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SPECIAL INVITED PAPER
PERCOLATION THEORY"

By JouN C. WIERMAN®

University of Minnesota

An introduction is provided to the mathematical tools and problems of
percolation theory. A discussion of Bernoulli percolation models shows the
role of graph duality and correlation inequalities in the recent determination
of the critical probability in the square, triangular, and hexagonal lattice bond
models. An introduction to first passage percolation concentrates on the
problems of existence of optimal routes, length of optimal routes, and condi-
tions for convergence of first passage time and reach processes.

1. Introduction. Percolation processes were introduced by Broadbent and Ham-
mersley (1957) to model the random flow of a fluid through a medium. The percolation
approach contrasts with conventional diffusion theory, which treats fluid flow as a random
movement in a structureless medium, by considering fluid flow to be deterministic
movement in a randomly structured medium. The connectivity properties of the random
medium, rather than the properties of the fluid, provide the explanation for the character-
istics of the fluid flow.

Recent research interest in percolation theory in mathematical, physical science, and
engineering circles may be attributed to a variety of reasons. Percolation models are
appealing for their simplicity of description and ease of visualization, and yet attractive for
their display of critical behavior, where a model’s behavior changes abruptly as a parameter
value crosses a threshold.

The percolation approach provides insight in such diverse applications as petroleum
flow in sandstone, spread of a blight disease in an orchard, conductive transport in rock or
alloys, traffic flow in city street networks, and critical phenomena in statistical mechanics.

Percolation processes have yielded few results to standard probabilistic techniques due
to their complex stochastic dependence. New tools such as subadditive processes and
correlation inequalities were developed in percolation research. Mathematical interest in
percolation research was stimulated by an intriguing non-rigorous approach of Sykes and
Essam (1964) in Bernoulli percolation and by the conjectures of Hammersley and Welsh
(1965) in first-passage percolation. Recent results resolve several long-standing open
questions. The principal aim of this paper is to summarize the current state of knowledge
in percolation theory.

The structure of the medium in a percolation model is represented by an infinite regular
crystal lattice graph ¥, consisting of a set V(%) of sites (vertices) and a set E(¥) of bonds
(edges) which connect pairs of sites in V(%). There is no standard definition of “regular
crystal lattice”, which generally indicates a structure that is homogeneous in the large but
may have local variations. In such a lattice, the vertices and edges of ¥ are imbedded in
R? and there exist d linearly independent vectors Uy, - -, Us € R? such that the set of
vertices and edges of ¥ is invariant when translated by any U;. A wide range of behaviors,
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which allows percolation models to be adapted to such diverse applications, is obtained by
virtue of the choice of lattice graph as medium and the manner in which randomness is
introduced in the model.

Percolation models are classified as Bernoulli percolation models or first-passage
percolation models according to the type of random mechanism employed. Bernoulli
percolation models are classified further as bond or site models. In a Bernoulli bond
percolation model, each bond e is assigned a Bernoulli random variable X.-{X.:e € E(9)}
is an independent family of random variables on a probability space (R, % P) with common
distribution P(X, = 0) = p = 1 — P(X. = 1). For a configuration w € &, fluid may flow along
any bond e with X.(w) = 0, but may not pass through a bond e with X.(w) = 1. Standard
terminology refers to bonds assigned 0 as open, and bonds assigned 1 as closed (or
blocked). The Bernoulli site percolation model is described similarly, with sites declared
open or closed independently with probabilities p and 1 — p respectively.

The class of site models is more general than the class of bond models. A bond-to-site
transformation (Fisher, 1961) converts any bond percolation model to an equivalent site
percolation model on a different lattice. However, site percolation models exist which may
not be converted into an equivalent bond model. The major problem of Bernoulli perco-
lation involves determining the probability that fluid may flow infinitely far from a single
fluid source site.

The first-passage percolation model on a lattice % is defined by an independent
family {X., e € E(¥)} of identically distributed random variables with common distribu-
tion function U. (Since U may be a Bernoulli distribution, the class of first-passage models
includes the class of Bernoulli bond models.) The random variable X, is usually assumed
to be nonnegative with finite mean, interpreted as the time required for fluid to travel the
length of bond e. Although less intuitive, allowing X, to assume negative values or to have
infinite mean has produced useful results. The questions of interest in first-passage models
relate to the rate of spread of fluid, existence of optimal routes between sites, and the
asymptotic shape of the fluid-filled region from a single source site.

The remainder of the paper provides separate discussions of Bernoulli and first-passage
models, each concentrating on recent solutions to major conjectures. For additional
discussion of previous results, applications, and numerical studies, the reader is referred to
surveys by Essam (1972) and Shante and Kirkpatrick (1971), and the monograph by
Smythe and Wierman (1978a).

2. Bernoulli Percolation. In a Bernoulli percolation model, imagine fluid flowing
from a single fluid source site. The fluid spreads only locally if p is near zero, but may
spread throughout the medium if p is near one. One suspects that there exists a threshold
value of p, a critical probability, which separates intervals of p corresponding to local
spread and extensive spread throughout the lattice. Different definitions of critical prob-
ability exist, arising from various concepts of penetration of the medium.

A path from x to y, x, y € V(%), is an alternating sequence of distinct sites and bonds,
of the form vo, e, v1, e, Vs, -+, €,, U, where vy = x and v, = y and e;; joins v; to V4. A
circuit is a path vo, e;, U1, - - -, €s, U together with an additional bond e,.+; which joins v,
to vo. A path or circuit is open (closed) if all of its bonds or sites are open (closed). For any
sets A and B of sites, {A — B} denotes the event that there exists an open path connecting
some pair of sites @ and b, where a € A, b € B. The number of bonds in A is denoted by
| A |. The open cluster C. containing x is the set of sites and bonds connected to x by open
paths. The distance d(x, y) between sites x and y is the number of bonds in the shortest
path connecting x and y. The radius of cluster C. is p(C,) = max{d(x, y):y € C.}.

Let Z.(p, x) = Py(|Cx| = n), where the subscript p refers to the parameter of the
Bernoulli model. The percolation probability 2 (p, x) = lim,_.. Z.(p, x) represents the
probability that x is contained in an infinite open cluster. There are few theoretical results
concerning the percolation probability, although it is known that in the square lattice bond
problem it is continuous in p.

Monte Carlo simulations (Frish, Hammersley and Welsh, 1962) suggest that the
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percolation probability, as a function of p, has a characteristic shape independent of the
lattice or of choice of site or bond model.

Broadbent and Hammersley (1957) proved the existence of a cluster size critical
probability py = inf{ p: 2(p, x) > 0} which is independent of the initial site x. The mean
cluster size critical probability is defined by pr = inf{p: E,| C:| = =}.

A critical probability was introduced in the square lattice bond model by Seymour and
Welsh (1978) for technical reasons. The discussion here will deal with the square lattice,
but may be adapted to the triangular and hexagonal lattices and possibly others. Let T'(m,
n) denote the m X n sponge, which is the portion of the square lattice lying in {(x, y):1
=x=n,1=y=m}. Let {— T(m, n)} denote the event that an open path lying entirely
in T'(m, n) connects a site on x = 1 to a site on x = n. The sponge crossing probability is
Sp(n, m) = P(— T(n, m)). The sponge crossing critical probability is defined by ps =
inf{ p:lim sup,—«» Sy(n, n + 1) > 0}.

A fourth concept of critical probability was proposed in the controversial paper by
Sykes and Essam (1964). Consider a finite region R of the lattice. Let 6z (p) denote the
mean number of open clusters per bond in R. Grimmett (1976) showed that as R expands
uniformly in all directions, a limit #( p) = lim fr(p) exists and is continuous everywhere.
Sykes and Essam assumed 6(p) to have a unique singularity, which is the critical
probability pg.

The first problem of Bernoulli percolation theory is the determination of the values of
the critical probabilities for various lattices. A program proposed by Sykes and Essam
(1964) provided conjectured values of Pr = % for the square lattice bond problem, pgz =
2 sin 7/18 for the triangular lattice bond problem, pr = 1 — 2 sin 7/18 for the hexagonal
lattice bond problem, and pz = % for the triangular lattice site problem. These values
became the conjectured values for pm, pr, and ps also. The Sykes and Essam result
stimulated research which recently led to rigorous verification of their critical probability
values (Kesten, 1980b; Wierman, 1980), and which may be expected to solve the problem
for additional lattices in the near future.

Percolative behavior is most clearly understood for the square lattice bond percolation
model. Three critical probabilities share the common value pg = pr = ps = %. If the
singularity of #(p) in the definition of pg is interpreted as a point where d"d/dp™ = o for
some n, then pg = % if a singularity exists at all. At p = %, 6( p) has a continuous second
derivative (Kesten, 1980). It is unknown if the third derivative of 8(p) exists at p = %.
0( p) is analytic elsewhere.

If p < %, the tail of the open cluster radius distribution declines exponentially (Kesten,
1980b): There exists a constant Ci(p) > 0 such that for all n,

2.1) Po(p(Co0) = n) < 2",

At p = %, the common values of the critical probabilities, the model’s behavior is
considerably different. Although E1/; | Ci0 | = %, the percolation probability remains at
zero, so the probability that an infinite open cluster exists is zero. (2(%) = 0 is due to
Harris (1960).) The sponge crossing probability limit is discontinuous at p = %, since
lim,_, Si/2(n, n + 1) = %, while obviously from (2.1), S,(n, n + 1) — 0 as n — o for p < %.
The open cluster radius distribution satisfies, for all n

1
(2.2) Py/5(p(Com) =n) = "

By symmetry when p = %, the results above apply to closed clusters as well.

If p > Y%, there exists a unique open cluster with probability one. (Uniqueness is due to
Harris, 1960). The sponge crossing probabilities S,(n, n + 1) converge to one. The
distribution of distance from the origin to the infinite cluster is bounded by

(2.3) P,(the infinite open cluster contains no vertices within distance » of the origin)
<= 2{1 _ e—Cl(q}}—leC,(q)n’
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with ¢ = 1 — p and C; as in the p < % case.

Similar behavior occurs in the triangular and hexagonal lattice bond models. Wierman
(1980) proved that py = pr = ps for each lattice, for an appropriate definition of ps.

Exact values of the critical probability are not known for other lattices which contain
circuits. Values are-known for Bethe trees (see Essam, 1972), which can be obtained by a
simple branching process argument.

Lower bounds are obtained by a path-counting method, which applies to lattices of any
dimension. Let f, denote the number of self-avoiding paths of length n starting at a
specified site. f, typically increases exponentially, with rate A = lim sup,_.. (f.)"/" called
the connectivity constant of the lattice. Then, P(p(C.) = n) < Yi-, f.p", which converges
to zero if p < 1/A. The lower bound provided is pz = 1/A. Path-counting bounds are
relatively crude, because interactions between paths are ignored. The square lattice
connectivity constant is approximately 2.6395, giving the lower bound ps = .397 for
comparison with py = %. Although the method is crude, its usefulness is its generality, and
it currently provides the best values for three-dimensional lattices. For example, for the
simple cubic lattice A = 4.6826 providing the lower bound .214, which may be compared
with the Monte Carlo estimate .254.

If the connectivity constant is unknown, the bound may be expressed in terms of the
coordination number for some lattices. The coordination number z is the number of bonds
leaving a single site in a lattice where this number is identical for all sites. The number of
n-step paths with no immediate reversals is z(z — 1)* ™, so 1/(z — 1) < 1/A < pg.

An approximate relationship appearing in the physics literature and supported by
Monte Carlo simulations is py = (d/(d — 1)) 1/z, where d is the dimension of the lattice.
Although no exact critical probabilties are known for higher dimensions, the values for the
. three known planar lattices agree well with this estimate. For a summary of bounds and
Monte Carlo estimates of critical probabilities of various lattices, consult Shante and
Kirkpatrick (1971).

A crucial tool in the program for determining critical probabilities is Whitney duality
of planar graphs. For any planar graph L, there exists a dual graph L* constructed as
follows: Place a site of L* in each face of L. Connect two sites of L* with a bond of L* if
the sites lie in the faces of L which share a common edge. Each bond of L is crossed by
exactly one bond of L*, providing a one-to-one correspondence. Thus, the dual lattice of
L* is again L, so planar graphs occur in dual pairs. Note that the square lattice is self-dual,
and that the triangular and hexagonal lattices form a dual pair.

A bond percolation model on L induces a bond percolation model on L*. Assign each
bond of L* the character (open or closed) of the corresponding bond of L. The induced
model on L* has the same parameter p as the original model on L.

The usefulness of duality in bond percolation stems from the fact that a closed path in
L* may not be crossed by an open path in L, and thus serves as a barrier. The existence
of a closed circuit in L* surrounding the origin then implies that C) is finite, and
conversely.

Duality is particularly helpful when applied to sponge crossing problems. Let T *(m, n)
denote the portion of the dual square lattice contained in {(x,y):%2sx=n—-%, % =<y
= m + %}. Although T *(m, n) is not precisely the dual graph of T'(m, n), duality theory
can be applied to show that either an open path crosses T'(m, n) from right to left or a
closed path crosses T *(m, n) from top to bottom. Noticing that T *(m, n) is a copy of
T(n — 1, m + 1) yields

(2.4) Py(— T(m,n)) + Prp(->Tn—1,m+ 1)) =1.
In particular,
(2.5) Pl/z(—) T(n, n + 1)) = % ,

showing that ps < % for the square lattice bond problem.
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Another useful tool is an intuitive correlation inequality introduced by Harris (1960).
Although subsequently generalized by Fortuin, Kasteleyn, and Ginibre (1971), the original
version is sufficient for the present discussion.

Let G be a finite graph, and consider the bond percolation model on G. Let A and B be
collections of paths in G. Let {— A} denote the event that one of the paths in A is open.
Then

(2.6) P(— A, — B) = P(— A)P(— B).

Harris (1960) employed both the correlation inequality and the self-duality of the
square lattice to prove that py = ' for the square lattice bond problem.

The insightful method for determining critical probabilities proposed by Sykes and
Essam (1964) has been a focus of much recent mathematical percolation research. The
method is described for site models, since a bond percolation model may be transformed
by the bond-to-site transformation to an equivalent site model on the covering lattice of
the original lattice.

The covering lattice is constructed by placing a site of the covering lattice at the
midpoint of each bond of the original lattice, then connecting each pair of sites of the
covering lattice for which the corresponding bonds share an endpoint by a bond of the
covering lattice.

A planar graph G is “decorated” by drawing in all possible diagonal bonds in some
collection of its faces. The graph M constructed in this manner is typically not planar. The
matching graph M* of M is formed by decorating G by inserting all diagonals in all faces
which were not decorated to form M. Thus the matching graph of M* is M. The covering
lattices of a dual lattice pair form a matching lattice pair.

Sykes and Essam (1964) used Euler’s Law to show that the mean number of open
clusters per site on a finite graph and the mean number of closed clusters per site on the
matching graph differ by a polynomial function of p. By neglecting edge effects in
expanding finite regions to the infinite lattice, this property is found to hold for the lattices
themselves. Let # and 8* denote the mean number of open clusters per site in the site
percolation models on M and M* respectively. Then for some polynomial f(p),

2.7 0(p) + f(p) = 0*(1 — p).

Assume that each of # and 6* have a unique singularity. If so, since fis a polynomial, the
singularities must occur only at values pr(M ) and pg(M*) satisfying pr(M) + pr(M*) =
1. As a consequence, the self-duality of the square lattice implies pg = % for the square
lattice bond model (since the covering lattice is self-matching). For the bond models on
the triangular and hexagonal lattices, the star-triangle transformation is employed
to determine that pg for the triangular lattice is a root of 1 — 3p + p® = 0, ie., pz =
2 sin 7/18. The star-triangle relation contributes to the rigorous solution also.

The program that led to the rigorous determination of critical probabilities for the
square, triangular, and hexagonal lattices will now be summarized in the remainder of this
section. Half the program follows the method of Seymour and Welsh (1978) and Russo
(1978), who proved that py + pr = 1 for the square lattice bond and site percolation
models. The apparent general relationship for bond percolation models is pr(L) + pua(L*)
= 1, where L and L* are a dual pair of lattices, which has been verified for the triangular
and hexagonal lattices (Wierman, 1980).

The definitions of critical probabilities imply that pr(L) < pg(L). Evidently, pr(L) <
ps(L) holds in general also. In the square lattice bond model, suppose p = pr(L) and
consider the n X (n + 1) sponge. If {— T(n, n + 1)} occurs, one of the sites (1,1), 1 =i =<
n, is in an’open cluster of at least n bonds. Thus

Sp(n,n + 1) = nP(| Cop| =n) < E(|Coo|;|Con|=n) >0 asn— o,

which implies p < ps(L).
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Similar reasoning provides the easier half of the Seymour and Welsh result, that
(2.8) pr(L) + pua(L*) = 1.

Consider the sponge T'(2n, n). An open crossing from left to right occurs only if one of 2n
sites is in an open cluster of at least n bonds, so S,(2n, n) < 2nP(| Cg| = n). Consider
copies of the sponges T(2**", 2%) placed with alternating orientation so that for each % the
length of the kth sponge crosses the width of the (k + 1)st sponge. If p < p7(L), E | Ci)|
< oo, which implies that —

2 Y51 2*P(|C| = 2%) < .

Thus by the Borel-Cantelli Lemma, with probability one, only finitely many of these
sponges are crossed by open paths. By duality, with probability one, closed paths cross the
dual sponges T*(2**', 2%) for all % sufficiently large. Such closed paths link up to form an
infinite closed cluster in the dual lattice. Hence p < pr(L) implies 1 — p > pu(L*). Since 1
> p + pu(L*) for all p < pr(L), conclude 1 = pr(L) + pu(L*).

The more difficult half of the Seymour-Welsh method, that pr(L) + pg(L*) =1 involves
the construction of open circuits surrounding the origin from open crossings of sponges.
The key step relates the probability of crossing a sponge to the probability of crossing a
sponge twice as long:

LEMMA 2.1.  IfS,(2n, 2n) = 1, then S,(2n, 4n) = r[1 — V1 — 7.

The proof (see Seymour and Welsh, 1978) depends heavily on the use of the correlation
inequalities and considerable symmetry in the sponge. The extent of symmetry required
is unknown.

Once the sponge length may be doubled, it is a simple matter to triple the length with
control of the sponge crossing probability. Considering 7T'(2n, 6n), open paths cross the
leftmost and rightmost copies of T'(2n, 4n) horizontally each with probability at least
7[1 = ¥v1 = 7%, while the central copy of T(2n, 2n) is crossed vertically by an open path
with probability at least , linking the two paths. By inclusion and the correlation inequality
(2.6), conclude

(2.9) P(— T(@n, 6n)) = [1 — V1 —7]%.

Similarly, four copies of T'(2n, 6n) may be placed inside a 6n X 6n square to form an
annular region, which contains an open circuit around the center with probability at least

(2.10) 21— V1 —-7]*

Harris’ (1960) pioneering result that py = % for the square lattice bond model is now a
simple consequence of (2.10). Consider a nested sequence of annuli in the dual lattice
centered at (*%, %) with side length increasing by a factor of three (to obtain disjointness).
Since S1/2(n, n) = % for all n, for p = % apply the Borel-Cantelli Lemma to closed circuits
with the lower bound (2.10). Thus, almost surely, there exists a closed circuit in the dual
lattice surrounding the origin. The origin is in a finite open cluster almost surely, so
pPH= Ya.

A modification of this argument applies when lim sup S,(n, n) > 0. Consider a sequence
of annuli with sizes determined by the subsequence n; for which S,(n., n;) > 8 for some 8§
> 0. Then p > ps(L) implies that a closed cluster in the dual lattice is finite a.s. so 1 — p
=< pu(L*). Conclude that

(2.11) 1= ps(L) + pa(L*).

The remaining step is to show that pr(L) = ps(L).

LeEmMMA 2.2 Ife> 0 and p > pr, then for infinitely many k,
(2.12) [1 = Sy(2k, 20)]°[1 - VS, (2F, 2k)]% sg +e
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ProOF. Suppose not. There exists N such that for all £ = 3" the inequality is reversed.
By monotonicity and duality, with ¢ = 1 — p,

S,(2k, 2k) = S,(2k — 1, 2k + 1) = 1 — S,(2k, 2F).

Thus, for i = N, the probability that there exists a closed circuit in the annulus of outer
edge 3™ is at least % + ¢. Letting D; be the event that there exists an open path connecting
the inner and outer boundary of the annulus of outer edge 3%, P(D;) < % — &. Counting
the number of bonds inside each annulus, '

E|Coo|= 4 x3") + Sn=n (4 X 3%) [[E8 P(D))
n~N
= (4 X 3™) + Y,on (4 X 3™ <% - s) < oo,

contradicting p > pr.

The desired interpretation of Lemma 2.2 is that p > pr implies lim sup,.«Sy(2n, 2n) =
8 for some 8 > 0, so p = ps. Therefore pr = ps. To complete the Seymour and Welsh
argument,

pr(L) + pa(L*) =1 = ps(L) + pua(L*) = pr(L) + pa(L*),

by (2.8) and (2.11), so equality holds throughout.

Modification of the method is required for application to other lattices. Hexagonal
sponges may be used for the triangular and hexagonal lattice dual pair. One type of sponge
crossing was insufficient; it was necessary to consider crossings between a pair of opposite
sides, but also between a pair of opposite pairs of sides. A crucial fact is that the two types
of sponge crossing probabilities provide a common sponge critical probability ps(L).

Note that the method applies to site percolation models as well, in which case the
matching lattice plays the role of the dual lattice. Russo (1978) independently considered
the square lattice site problem. Kesten adapted the method to the triangular lattice site
problem.

Kesten (1980b) recently contributed the second half of the program for determining
critical probabilities. The program is completed by showing that if p < 1 — ps(L*) = pa(L),
then lim,, .., S,(n, n) =0, so ps(L) = pu(L). This is accomplished by producing a mechanism
by which closed crossings in the dual sponge eliminate open crossings of the sponge with
increasing probability as the sponge size increases, when 1 — p = ps(L¥).

Two additional tools are employed in Kesten’s argument. The first is a simple obser-
vation. If there exists an open self-avoiding path across a sponge horizontally, then there
exists a “lowest” open self-avoiding path across the sponge. (Lowest in the sense that the
path divides the sponge into two regions, with it being the only open crossing in the closure
of the lower region.)

The second tool is a step-wise method for closing bonds. For a bond e, let X(e) =
TT¥ X:(e), where

Xie) = 1 with probability p;
! 0 with probability 1—p;,0<p; <1.

The bond e is Z-open if Xo(e) = --- = X,(e) = 1. A bond is open if it is N-open, so the
resulting percolation model is a bond percolation model with p = [[Xo p;. (Note that the
previous interpretation of X; = 0 or 1 is now reversed.) A bond open after ¢stages may
become closed at a later stage, but a closed bond remains closed in later stages.

The method will be described in the square lattice bond model. Let po = %, so p=
[IXo p: < %. Consider the sponge T = T(2**!, 2%*),

Fix ¢, and let R, denote the lowest #open path crossing T from left to right, if such a
path exists. Note that for a self-avoiding path r, the event {R, = r} is independent of
bonds in the region strictly above r.

Suppose R, = r, where r lies entirely within the lower half of 7. Consider the event that
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the left half of T'* contains a closed path connecting the top of T to a site v* lying % unit
distant from r. This event is independent of {R, = r}, with probability at least
*)[1 - Vi J = a which is the probability of a 0-closed vertical crossing of the left half of
T *. If such a closed path exists, there is a leftmost such closed path r* with its “foot” at
a site v* one-half unit from r.

Consider an increasing set of disjoint annuli centered at v*. Each annulus has probability
at least (%)2[1 — v4]* of containing a O-closed path from r* to a “foot” one-half unit
from r, which lies in the portion above r and right of r*.

For any 7, for % sufficiently large, T *(2**', 2**') contains 7 such closed paths in annuli
with probability at least one-half. From the foot of each closed path, a bond crosses a bond
of r. With probability 1 — p7.,, one of these bonds is (£+ 1) closed. Thus, an £+ 1 closed
path extends from the upper boundary across r. Since R, = r is the lowest /-open crossing,
R,:1 does not exist. Hence,

1
(2.13) P(Rs+1 exists| R, exists)<1— a(i) (1= p).

By choice of 7, depending on ¢, the right side of (2.13) may be made less than a constant
v < 1 independently of 4, N, and { p.}. Thus,

P(Ry exists) =yV for % sufficiently large.

‘N may be chosen arbitrarily large for a given p < % by choosing p, sufficiently near one.
Conclude

S,(2%,2¥*) 50 as k—

which implies S,(2% 2%) — 0 by Lemma 2.1.

The choice of po = % is due to the self-duality of the square lattice which produces the
lower bound (2.5) for sponge crossing probabilities. For the triangular and hexagonal
lattices, the choice of py depends on sponge crossing probabilities in a more complicated
manner. For each lattice L, choose po so open sponge crossing probabilities are uniformly
bounded below, so ps(L) < po, but also closed sponge crossing probabilities in the dual
lattice are uniformly bounded below, so by Kesten’s argument ps(L) = po. By the Seymour
and Welsh result, conclude pu(L) = po and pu(L*) = 1 — po.

The star-triangle relationship, used by Sykes and Essam (1978), provides a way to find
the desired value for po. Consider a face in the triangular lattice. A portion of the hexagonal
lattice is superimposed by placing a site in the center of the triangular face, with bonds
connecting it to each of the three triangular lattice sites. Let the triangular lattice bonds
be open with probability p, and the hexagonal lattice bonds be open with probability 1 —
p.If pisaroot of 1 — 3p + p® = 0, the connectivity of the triangular lattice sites is the same
in both lattices. This relationship extends to sponges in the lattices, so an open sponge
crossing in one lattice occurs with the same probability as a closed crossing of the
corresponding sponge in the dual lattice. Applied with the basic duality relationship for
sponges, this fact implies that sponge crossing probabilities are uniformly bounded below
for both lattices when p satisfies 1 — 3p + p® = 0. The resulting solution for the critical
probability is the root 2 sin #/18 for the triangular lattice, and 1 — 2 sin #/18 for the
hexagonal lattice.

The determination of critical probabilities for each additional dual lattice pair may
require a different technique to find the correct p, for bounded sponge crossing probabili-
ties.

To restore the connection with the Sykes and Essam definition of critical probability
PE, let a(n, £) denote the number of open clusters of n bonds containing the origin which
have a boundary of ¢-closed bonds. Then

Py(| Com| = n) =Y, a(n, £)p™(1 — p)*
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and the number of clusters per bond equals

1 1
(2.14) 0(p) = E, | 75— 1 Cool = 1 | = Ti1 = Y aln, H)p™(1 — p)’
| Cool n
(see Grimmett, 1976, and Wierman, 1978). With this representation, Kesten (1980b) showed
that 8(p) is analytic in [0,1] except at p = %, where 8( p) has two continuous derivatives.

3. First-passage percolation. Let (2, % P) be a fixed probability space. Let L
denote the square lattice, with {e;}7; an enumeration of the bonds of L. Let {X;}%; be an
independent identically distributed sequence of random variables on (2, % P) with
common distribution function U. The random variable X; represents the travel time of the
bond e;, and the sequence {X;(w)};2; defines a configuration of travel times on L called the
time state under w.

The travel time under w of a path r containing the bonds e; , - - -, e; is defined as

Ur, w) = Xi(w) + -+ + X, (w).
If R is a nonempty set of paths on L, the first-passage time of R under w is
tr(w) = inf{t(r, w) :r € R}.

If there exists ro € R such that ¢(ry, w) = tr(w), ro is a route for ¢z (w). Note that routes need
not be unique.

The processes of primary interest are the “unrestricted” first-passage processes. For m
< n, let R, be the set of self-avoiding paths from the site (m, 0) to the site (n, 0). Define
the unrestricted point-to-point first-passage time from (m, 0) to (n, 0) by

amn(w) =g (OO).

Let R,.. be the set of self-avoiding paths from the point (m, 0) to some point on the line x
= n, which are contained entirely, except for the final endpoint, in {(x, y) :x < n}. The
unrestricted point-to-line first-passage time is

bmn(w) =i (w).

mn

The restriction to self-avoiding paths, and to {(x, y):x < n} in the case of b,,, are
unnecessary if the travel times are nonnegative random variables, but crucial if negative
travel times are allowed.

In the pioneering work by Hammersley and Welsh (1965), little information was
obtained regarding a,.., and b... presented a complete mystery. A restriction of paths to
remain inside the region m < x < n, except for endpoints, produced the corresponding
“cylinder-restricted” point-to-point process ¢,.. and point-to-line process s.... Independence
introduced by this restriction simplified analysis of the asymptotic behavior of the
processes. Other path restrictions were employed for technical reasons by Smythe (1976),
Wierman and Reh (1978), Reh (1979), and Wierman (1980).

A convenient fact follows from the Bernoulli percolation results concerning the existence
of open circuits.

THEOREM 3.1. Routes exist for m, and by, for all m, n almost surely.

Proor. Two cases are distinguished by the size of the atom at zero of the travel time
distribution.

Suppose U(0) = %. Convert the first-passage model to a Bernoulli percolation model by
declaring a bond with zero travel time to be open, and a bond with positive travel time to
be closed. For fixed m and n, take a square subgraph containing both (m, 0) and
(n, 0). Since U(0) = Y%, with probability one there exists an open circuit surrounding the
square. The set of paths from R, or .., contained inside the open circuit is finite. Any
path which leaves the region enclosed by the circuit may have its travel time reduced by
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substituting a portion of the circuit, which has zero travel time, for a portion of the path.
The path among the finite collection R, (or R..) enclosed by the circuit which has
minimum travel time is a route for @m, (Or bym», resp.).

Suppose U(0) < %. Then there exists a > 0 for which U(a) < '%. Convert to a Bernoulli
percolation model by declaring a bond open if its travel time is less than a, and closed if
the travel time is at least a. Take a square in the dual lattice which encloses (m, 0) and
(n, 0). Since 1 — U(a) = %, there exist infinitely many disjoint closed circuits in the dual
lattice around the square. Let S, , denote the travel time along the x-axis from (m, 0) to
(n, 0). On the event {S,,. < ka}, routes exist for @, and b,,, and are contained in the
region surrounded by the £th closed circuit. Letting 2 — o, routes for @, and b, exist a.s.

By countability of the pairs (m, n), routes exist for @, and b, for all m, n simultaneously
with probability one.

The concept of subadditive process, introduced by Hammersley and Welsh (1965), is
indispensible for determining the asymptotic behavior of first-passage times. A more
restrictive definition than the original, due to Kingman (1968), is given here.

DEerFINITION. Let (2, % P) be a probability space; N the set of nonnegative integers.
A collection of random variables {X...; m, n € N, m < n} defined on (2, & P) is a
subadditive process if it satisfies the following conditions:

1) Ifm<n<p, Xpw) = Xnn(w) + Xop(w) for all w € Q.

(ii) The process {Xm+1,n+1} has the same joint distributions as the process {Xn.} .

(iii) E(Xon) < o for all n € N, and for some constant A, inf, E(X,,/n) = A.

Let g, = E(Xo,). From (i) and (ii) it follows that

gm+n = gn + gm
for all m, n € N. A standard result, which is easy to prove, implies that

lim, .o 2" = inf &% =
n n

exists, and is finite by (iii). The constant v is the time constant of the subadditive process.
The conditions imposed by Kingman'’s definition enabled him to prove the powerful
ergodic theorem for subadditive processes.

THEOREM 3.2 [Kingman, 1968). If {X,..} is a subadditive process, ¢ = lim,_..Xo./n
exists a.s. and in L', and E(¢) = y.

Kingman’s ergodic theorem applies directly to the point-to-point first-passage time
process Gm». For m < p < n, a path from (m, 0) to (n, 0) may, but need not, pass through
(p, 0), so

Amp + Qpn = A

The integrability condition (iii) is satisfied with A = 0 if the travel time random variables
are nonnegative and have finite mean. (Relaxation of these assumptions will be discussed
later.) Application of a zero-one law implies that lim,,_,. @o./n is actually constant almost
surely, and thus is equal to the time constant. Since the time constant depends on the
travel time distribution U only, denote it by u(U).

On the other hand, the point-to-line first-passage process b, is not subadditive, and
has proved much more difficult to handle. Smythe (1976) showed that lim, .. bo./n =
p(U) in probability, by approximating a route for by, by combinations of routes of suitable
subadditive first-passage processes. The conclusion was improved to almost sure conver-
gence by Wierman and Reh (1978). These basic convergence results are summarized in the
following.

THEOREM 3.3. Let U(x) = 0 for x < 0, and [§ x dU(x) < . Then lim, . Qon/n =
lim, e bon/n = w(U) a.s.
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The reach processes
x¢(w) =sup{n:am(w) =t}, yi(w) =sup{n:bun(w) =<t}

describe the maximum distance in the x-axis direction that fluid reaches from the origin
by time ¢. The asymptotic behavior of the reach processes is determined from Theorem
3.3. Letting a(0, n) denote ay,, notice that

¢ xt al0, xi)

T a0, xy)  t

and that by definition

a(0, x¢
—L-—t)——>1 as t— oo,
Since x{ — ® a.s. as t — o,

x¢ 1 s

— —> —— as,

¢ W)

where 1/u(U) is interpreted as +o if u(U) = 0. y¢ is handled identically. -
An argument of Hammersley (1966) yields uniform integrability of

u\P u\P
{(x—tt)} and {(3%)} s (@a>0) forall p>0,

t=a t=a

when U(0) < 1/A. In this case, a weak renewal theorem holds. The reach process results
are summarized in the following.

THEOREM 3.4. If U(x) =0 for x <0, then

. x¢ . yi 1
and particularly, lim, .. E(x¥/t) = lim,. E(y{/t) = 1/u(U).

A major outstanding problem is the determination of the time constant, or of sharp
bounds for the time constant. Indirect means are necessary, since Kingman’s ergodic
theorem provides no method for evaluating u(U). By definition y = inf g./n, so crude
upper bounds are easily obtained, but finding lower bounds presents difficulty. )

The simplest upper bound for u(U) is the mean of the travel time distribution U. Let
S, denote the travel time of the path along the positive x-axis from (0, 0) to (r, 0). S, is a
sum of n i.i.d. random variables. Since @y, < S,, by the Strong Law of Large Numbers,

in L? forall p>0,

0

(3.1) w(U) = E(Xy) =J x dU(x).

0

If the distribution U is degenerate, ao, = S, for all n, and equality holds in (3.1). A simple
two-path argument of Hammersley and Welsh (1965) shows that strict inequality holds if
Uis nondegenerate. Other upper bounds are provided by Hammersley and Welsh; however,
the bounds appear crude. For example, for the Uniform (0, 1) distribution, compare u(U)
=< .425 with Monte Carlo simulations which indicate that u(U) < .328 (Welsh, 1965).

A modification of (3.1) incorporates information from the size of the atom at zero of the
travel time distribution.
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THEOREM 3.5. (Wierman, 1977). Let U(0) = p, and let u( p) denote the time constant
for the Bernoulli distribution with P(X, = 0) = p. Then

Mo (7

ProoF. Define the distribution function F by
0 if x=0

V& =P 4 v50

1-p
which is the conditional distribution of a single travel time given that it is strictly positive.
Let {B;} be a sequence of i.i.d. Bernoulli random variables with P(B; = 0) = p, and Y; be
iid. from F, so {B.,Y.} have distribution U. Consider the time state determined by the
sequence {B.}, find a route for the point-to-point first passage time, denoted a,. Letting
N, denote the number of bonds in the route for af, with travel time B; = 1, note that N,
= ag,, 50 lim,_.. E(N,/n) = p(p). In the time state given by {B:Y}, the conditional mean
travel time of each such bond is E(Y;) = E(X1)/(1 — p), yielding the conclusion.

Although little is known of the dependence of the time constant upon the travel time
distribution, it has been determined when p(U') = 0. The controlling quantity, as suggested
by Theorem 3.5, is the atom U(0).

F(x) =

THEOREM 3.6. Let U(x) =0ifx <0, and [§ x dU(x) < co. Then u(U) = 0, if and only
if U(0) = Y.

ReEMARks. If U(0) > % = puy, there is positive probability that the origin is in an
infinite cluster of bonds with zero travel times, in which case reach processes x¢ and y¥ are
infinite. By Theorem 3.4, u(U) = 0.

If p = %, transform the model into a Bernoulli percolation model by declaring a bond
open if its travel time is zero. Recall that for the n X (n + 1) sponge, Si2(n, n + 1) = Y%.
Thus there exists a site (1, i), 1 =i < n, which is connected by an open path in the sponge
to the line x = n + 1 with probability at least 1/2n. Thus P(y§ = n) = 1/2n for all n, so
E(y6) = +. Since y? = yg for t >0, E(y?/t) = +oo for all £. Apply Theorem 3.4 to obtain
w(U) = 0.

In a recent major development, Kesten (1980a) proved the remaining half in the form
p(U) > 0 if U(0) < pr, confirming a conjecture of Smythe and Wierman (1978a). Kesten
employs a recursion relation to develop an exponential bound on the tail of the reach
distribution. Since it is now known that pr = % for the square lattice bond problem, % is
identified as the “critical probability” for first-passage percolation on the square lattice
also. Prior to Kesten’s result, it was known that u(U) > 0 if U(0) < 1/A, and in this case
a lower bound was provided by Hammersley (1966).

It seems plausible that u(U) should be reasonably smooth as a function of the underlying
distribution. Some properties of u(U) are discussed in the next few paragraphs.

An intuitive monotonicity property holds: If two travel time distribution functions U,
and U satisfy U;(x) < Us(x) for all x, then w(U,) = u(Us).

Under certain conditions, u(U) varies continuous in U with respect to weak convergence.
Initial continuity theorems of Hammersley and Welsh (1965) and Smythe and Wierman
(1978a) were improved by the following result of Cox and Kesten (1981).

THEOREM 3.7. Let F,, n = 1, be travel time distribution functions. If F, —,, F, then
wFR) — p(F).

A concavity property holds which becomes useful in determining the asymptotic
behavior of the length of optimal routes. We introduce the following notation for “shifted”
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time states. If r is a real number, let w @ r denote the time state obtained by adding the
constant r to the travel time of each bond. Let U @ r denote the distribution function of
the shifted travel times. Notice that if the original travel times are nonnegative, the shifted
travel times may assume negative values. The fundamental convergence results for first-
passage times may be extended to such travel time distributions under certain conditions.
The route existence proof is also complicated in this case (See Smythe and Wierman,
1978a).
Let g be any path, and let N(g) denote the number of bonds in q. Then

tg; 0 ®r) = t(g; w) + rN(g).

Therefore

/ Aon(w ® 1) < aon(w) + rN,(w),
where N,(w) is the number of bonds in a route of ao,(w). Taking expected values,
(3.3) 7:(0, n) = E(ao.(w ® r)) < 70(0, n) + rE(N,(w)).
Apply 3.3 to r and —r, to obtain

Y%[7:(0, n) + 7-(0, n)] = 74(0, n).

Divide by n, and pass to the limit, yielding
(3.4) LU r) + %bu(Ud —r) = w(U).

Thus, since p(U @ r) is nondecreasing in r, p(U © r) is a concave function of r.
Define the route length for ao. by

N (w) = min{k: 3 a route of a,(w) containing k bonds}.
Fix ¢ > 0 and r > 0. For almost all w, and n sufficiently large,

Min?ir_)zuw@,) —er
and
@) _ Uy +er.
n
Thus, from
WU ) — y(U) — 2er < r lim inf, ... 2
Dividing by r, and letting r — 0,
1*(0) — 2 < lim inf Y ’;f“’) as.

where u* denotes the right derivative of u(U @ r). Letting e — 0,

(3.5) 1+(0) = lim inf ",f“’) as.
Similarly,
(3.6) lim sup N,:iw) =up (0) as.

The procedure is valid at values of r other than zero. Note that u*(r) = p7(r) except
possibly at countably many points r. The condition under which the argument above is
valid is a bound on the atom at zero, as a consequence of work by Kesten (1980) and Cox
and Durrett (1980). :



522 JOHN C. WIERMAN

THEOREM 3.8. Let U(0) < %. Then

Nu(w) < lim sup N,;iw)

3.7) 1*(0) < lim inf =p (0) as.

Results concerning uniform integrability and numerical estimates for route lengths are
presented in Smythe and Wierman (1978a).
An asymptotic upper bound holds when U(0) = % (Smythe and Wierman, 1978a):

(3.8) lim suin% <E|C|+2-U@) as.

where |C| is the number of bonds in the closed cluster containing the origin in the
Bernoulli percolation model with parameter p = U(0). \

A more difficult problem is to determine the asymptotic behavior of the maximum
height of optimal routes from the x-axis. Few results have been obtained on this problem.

The problem of finding weaker conditions under which the basic convergence theorem
for first-passage times is valid was addressed by Reh (1978). He weakened the moment
hypothesis to [§ [1 — U(£)]* dt < o, which arises from the fact that four bonds exit from
each site of the square lattice, implying that four disjoint paths may be. constructed
between any pair of sites. Under this condition, E(a,) < « for all n, so Kingman’s theorem
applies.

Modification of Reh’s argument to consider interval-to-interval first passage times with
appropriate connecting paths allowed Wierman (1980) to obtain convergence in probability
when [§ x* dU(x) < o for some a > 0.

Cox and Durrett (1979) discovered that in fact no conditions are required at all:

THEOREM 3.9. Let U(x) <O for x < 0. There is a finite constant y such that

lim ap./n = v in probability,
.. o Qon . bon
lim inf —= = y as. and lim— = Yy as.
n n

In addition, Cox and Durrett (1979) provided a description of the asymptotic shape of
the wetted region at time ¢. (This problem was previously considered by Richardson (1974)
and Schurger (1979).) Let ¢(0, x) denote the first-passage time between the origin and x
€ Z*°. Extend the definition of ¢ to x € R? by assigning x the passage time to the nearest
site in Z2. Then, in probability,

lim, . = p(x) <

t(0, nx)
n
exists without any assumption on U. Let A, = {y:£(0, y) <t} denote the wetted region at

time ¢.
Cox and Durrett (1979) show that for ¢ > 0,

(3.9) P({x:p(x) =1—¢} CtT'A, C {x:9(x) =1+ ¢} V ¢suff. large) = 1

if and only if y > 0 and E[(min;,<s X,)*] < o, providing necessary and sufficient conditions
for convergence in the sense of Richardson.
Without assumptions on U,

(3.10) P(t7'A, C {x:¢p(x) <1+ ¢} for all ¢ suff. large) = 1,

andif y >0

(3.11) P(|{x:9p(x) =1} — t7'A,| < efor all ¢ suff. large) = 1

where | - | denotes Lebesgue measure. The last two results show that ¢~'A, grows like

{x:@(x) = 1}, and covers most (but not all) of the interior.
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