. to indicate the dependence on X. If X = (Xj, .-,
X.) E M, and m < n we call (X;, ---, X,,) a beginning of X.

Quite good central limit theorems have been established for such sequences. The
following statement is a special case of results obtained by Dvoretzky [4] and Brown [2]:

IfX,, € M,,, m € N, V3(X,,) — 1 in probability, and some Lindeberg type condition
is satisfied, then

lim P (S(X,) /s(X = @(t)
for all ¢t € R, where @ is the standard normal distribution function.

Of course it is desirable to have convergence rates in such limit theorems. Several
results in this direction have been obtained by Ibragimov [7], Grams [5], Strobel [11], Hall
and Heyde [6] Section 3.6., Chow and Teicher [3] Theorem 9.3.2, Kato [8], and others, but
the results appear somewhat incomplete. With the one exception of Kato’s, there seem to
be no results which in the case 3; = 1 give better rates than n~"*. Kato obtains for
uniformly bounded variables with ¢? = 57 a.s. the rate n~'/*(log n)®. We shall obtain the
better rate n~"? log n under somewhat weakened conditions and shall show in Section 6
that this rate is exact.

For variables with bounded third moments, the rate n~"/* has never been surpassed, for
very good reasons as will become clear soon. The following theorem is contained in the
results of Grams [5]. As the proof is very easy and is the departing point of our further
considerations, we shall include it in Section 3.
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THEOREM 1. If0<a=pB<0o,0<7y< x,then there is a constant 0 < L(a, B, v) <
o, such that for all X € M, satisfying 6} = 6> as,a<6:<Bforl<j=nand|X|s=
Y, one has

sup,| P(S/s<¢t) — ®(t) | = Ln~'/,

This appears quite unsatisfactory for several reasons. The rate appears very poor when
compared with the ii.d. case. But it is sharp as will be shown in Section 6. (Example 1).
Actually we give an example of a sequence X,, € M, satisfying the conditions in Theorem
1, where one can show that there exists a sequence Y, € M, of beginnings of the X,,, such
that

lim sup,_..n"* sup;| P(S(Y.)/s(Y.) = ¢t) — ®(t)| > 0.

The condition ¢? = 57 a.s. is also very strong. This can be relaxed, and one can derive
bounds depending on the behaviour of V2 As the rates are never better than n™"*, we
shall not pursue this here, but rather seek for conditions giving better rates. Indeed they
are much better for bounded variables.

THEOREM 2. Let 0 < y < . There exists a constant 0 < L(y) < « depending only on
vy, such that for all X € M,,, n = 2, satisfying

IX|lo=y and V*X)=1as.
sup;| P(S(X)/s(X) ; t) — ¢(t)| = L(y)n log n/s*(X) holds.

If we specialize to 6 = 1 one obtains a rate n~*/? log n, which improves on the rate of

Kato. Again our rate is sharp. We shall show that there exists an example of a sequence
X, € My, n = 1, with 6}(X,,) = 6}(X,) = 1 a.s. (1 = < n) and sup,|| X, || < , but where

lim sup,_..n'? (log n)~" sup,| P(S(X,)/s(X,) < t) — ®(t) | > 0.

(Example 2 in Section 6).
Of course, V*(X) = 1 a.s. in our theorem is very restrictive, but one can easily derive
corollaries where this condition is relaxed. We shall just prove one:

COROLLARY. Let 0 < y < . There exists a constant 0 < L(y) < », such that for X €
My, n =2, with | X||. < y one has

sup;| P(S/s s t) — ®(¢)| = L(y) {nlog n/s® + min(|| V2 — 1||¥2 || V2 - 1]|}/*)}.

The proof of Theorem 2 and its corollary will be given in Section 4. The corollary exactly
tallies with Theorem 3.7 in Hall and Heyde [6]. However, their result gives only rates
n~*(log n). They give an example of a sequence X, € M,, where || V3(X,) — 1||.. is of
order n”'*(log n)® and the rate is n"'*(log n) is exact. In this example || V3(X,) — 1| is of
the same order, so one could think that in our corollary || V* — 1||}”® could be replaced by
| V? = 1]|{%. But this is not so. In Section 6 we shall show that there exists an example of
a sequence X, € M,, n € N, with 67(X,,) = 1(0 < < n), sups X, ||» < »,

sup, Y7107 (Xn) = 1] < oo,
but where
lim sup,—..n'® sup,| P(S(X,)/s(X,) <t) — ®(t) | > 0.

(Example 3 in Section 6). Therefore, the rate given in the corollary appears to be best
possible of this type. However, the second summand of the estimate makes things quite
unsatisfactory.

Our Example 3 and the example in [6] suggest that things become bad if the randomness
of ¢} is large for large j. The rates can indeed be improved if the o? behave better for large

J.



674 E. BOLTHAUSEN

To simplify somewhat the notation, we shall specialize to triangular arrays X, 1 < i
=< n, where X,, = (X,.1, + -+, Xon) € M, for all n and where

(1.2) lim,, ;.07 (X,) = ¢®> for some constant o¢%> 0.
We shall adapt the notation introduced above by writing
on=07(X,), S.=8(X,)etc.

Boundedness of the variables can also be somewhat relaxed.

THEOREM 3. Let X,;, 1 =i =< n, be an array as defined above which satisfies
(1.3) Supjnll E(| X || Fnje1) 0 < 0(Fr = 0(Xn1, «+ +, Xuk)).
(a) If for some 0 < a < %
SUp,, ;i /| 0% — G5l < o then
sup,n®(log n) ™" sup| P(Sn/sn < t) — ®(8)| < 0.
(b) If forsomel <p=oo,0<a<¥®%

SUpn,; J°| 0% — G%l» < © then sup,n® sup:| P(S./sn=<1t) — P(t)| < .

I do not know if the theorem is sharp in every respect, e.g. if p > 1 is neceésary in (b).
However, the rate n™* is sharp in (b). In Section 6 we shall give an example with

loZ — 62illo = O(j ™) where lim sup,—..n® sup:| P(S./s, < t) — ®(¢)| > 0.

(Section 6, Example 4).

We remark that in the classical i.i.d. case, (1.3) is satisfied for variables with finite third
absolute moments, so one obtains a rate n~"/2 log n from (a).

As a second remark, we compare Theorem 3 with the corollary to Theorem 2. If || o7,
— 6% |l1 = O(;j %), Theorem 3 yields a convergence rate n~"/? log n, where the corollary
would only give n™'/%, So the Theorem 3 gives much better bounds if 0%, becomes more
and more nonrandom for large j. On the other hand, Theorem 2 and its corollaries have
the advantage that they are based on assumptions on V? — 1. However, the rates then
become very bad if V2 — 1 is not very small.

1/:

To obtain bounds of order n"'/? one needs some assumptions on the conditional third

moments.

THEOREM 4. Let X,., 1 <1 =< n, be an array as introduced above, which in addition
to (1.1) and (1.2) satisfies
(14) supl| E Xz | Zn,j-1) ||l < oo.

If for some 1 < p < © we have sup,,j*|| 6%, — 6%, < ® and if either
(a) for some 1 <p’ <o

Stu,njl/zpl"E(Xfu | P yim1) — E(Xij) "m <o, or
(b) sup;,»log j| E(X% | Za,-1) — E(X3y) ||l < then
sup.n'’? sup| P(Sn/sn < t) — ®(t) | < .

In some of the before-mentioned papers, to get bounds beyond n~/* it is assumed that
conditional higher moments become close to the normal moments. This is not assumed in
Theorem 4. It is only assumed that the conditional third moments become more and more
nonrandom. The theorem falls very short of including the classical ii.d. Berry-Esseen
theorem. Indeed, it gives the Berry-Esseen bound for ii.d. variables with finite fourth
moments. I conjecture that (1.4) can be replaced by (1.3). However, a proof eludes me.
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2. Preliminary lemmas.

LEMMA 1. Let X, £ be real valued random variables and let
S=sup|PX=t)—D(t)|, & =sup|PX+E<t)— D)
(® the standard normal distribution function). Then
8 =28 + (5/(2m)" )| E&*| X) ||*
and
8* =28 + (3/27'A) | E(£| X) |2
ProoF. There is nothing to prove if || E(¢*| X) || = %. So we assume || E(¢*| X) [l = v
< oo,
PX+¢=st)=EP¢E=t—-X|X))
= E(lx<t-aP(( =t — X|X)) forany a>0
=PX=t-a) — E(lx<—.P(¢ >t — X| X))
E(lx<i-aP(¢ >t — X|X)) =y E(lx=e-a(t — X))

= y{a‘zP(Xs t—a) — j 2(t — x)*P(X < x) dx}
= y{a‘ZCI)(t —a) — J' 2(¢ — x)7°® (x) dx + 26a‘2}

t—a
= y{j (t — x)%p(x) dx + 28a'2} < v(27) 2a7! + 2y8a2

And therefore
(2.1) PX+¢t=t)=zPX=t—a)—y2r) a™" — 2y8a™%
On the other hand

PX +¢=<t) = E(Ix<t+oaPé =t — X| X)) + E(QQx>1+oa PE < t — X| X))
sPX=t+a)+ E(lx>+ePé=t - X|X))
SPX=t+a)+vE(Ix>r+a(t — X)7%),

and by a similar reasoning as above one obtains
(2.2) PX+¢t=st)sPX<=t+a) +y2mn) a" + 2y8a?
(2.1) implies
F*=PX+E<t)—0@)
=PX=t—a)—®(t—-a)—a@r) V- y@2r) " 2a" - 2y8a?
so sup;(P(X <t) — ®(t)) < 8" + a(2m) /% + y(2m)"2a™" + 2y8a 2, and similarly from (2.2)
sup,(®@(t) — P(X =< t)) = 8* + a(2n) 2 + y(2n) %a™" + 2y8a”?

and taking a = 2y'/? gives the first statement of the lemma. The second follows by an
obvious modification of the last argument.
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LEMMA 2. Let k= 0 and f be a function R — R, which has k derivatives f©, ..., f®
which together with f belong to Li(R). If f* is of bounded variation ||f*®|v, if X is a
random variable and if a % 0, b are real numbers, then
k

d
W*P(x)

|Bf*(aX + 8) | = [|f* |vsup:| PX < ¢) = @(8) | + | ||| f]|s sup.

where @(x) = (27)7/* exp(—x%/2).

Proor. If X is a standard normal variable, then clearly
| Ef*(aX + b) — Ef®(aX + b)| < || f*® [vsup:| P(X < ¢t) — ®(¢) |

and
dk
o (x)

| EF®(aX + b)| =<|a|™ " sup. Il 1l

by partial integration.

3. Proof of Theorem 1. Let X = (X, ---, X,) be as in the statement of the theorem
and Zy, - -+, Z,, £ be independent normally distributed random variables with mean 0 and
EZ} = &, E£® = n'2 ¥, Z;/s is standard normally distributed. Therefore, according to
Lemma 1, ’

supe| P(S/s = t) — ®(¢) | < 2 sup,| P((S + &) /s < t)
—P((XriZ:i+ &) /s<t) + cn Va2

(c an absolute constant). For 1 = m < n, let U,, = 375! X;/s, W,, = iem+1 Zi+ £)/s.
According to an idea which goes back to Lindeberg [9], one writes

P(S+8)=t)-P((X)-1Z+8)/s=t)
=2Zn=1 {P(Un + Wi + Xp/s < t) — P(Un + Wy + Zn/s < t)}.

W is normally distributed with mean 0 and variance A% = ($fems1 67 + n'/2)/s% Tt is
further independent of U,,, X,, and Z,,, so the above sum may be written as

n t_Um Xm t_Um Zm
Zm=1E{‘I’( ~ r) ‘I’( *~ r)}

(3.1)

. Xn  Zn\ (t-U.\ X% Z%\ ,[t—U,
=1 E{('T+T>"’( A >+2>\ms_2>\ms P\
X A(t=Un_p Xn\, 2 (t=Un _ o Zn
enas ¥\ "ms) BN Y\ T, ™ A

where 0 < 6,,, 0, < 1.

As U is Z,—1-measurable, it follows from (1.1) and the assumption ¢} = 57 a.s. that the
first two types of summands in the above expression vanish. Combining this with (3.1), one
obtains

sup | P(S/s <t) —®(t) | <= c a1 AR + c/n V2
for some constants ¢, ¢’ which depend only on «, 8, v and this is
=c¢"'n V4

Therefore, the theorem is proved.,

REMARK. It is clear that such a simple type of argument cannot give anything better
than O(n""*) even in the ii.d. case.
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4. Proof of Theorem 2 and its Corollary. We make the following notational
convention in this section (and only in this we shall change it in Section 5!) : ¢, ¢’, ¢, ¢, etc.
are absolute constants > 0. They may vary from formula to formula, but not in the same
one.

ForneN,s, y>0let %.(s,y) = {(XEM,:s(X) =5,|X||«=7, VX(X) =1as.} and

8(n, s, v) =sup{sup; | P(SX)/s=t) —P(t)|: X € %,}.

fX=(X, -,X,) € Fu(s,v), then X' = (X1, X5, + -+, Xp—1 + X,,) obviously isin &,-(s,
2v) and satisfies S(X’) = S(X). So clearly

(4.1) d(n, s, y) =8(n—1,s,2y).

I hope it will amuse the reader that this simple estimate will be the key fact for a recursion
argument leading to our theorem.

We fix now an element X € %,(s, v), where we assume that y = 1. Let Z;, ---, Z, be
ii.d. standard normal variables and £ be an extra centered normal with variance k2 which
is independent of anything else. x> will be specified later on, but in any case «* > 2y2.

The first few steps now run parallel to the proof of Theorem 1. As Yi-; 6:Z;/s is
standard normal, one obtains from Lemma 1

sup:| P(S/s < t) — ®(¢)| < 2sup.|P((S + £) /s < ¢)
4.2) ‘
—P(Ski0:Zi+ &) /s<t) + cx/s.
Let
Un =371 X;/5, Wi = (L )-m+10,Z,+ §) /s
An = (Tems1 67 +67)/s, Tm=(t = Un)/An.

(Note that A, is random.)
Conditioned on o(Xj, - -+, X,, Z»), Wn is centered normal with variance A2, so
P((S+&)/s=t)—P((Tj~10Z;+&)/s<?t)
(4.3)
= Ym=1 E{®(Tp — X /AmS) = O(To — 0mZm/AmS)}.
As A, is #,—1-measurable where %, is the completion of %,—; (37, 02 = s a.s.!) one
obtains, as in the proof of Theorem 1, that the above sum equals

1 X3, Z,
= Y m=1 E(— T ¢ (Th — 00X /Ams) + " (Th — Oi,,omZm/Ams)>

6 Ads®
where 0 < 0,,, 0,, < 1. So

|P(S+8)/s=<t) - P(S)1 0,2 +&)/s=<1t)|

1 n |Xm|3 ” 0”‘X’"
(4.4 s@{ - E( i (Tm M) )
v ollomZnl®| (. onlnZn
+Zm=l E( }\?n Q@ Tm }\ms .

We define a sequence of stopping times 7,, 0 <j < n,

)
70 =0, Tj:inf{k:Z{Llafz‘%} for 1=sj=sn—-1, m=n

n |Xm|3 ” _ 0me
m=1 E( @ Tm )\mS

Ad
= Z;;l E(Z:ﬁ:-rjfﬁl

| X |?
AL

).

” 0’"X’"
o(r-5)
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If Ti-1<M=1Tj
Js®
A= (Thrs10f +6%)/s° = (s - Y2+« )/s =A? say,
A= (Thr 1 0f +x0)/* = (s = (j— 1)s°/n+ k%) /s> =X} say,

and Un = U,_,+1 + 32«1 Xi/s. We abbreviate},27" .+ Xi/s by R
T; |X’" |3 ” _ am‘X'"

<y A,-“"E(ZZ{F,/,H X

1 U'r-v|+
whereAm={|R |5-2—| 4 II}

0, Xom
” Tm _
o(=-50)

1)

As k* = 2y* we have 0,,| Xn|/Ans = 1. If we put ¥(x) = sup{|¢”(y)|:y = |x|/2 — 1},
then ¢ is of bounded total variation and summable. On A,,

| 9" (T = O Xm /Am8)| < Y((t = U, _+)/A)).

)—‘j }\j

As U, .1 is %, measurable one therefore obtains
E(Yhery 41 X | 9" (T = On X /Am8) | 14,,)
4.7 = EW((t = Uy ) /A)E(T ey, 01 Xua| Ty
= EQ((t = Uy ) /X)ES 5, o1 o;nlga,,,))
=2y’EW(t — U,_1)/X)).
Now

; ; —1
E((Z;‘=7j'|+1 )(i)z | %1’»1) = E(Z?ﬁﬁwl 0% |'977/f|) = 32<1 _17) a.s.,

so, from Lemma 1, 2 and (4.1), one obtains

(4.8) EW((t - U,. /A = ad(n—1,s 2y) + cyf1 —j—Tl + e\

We now look what happenson A;,.On1j-, <m =<1,
A, C B = {maxT \<i=7, Izk—l I+1X,q|/s}\ > 1/2|t - ., I+1|/X,’}.
A is Fn1 \/ F,,_, measurable, so

E(Z:éq,-v,ﬂ X?n]-A‘"',) = E(ZZ:,,;,H O?nlA;;,)
< E(lp, Yy, +1 0%) < 2y*P(B;) (z,,,_,J s10%5=2y? as)

. . o~ 9 | t— U"j»l"‘l |
=2vy?E{ min{ 1, s ;| ——
2N

'E((max1/7|<i57j | Zi=‘rj>—|+1 -Xk I )2 IZ,;])})

; ; . It - UT/«N“ I -
< 2y?E( min{ 1, 2s72\;? ——) BUE, X |7, )
J
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(by a well known martingale inequality, see e.g. [10] proposition IV 2.8. The extension of
this proposition to our stopping time setting is straightforward)

6= U, )
SSy“E(min{l, 573, (——————_ ) })
2A;
4 j_ 1 N
=<cy {8(n—1,s,2y) + 1————n——+}\,«}

by applying again Lemma 1, 2 and (4.1).
Implementing this estimate with (4.8) in (4.6) and combining with (4.5), one obtains

Xm 3
S E(' A,,' 19" (T = X /Ams) |)

) . 1 1/2 _
(4.9) = cy"[S(n - 1, S, 2')/) ZJ'LI }_\j_] + Zjn=1 (1 —J—n—> }_\1_3 + 27=1 }_\]}\;3}

=c'y[8(n — 1, 5, 2y)sn(x® — 2y°)™"* + nlog n]

if K2 > 292

We need a similar estimate where X,, is replaced by omZ». One cannot use exactly the
same argument, because Z,, is not bounded.

We introduce

A= { | R < 22107 Tomil U'}

4 N
s\ [t~ Uy
: .

B, = { |omZm| =
Aj

o Zm|?
E<Z:IIE=TJ_|+I % | (p”( Tm - O;nomzm/}\ms) |)
om|Znm|’

|97 (Tn = 0'mo,..zm/xms)l)

.
= E<Z,{l=,j_,+1 14,08,

| Zn|® Om| Zm|®

A Ve Sl PP PR L)

Using the independence of Z,, the first and the second summand can be estimated as
above. As for the third, we remark that

r c U§n|Z'n|3 -3 T 2 773
E{ Xierin1 le}\—s =N YE(En’FT,-A,H 0nZm 1( 2| > c| t-U,_+1181)
= NP Y EW((t — U, 41 /X))

where $(x) = E(Z3; | Zn| = | x]).
Handling this expression as above, one obtains

m=1 E<|6>\_3||(P”(Tm - 0;n0mZIn/>\mS)|)

= cy’[8(n — 1, 5, 2y)sn(k® — 2y®)™'2 + nlog n).
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Combining this with (4.9), (4.4) and (4.2) one obtains

4.10) 8(n,s,y) = clys[B(n - 1,5 2y) —:—2 k2 =2y + —:T log n] + ¢k /5.
Let now K,, = sup,=1,0<s=ny6(n, s, y)/(y"’(%)lcg n). Clearly K, < « for all n = 2.

2
We take now x* = 2y> + 0?2'2)/"’(—;}-.2) (¢, from (4.10)). Then from (4.10)

(4.11) K,<=%K,1+c for n=4, '
and from this
lim sup,_..K, = 2¢ (c the same as in (4.11)).

Therefore, the theorem is proved.

PROOF OF THE COROLLARY. Let X € M, with || X | <y, a = ||s’V? — §*|l.. We define
Xosty + -+ » Xnsj2asy211 as follows: Let & = [(s” + a — s°V?)/y"]. Conditioned on %,

+ yw.p. % for j=<k
Xpr)=3 (8 +a—-sV? —ky)? for j=k+1
0 else,

andlet X = (X1, -+ , Xusi2as241). Clearly V2= V*X) =1 as. and
sup; | P(S/s = t) — ®(t)|

= sup/| P(S/§ = t) — ®(t)| + sup: | d)(s;f) —®(@)|

= 2sup/|P(S/s=t) — ®(t)| + eva/é + c(3/s — 1)

by Lemma 2 and an elementary calculation

< 2L(y) %log A+ civa/s — (8/s—1) by Theorem 2

<6L(y) g-, logn +cva/s if Ya/s=1 and nis sufficiently large.

Therefore, we obtain in this case
(4.12) sup | P(S/s = t) — ®(t)| = L'(y) gf, log n + cvVa/s.

This is then also true for all n and va /s > 1if one chooses ¢ and L(y) suitably.

The estimate with || VZ — 1|, runs a blt differently: Again let X = (Xj, .-+, X,) €E M,
with [ X ||l < v, and let 7 = sup{k: 3’ o < 5*}. We define X = (xl, Xz, coey Xon) € Man
as follows: X, = X for i < 7. Let r = [(s* = ¥j=i 0))/v?]. As s* = ny” we have r < n.
Conditioned on % ,, we define X,.1, « - - , Xon as follows:

For l=si=<r, X,H = +y w.p. % If T+r<2?n we proceed by setting X,+,+1 = (s> —
Yoo 02— ry?)"% Xovrs = 0 for i = 2. Clearly Y12, 67 = §” = s* as. and 1K< 7.

By Theorem 2: sup; | P(S/s =t)-0@)| = 4L(y) log n, and, further, it is easy to see
that E(S — S)? < ¢||s*V? — s?| for some c. If x > 0 then
P(S/s=t) =P(S/s=<t|S—8|/s<x) +P(S—-8|/s>x)

= P( S/s*<t+x)+— (&S__si)
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=&t + x) +4L(y)—logn+ CAvE-1]h

<<I>(t)+4L(y)—logn+—+ || Vi-1|,
’ Vor

T

and now putting x = || VZ — 1|{* one has
sup(P(S/s = t) — ®(t)) = 4L(y) ; logn +c|| V2 — 1|\

with a similar estimate for sup,(®(¢) — P(S/s < t)). Combining this with (4.12) yields the
corollary.

5. Proof of Theorem 3 and Theorem 4. We slightly change the notational conven-
tion about the constants ¢, ¢’, ¢, --- etc. In this section they may depend on moment
properties of the X, such as the numbers appearing in (1.3), (1.4), or the other moment
conditions in the theorems. They do not depend on n, m, ¢, s and other such running
variables. If (1.2) is assumed, the statement and conditions of the theorems remain
unchanged, if we replace X, by X,.;/0,. So we assume in the future that o,, = 1.

We shall consider subclasses %, C M,, n = 1, consisting of elements with 3% = 1 and
which have the following property:

If (Xy, ---,X,) €%, m=n,then (Xj, ---, X,,) € %,. A sequence {%,}, having
these properties, will be called of R-type. Then if X € %, we write §(X) =
supAP(S(X)/& =t — ®()| and §(&) = sup{d(X): X € %}. If no danger of
confusion can arise we shall write §(n).

Let now Z,, i € N, be independent standard normally distributed random variables and
£ be an extra independent centered normal variable with variance «? (to be specified later,
but in any case «? > 1).

As in the preceding proofs we have for X € M, with 6> =1,1<i<n:

(5.1) 8(X) = 2| E Yer (@(Ton — X/An V1) = ®(Tou = Zun/Ann))|
+ex/Vn. (A% = (n — m + %) /n),
where, as in Section 4, T, = (¢ — Upn) /Am, Un =375 X,/ V. We shall now introduce some
abbreviations: If 1 = p < » let
B X) =0iX) — 67X) | », YR X) = |EX? | Fiz)) — EXY||p.

Let

Hs(u, v) = ®(u — v) — ®(w) — vo(u) + (v2/2)¢’ (1)

Hy(u, v) = ®(u — v) — ®(u) — v () + (v*/2)¢’(w) — ©*/6)9” (1).

Clearly Hs(u, v) = (v%/6) ¢”(u — 6v) for some 0 < 6 < 1, but we shall also use the fact that
| Hs(u, v)| < ¢1 + c2| v|% H, has similar properties.

E@(Ty — Xn/Auv1) — ®(Tr — Zn/Am 1))

(5.2)
Znm

X
=EHs| Trn,——= ) — EHs| T, —— E((omn — 1) (Tx
(13 255) - (1) = i B = vy

and if | X||s < o« we have
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E(@(Tp — Xn/An V1) = ®(Tr = Zn/An/n))

X, Zn
— en( T, — gl T, 2 E((62 — 1)g"(Tn))
( Am&) 4( M&) 2>\2 (fon = Lo

+ ez BB | Fan) = ECODY" (L)) + s

(5.2")

1
S B B (Th).

ProOF OF THEOREM 3. If y1, 12> 0,0 <a=<1%,1=<p = oo we set
% = (X € M,:5; = 1, supi<;=n | E(| X; |*| F-) |0 = v1, SUP1=/=n J | o} = 1|, = y2).

Clearly {%,} is of R-type.
IfXe%, m=n

(5.3) |E(or — D" (Tw)| = llom = L, 9" (Tw) s

where 1/p + 1/q = 1, and from Lemma 2 and the fact that {£,} is E-type one has for ¢
< o that this is
n

<llok = 1,(ci8(m = DY + caA}9) for m=.

We shall now estimate E | H;;(T,,,, X:"/_) . Let

AmVn

SIET TP R YPT P
Am{ HEA] S A e

Anvn mVn
c,,,={|X"‘|>|T |2}
vn

E

H3< my Xm )

Am VR
Xn

=E< H3<T,,., >;|Tm|sl)+E<
Am VR

v (| 1 Af) 7.> 1,8, + ( o)

=Il+Iz+I3+I4 say.
We use here and elsewhere the notation E(X; A) = E(14X). Clearly E

(R

)

T>IC>

X
{2
A" AV

= cA»°n"*? which is good enough for small m, say for m < n/2. For m > n/2 we need
better estimates:

Lol

Al px s Tee L < B L g 7 <

6An?
=eNin ¥4 8(m — 1) + \) from Lemma 2

(if m > n/2, which is assumed here. In general one has to replace A, by A/n/m = 1).

1
SWEquP‘I’(Tm))

where ¥ (1) = supjy=uyz | 97 (x)]. So I = cAn (8 (m — 1) + An).
As supyy=iup| H(u, v)| < © one has

I
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Xl 1
L= cP(u—>— | T |, | T | > 1) = NP TPE(| T |72 | T | > 1)
A 2

=N T8 (m = 1) + Ay)

Xn|®\ Xn
I45E<(Cl+02|—2|—>; >|Tm|2> 1)
Ann }\m&

= A TAE( T |5 | T | > 1) + E(| T | % | T | > 1))

=N T8 (m — 1) + An).
Combining these estimates yields

X
H;| T, ——
3( }\m\/n)

for m = n/2 and similarly
Zm
H: Tm’ N
J( Anr )

REMARK. | EHs(Ty, Zn/Am~ 1) | behaves much better because Z,, is independent of
T Itis < eAy®n™%(8(m — 1) + A)) for m = n/2. If one had the same type of estimate for
| EH5( Ty, Xn/An+n)| one could obtain the rate n="/? (if 67 = 5) (see Bergstrém [1]).
Even A5 for some § > 0 in the above estimate would be sufficient. But our estimates of
| EH3(Tyn, Xn/Amvn) | by E | Hs(Twm,Xn/Amvn) | and then (5.4) are sharp.

We shall now combine (5.1) through (5.5) to obtain a recursion relation for &(n). We
have the following elementary estimates of 8\ = O(m™):

AR T8 (m — 1)YIBP < cn

W2 Aan AN B < en

(5.4) E =eALn28(m — 1) + \n)

(5.5) E =eA2n T8 (m = 1) + An)

for m = n/2.

Szt A TANIBP = en™ if g<oo
=cn*logn if q=oo.
(Summation ends and starts at the integer part of a positive real number).
ST =enTY? Yhonpn n TR < cn "2 log n.
So together with (5.1) through (5.5) this gives

8(n) = cin™ ' Yhonen A28 (m — 1)V + ¢, Non=nso+1 n= 8 (m — 1)
(5.6) 1/2
+ c3rn + cax/n
where r, for a < % and p > 1is n™ and for p = 1 or a« = % is n"* log n. Let now K =
8(n)/rn; K, = max,<, K” Then one obtains from (5.6)

8(n)
—_—<c

0 _ —a,.1/g—1g1 —1y -2
KO = = e rY U KY S Yhcnen nT AR

n

—3/2y —
+ o Kno1 Yrmnpz N2+ ca+ca

K
nr,
Now n™ry9 ™' Y r 041 n 7'\, is arbitrary small for large n and Y,—.» n~%*\,.? is arbitrary
small for large « uniformly in n. So there exists a n, such that for n = n,

K,(,O) S—;Kn_l +c

and from this lim sup,=« K, < o« follows. The theorem is proved.
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ProoF oF THEOREM 4. The proof is almost the same as that of Theorem 3. So we
shall only point out the changes which are needed. The departing formula is (5.2'): If y,,
Y2, 13> 0,1 <p=00,1<p’ <o we set

Lo=(XEM,:6?=1, Supijen | E(X}| F-1) o = 7v1, supi=j=nj* [0} = 1] =< v2,
supi<s=n) ' | E(X] | F5-1) — EX] |lp < vs}
and in the case p’ = o the expression with p’ is replaced by log j|| E (X} | #i-1) — EX] |.
As above, let §(n) = 8(%,)- %y is clearly of R-type. If 1 <p’=<o,1/q’=1—1/p’ one
has for m = n/2
6.7 | E(E (X3 | Fnc) — EX0)@” (T) | = v (e (m — )V + A7),
To estimate | E@”(T,) | we use Lemma 2 with &2 = 2 and obtain for m = n/2

(5.8) | E(X3)E@"(Tn) | < ci8(m — 1) + cALE H4<Tm,—Xm—)
AV

Zn
H\Tn,——
4( AmVn)

and E can be treated in the same way as E H3<Tm, —Xm—> , SO one
A
obtains .
Xom —4 -2 .
(5.9) E| Hy T, =cAn?8(m—-1)+An) if m=n/2
AV

and the same estimate for E | Hy(Tw, Zm/(Anvn) | . If now 85, y7" fulfill the conditions
of Theorem 3, then the following expressions are bounded by some multiple of n~"/*:

S T BN, Smenszer BT BN SHEZ T A ONGE, Ymensen n= Py NG,
2%21 n_3/2>\;,3, Z$=n/2+1 n—:;/z’ n—2 %31 }\;14r
n Y s A (whereas n™¥2Yr_ .00 Ay is not!).
So one arrives at

( ) 8(n) = ein? Thenjoer 8(m — DA + can ™ Y pe1 8(m — DARY?
5.10
+ e 2N e 8(m — DYy SPONG 4+ ean ™V + eskn TV

By an identical argument as that above, this leads to § (n) = O (n /%), proving the theorem.
6. Examples.

ExaMpPLE 1. We define a triangular array X, { < n, such that for each nanh ceey
Xon) €E M, . If i < k, = [n — 2Vn], Xu is iid. standard normal. For k, < i < k.= [n —
V7] X,. is defined such that for fixed n, S,, = ¥ ;-1 X,, is an inhomogenous Markov chain
with transitions given by
P (Xni € du | Spi-1 = x) = Ly, ,(x) (Y (6-1 + &) + 1y, (x)[16A75, + (1 — 16AH)8-1/,,]
where A, = (1 — i/n)2, p; = (1 — 16A))/16A)"?, J, = [—Vn)i/4, Vn\,/4] (8:: the one
point measure in x) for i = k, + 1 X,, are again i.i.d. standard normal. Clearly (X.1, - -,
X.n) € M, with 6%, = 1for i < n.

Of course, the above definition makes sense only for large n where 1 — 16A? = 0 for k.

<i= k. In the future we assume that n is large enough, such that 1 — 16A2 = % for k, <
1< k,.
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ProposiITION 1.
a) supniVtsup,| P(Sn/Vi<t) —¢(t)| <o
b) supuiE| X |} < o
¢) lim Supj..Supn=i=,i* sup,| P(Sn/ Vi < t) — ¢(t) | > 0.

Clearly a) follows from b) and Theorem 1. However, it seems difficult to prove b) directly.
We shall first prove a) and with the help of a) prove b).

We shall consider the following subclasses of M,: For given yi, v, ys > 0, %, contains
those elements X of M, which satisfy 67 = 1 a.s., 1 < i < n, and for each i < n there exists
an interval J C R of length < y, i7"/ such that

E(|X:|*| 1) = vo + vslis_ visieny iV4

Clearly, { 4.} is of R-type.
LEMMA 4. sup,n'/*8( %,) < .

Proor. We copy the proof of Theorem 1 with only some changes. So let (X, - - -, X,,)
€ %, and Z,, - -+, Z, be ii.d. standard normal variables and ¢ an independent centered
normal variable with variance kn'/? where « is fixed and will be specified later. Then, as in
the proof of Theorem 1,

(6.1) sup| P(S/s=<t) —¢(t)| < cYuci n 2 NE | X ' + E| Zn |P) + ¢'Nhen /4
where A2, = (n — m + kvVn)/n

1
E|X.|’=E(E( Xn |3|9°—m—1)) =y + ——v1y3 + v36 (m — LYm'/.
T

Ver

So we arrive at
§(m — 1)m'/*

(n—m+xvn)¥?

d(n)=clk)n™* + ¢’ Yn

where ¢’ does not depend on k. By taking  suitably large, one obtains sup,n'/*8(n) < » as
in the proofs of Theorems 2 through 4.

We now come to the proof of Proposition 1.

Proof of a). For suitably large i, v, y3, %, contains (Xny, « - -, Xnn) for all n and N =
n, so a) follows from Lemma 4.

Proof of b). b) follows from a) since
E|X.|"=EE(Xu| | Zai-1)) = E(E(| X ['| Spa-1)).
Proof of ¢). Let %, consist of all sequences (X1, - - -, Xn») N = n. Clearly { %} is of
R-type. Let 8(n) = §( 45). We shall show that lim sup,_.n*8(n) > 0. Assume to the
contrary that n'/*8 (n) = o(1). We shall show that this leads to a contradiction.

Ifne Nlet (X, ---, X,) = (Xp1, «++, Xnn). We shall use the same abbreviations as in
Sections 3 through 5 and take Z, - - -, Z, to be i.i.d. standard normal.

- (62) P(S/vn so>~%=zﬁ~=@,,+l {EH(_& X )-EH( Un _Zn )}

A A A audn
U, Zn
EH,(- 27,
-5 )

=\ n™? forall m and

=N PEm—1) +A%) if m= g
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Therefore if § (k) = o(k~'/*), one has

Un  Zn
A AN

Un  Xn X4 [ Un 0uXn\ Un 11
EHs( A’ A”.«/Z>_E( e Y\ TN T, J_) e[ Z’ZD
X% [ Un 0uXn\ Un 11
e O A -34))
U, X, 11
?n (i m___m 3 Un/Am Ry
(e (- 520 e[ -3.3))
=J E(X?,,xp”(—u O —— Xn ) Yn _ u)P(-[ﬁEdu>
[-1/4,1/4] VAR Am

, (1—1622)¥% (1 —16)7)"2
= }\ Tq) —u — «9m—
[—1/4,1/4} 64 4\ Vn

64}, 4 Un
— - 2 _ / — . _m

where 0 < 6,,, 0. = 1 but depend on u.
For n large enough 4/(1 — 16A%)*vn and (1 — 16A2%)"2/4\,vn are < % if K, <m <
k.. On the interval [—1%, %], ¢” is negative and bounded away from 0, so

‘ U X. \ U 11
ror(=Un_g Em \Un_|_11
(o (520 )ve 3]

L) p(Ure[_2
(64) = <—Cl ﬁ+ Cy Am) P<E€ l: 4, 4]>
8(m —1)

Am

for k, < m < k, and n larger than a suitable n,. If (k) = o(k~"*) then § (m — 1) /A, = 0(1),
so the above is = —¢ for some ¢ > 0 and &, < m < k,, n = n,.

e e 1)

U, 0,.Xn.
(6.5) =FE ’ ”( )
L VY

=o0(l) if kba<m=k, n-— o

6.3) -

EH:;(

= —ci+ch

=< CiAm + c26(m — 1)

So there exists an N such that for n = N and &, < m < k, one has

Un Xn _3/2y -3 ( Un Xn ) ~1/4
=cn N\, andso Ynip,+1 EH. =cn V4
A Anin ) Zhtonsos BH( = "Anvn

Combining this with (6.2) and (6.3), one obtains P(S/vn <0) — % = en~"* for large n,
which clearly is a contradiction to §(n) = o(n~"%).

EH;;(

REmMARK. We did not prove that for our example X,;, i < n one has lim sup,_...n"*
sup; | P(Sp./ Jn=t) - ¢(¢) | > 0, but only showed that there exists a sequence N, = n
such that lim sup,_...n" supt| P(Sn,n/Yn <t) —¢(t)| > 0.
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ExAMPLE 2. The idea is similar to that of Example 1. Let X,;, i < n be defined such
that S,, is for fixed n a Markov chain with

2

where here o, = [— VnA/2, ViAe/2] and A, = Aux = ((n — & + 1)/n)2
Let %} here be the class of sequences (X1, -« -, Xnx), N = n and let 8 (n) = 8§ (%2). With
the notation as in Section 5 and Z;, ¢ standard normal and independent one has:

P((T1 Xni + §)/Vn = 0) — P((X1 Zi + £)/ V0 < 0)

: =y (EH4(—%- }\—XT) EH“( ;Jm A,,,Z:;Z))

n 1 ” U’"

1
P(Xyi € du|Spi-1 = x) = Lyg, (%) (% d+5 31) +1;,,(x) ( 2+ 31/2)

(6.6)

As in Section 5:

cAiin™? forall m

EH4(

EH,| - . If now 8 (k) = o(k™*? log k), then

=cA'n 2N, +8(m —1)) for m=n/2

Zn
and the same estimate for
~)

U,
YN
5 -2 o

U, U, U, 11
3onl _Zm) — 3 o _ My, Tm - — e’ —
EX¢ ( _Xm) E<Xm<p }\'n), " € [ 5 2]) = cAy — c'8(m — 1).

If §(k) = o(k~/*log k), then Y51 8(k — 1)/(\ik*?) = o(n""? log n), but S ARin 2
= cn”* log n.
Combining this with (6.6) and (6.7) yields

P X + )/ V0 < 0) = P(Ne1 Zi + £)/ VN < 0) = —cn ™2 log n

(6.7)

But

for suitably large n. Using Lemma 1 one obtains a contradiction to 8(n) = o(n""2 log n).
Now we have proved that lim sup,_.8(n)n'2(log n)~! > 0.

ExaMPLE 3. The example is of the same type as those above, and we shall only sketch
it.

Let X,.;, i = n be such that S,,, 1 <i < n is a Markov chain. For i = n — n'3X,,; is i.i.d.
= 1w.p. %. For i > n — n'?, X,, is uniformly bounded and constructed in such a way that

EX5| Fuiz) —1== for Si/vVi—1€][0,\]

N = DN =

E(X%i|Pus-)) —1=—= for Si.i/Vi—1€[=A\,;0]

and 0 otherwise, where A? = \2, = (n — i + 1)/n.
Let 49 and 6(n) be defined in the same way as in Examples 1 and 2. Using the same
type of arguments, one obtains

limn,t—»ooE (X z) = 1 lim SUpPn—w Z =1 " E(X I?n,i—l) - E(Xi,) "1 < 0o,
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but E((E(X2,| 1) — E(X2))9 (= Uni/\)) remains for i = n — n'/* of order A;. This then
leads in the same way in Examples 1 and 2 to lim sup,_..n'?§(n) > 0.

EXAMPLE 4. As a change, we give an example where one can show that sup,
| P(Snn/sn<t) — ¢(t) | itself has bad properties. Actually we give an array X,, -, k < n with
SUPr=n kB < 0 (0 < a < %) and lim sup,—on®| P(Spn > 0) — %| > 0. We set P(X,,; € dx)
= & (dx)

(1

2

01 + &) (dx) if ks[g] or Sps1>0

<1+(k—1)‘“6 1

r k-1 Z¥ k=D 3‘1“'“‘”") 9

. n
P(Xur € dx| Xn1y vy Xop—1) = 3 if k2> [5] and S,z-1=0

1
‘é (3—17)‘*" + 81+r’") (dx) if

B> [g] and Sps_1 <0,

wherer = L1 if Loy =max{i<k—1:S,, =0} = g and r = o else.

A somewhat lengthy but elementary calculation leads to the above stated assertions.

Alternatively, one could also give an example which is similarly constructed as Examples
1 through 3.
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