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AN APPLICATION OF TIME REVERSAL TO
BROWNIAN LOCAL TIME

By JoanNNA B. MiTrO
University of Cincinnati

By means of a time reversal argument based on Nagasawa’s lemma, the
equivalence of two representations for the Brownian local time is demon-
strated.

1. Introduction. If we denote by s(x, -) the local time at x of the one-dimensional
Brownian motion B, it is known that the process x — s(x, T') is a diffusion when T is a
suitable terminal time. This remarkable fact was first proved by Ray [4] and Knight [3];
see also [6], [7], [8], and [9] for more recent reworkings. In [2] Knight gives the result
when T = T(-1) = inf{¢: B(t) = —1}: for —1 < x < 0, s(x, T(—1)) is the diffusion with
generator (y(d?/dy®) + d/dy) (starting at the entrance boundary 0), then for x = 0 the
generator changes to y(d®/dy®), with the process absorbed at 0. Ray’s analysis involved a
change of variable and his description of the process takes the following form:

(1.1) sx, T-1)) =1+ x> (L+x)"=1+M)7), 0sx=<M,

where M is a positive random variable satisfying P°(M > x) = (1 + x) ! and r is a diffusion
equivalent to (1/2)|Bs|® and independent of M. Here |B,| is the Bessel process of
dimension 4 (having generator (1/2)(d?/dy* + (3/y)d/dy)) with | B,|(0) = 0, and P° is the
law of the Brownian motion starting at 0. For —1 < x < 0, s(x, (1)) is equivalent to
(1/2) | B2 |*(x + 1), with | B3| (0) = 0, and conditioned by | Bz | (1) =[27(1 — (1 + M)~1)]"2
but otherwise independent of M and | By|. Here | B, | is the Bessel diffusion of dimension
2 (generator (1/2)(d?/dy* + (1/y)d/dy)). For x = M and x < -1, s(x,T(-1)) = 0.

In fact the equivalence of Ray’s and Knight’s representations when x < 0 is easily
checked using the observation that (1/2)| Bz |* has generator (y(d?/dy?) + d/dy). For x
= 0 Knight derives Ray’s representation from his own by means of an ingenious use of
time reversal. He calls the argument “difficult”, perhaps because it refers to an unconven-
tional stationary process having Lebesgue measure as “initial distribution”, and requires
keeping track of some conditioning. In this note we prove the equivalence for x = 0 in
another way. Our approach uses time reversal also; the main tool is Nagasawa’s lemma.
For the background of this technque, we refer the reader to [5] which contains a clear and
self-contained exposition.

2. The time reversal. Acording to Knight’s recipe, s(x, T'(-1)) is equivalent to the
process (1/2)| By|* (whose generator is y(d?/dy?)) with exponential initial distribution
(parameter 1). In what follows we will let W stand for the process defined by (1.1), and Z
for (1/2)| B, |* with exponential initial distribution.

The first step toward equating W and Z is to establish the relationship between
(1/2)| B4|* and (1/2)| Bo|*. From their generators, (y(d?/dy®) + 2d/dy) and y(d?/dy?)
respectively, we compute their scale functions and speed measures and follow [5], Section
2. For (1/2)| B4|?, s4(y) = =1/y, ma(dy) = y dy; for (1/2)| Bo|?, so(y) =y, mo(dy) = (1/y) dy.
The diffusion (1/2)| B4 |* has potential density u(x, y) = min(1/x, 1/y) and is self-dual
relative to the measure m4(dy). By Nagasawa’a lemma, when (1/2)| By |2 under P° is
reversed from any cooptional time L, the resulting process is a diffusion with a transition
function derived from that of (1/2)| B, |? via an A-path transform. In fact h(y) = u(0, y)
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= 1/y, and a brief calculation shows that the new process has scale function —1/s, = so and
speed measure s2(y)ma(dy) = mo(dy). Thus the reversed process is equivalent to (1/2)-
| Bo|?.

It remains to choose the cooptional time appropriately. Since we want the reversed
process to have an exponential initial distribution, we take Y to be a non-negative random
variable independent of | By | with P°(Y > y) = e, and define

R(w) = Ly(w(w)

where L, = sup{x: (1/2)| B4|%(x) = y}. R is a cooptional time, and (1/2)| Bs|*(R) has an

exponential distribution. The preceding shows that (1/2) | B4 |*(R — x) is equivalent to Z(x).
We can compute the distribution of R. It was shown in [1] that for a Bessel process of

dimension d > 2 starting at 0, the distribution of the last exit time from y has density

falt) = y* 2P 7IT((d/2) — 1)e*] e ™,
From this formula it is easy to compute the distribution of L,:
PYL,<t) =e™",

and thus

o0

PR=t) = J e dy=t/(t+1).

0

In fact R has the same distribution as the random variable M in (1.1), and will play the
role of M in what follows.

3. The equivalence. Since (1/2)| B, |2(R — x) (0 < x < R) is equivalent to Z(x), it
remains to show that (1/2)| By |*(R — x) is equivalent to W(x). We begin by observing that
(1 + M)~ is uniformly distributed on (0, 1) and that W(0) = (1/2)| B¢|*(1 — (1 + M)7") is
indeed exponentially distributed ((1/2)| Bs|?(x) has density g(y) = (y/x*)e™* under P°).
Thus the two processes have the same initial distribution, and it suffices to prove that for
any initial point yo and r > 0 the processes (1/2)| Bs|*(r — x) with (1/2)| B4|*(r) = yo and
[(1 + x)/2]| B4|2((1 + x)™ = (1 + r)™") with (1/2)| B4|*(r/(1 + 1)) = yo are equivalent. In
fact since | B |? is the modulus of a four-dimensional Brownian motion, it suffices to check
the equivalence with (1/2) | B4|* replaced by the one-dimensional Brownian motion B. The
familiar Gaussian density turns this into an easy exercise, which we leave to the reader to
verify.
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