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GAUSSIAN MEASURES IN B,!

By NARESH C. JAIN AND DITLEV MONRAD

University of Minnesota and University of Illinois

For p = 1, conditions for a separable Gaussian process to have sample
paths of finite p-variation are given in terms of the mean function and the
covariance function. A process with paths of finite p-variation may or may not
induce a tight measure on the nonseparable Banach space B,. Consequences
of tightness and conditions for tightness are given.

1. Introduction. For p = 1, we define B, to be the class of real-valued functions f
defined on [0, 1] having finite p-variation,

(1.1) Vo) = | fOP + sups X | f(trr1) — F@RIF,

where the sup is taken over all finite partitions 7:0 =ty <t < - <l =1 of [0, 1]. It is
easily seen that

(12) I £l = (VoD

defines a norm on B, and (B,, || ° ||,) is a Banach space.

Consider a separable Gaussian process X = {X (¢, w) : 0= ¢ =<1} on a complete probability
space (2, % P). We are studying conditions for X to have sample paths ¢ — X (¢, w) of finite
p-variation. Other authors have mainly considered the stationary-increment case. (See [13]
and [15]). In [13] Kawada and Kono prove rather delicate results of the type Taylor [17]
obtained for Brownian motion, but very stringent conditions must be imposed on the
process to obtain such results. Our aim here is to obtain sharpest possible results in a very
general setting (not even assuming the continuity of the covariance).

A zero-one law guarantees that the process has either paths in B, with probability zero
or with probability one. Since B, C B, for p < g, it follows that there exists a number v,
1 <y =< =, such that P{X(-, w) € By} =0if p <y, and P{X(-, w) € By} = lify<p.

Consider the mean function

(1.3) w (t) = EX(¢).

The process X has sample paths in B, if and only if » € B, and the centered process X
— o has paths in B,. (See Theorem 2.3.) So in our study of conditions for Gaussian
processes to have sample paths of finite p-variation we may focus on centered Gaussian
processes. Assume that X is centered and define

(1.4) a(s, ) =E|X(s) — X
A theorem by Fernique guarantees that if the sample paths have finite p-variation, then
the expected p-variation will be finite, too. Since

E (sup, S | X (tr+1) — X (8)|") = sup,E (e | X (tr+1) — X (%)]") = csups Y 0 (&, bes1)”,
it follows that the condition

(1.5) sup Y o (te, trr1)” <
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is necessary for X to have paths of finite p-variation. In the special case p = 1, this
condition is also sufficient, because

E(sup ¥ | X(ter1) — X(t)|) = sup J, o (t, te+1).

If p > 1, then condition (1.5) is not sufficient. Brownian motion, for example, satisfies
condition (1.5) with p = 2, but does not have paths of finite quadratic varlatlon Under
assumption (1.5) a.a. sample paths satisfy (see Theorem 3.1)

(1.6) | X(s, @) — X (¢ w)| = Cw)o(s, Ollog*(o (s, 1)1

for all s < t, where C(w) is some positive random variable and log*(z) = max {1, |log(u)|}.
From (1.6) it immediately follows that if

(1.7 Sup, Y 0(tk, ter1)?[log* (o (8, tp+1))17% <

then the sample paths of X have finite p-variation almost surely.
In Theorem 3.2 we improve on this last result by showing that even the weaker

assumption
(1.8) sup, Y 0(tx, te+1)?[log*(log* (o (tx, te+1))) 7% < oo

is sufficient to guarantee that X has sample paths of finite p-variation. Intuitively, the
reason for this is that for fixed ¢ the sample paths almost surely satisfy

(1.9)  lim,10SUPo<o(sy<efs—ti<e | X (s, w) — X (¢, w)|/a (s, Hlog | log(o (s, £))|T/* < ='/*

(provided the quantity is defined). So for any fixed partition 7:0 =ty < ti < .-+ <t, =1
and some large constant N, we have

| X(te, @) — X (ta+1, @)|” < No(t, te+1)*[log*log* (o (8, t+1)) ¥

for most indices k. For the remaining 2 we use the uniform bound (1.6) and show that the
contribution from these & to the sum

YRS | X (8, @) — X (tr1, @))P
is small.

In Section 4 we give examples to show that although condition (1.8) is not necessary, it
is the best possible condition of this type. For example, for 0 < ¢ < % the condition

(1.10) supy 2k 0 (e, te+1)"[log* (log* (o (t, te+1)))]” < oo,

is neither necessary nor sufficient for X to have sample paths of finite p-variation.

The second question investigated in this paper is motivated by the following well-known
fact: If X = {X(¢, w):0 = ¢ < 1} is a Gaussian process with paths in C[0, 1] and L*-
expansion

(1.11) X)) =Y git)§ + m(t),

where the Gaussian variables {£;} are independent with mean 0 and variance 1, then for
a.a. w the partial sums

(1.12) Su(t, w) = X1 @) €5(w) + 2 ()

converge uniformly in ¢ to X (¢, w), i.e. {S.} converges to X in C[0, 1]. This fact is very
closely related to the fact that the map w — X (-, ) induces a tight probability measure
in the Banach space C[0, 1].

We pose the analogous question for Gaussian processes X with paths in B, and L*-
expansion (1.11): Do the random vectors S, converge to X in B,? The reason that this is
not obvious is that the Banach space B, is nonseparable. Even the subset of continuous
functions in B, is nonseparable. For p = 1 this is well-known; for p > 1, consider the
uncountable collection of continuous functions

1.13) £ = Yoo1 27 ¥Psin(2%7t), 0<t=<1,
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where ¢ = (e1, €, -+ +), & = £1 (nonrandom). We show in Lemma 2.1 that f, € B, and if ¢
#¢&' then | f. — f. |, > 2.

In [10] we proved that {S,} converges to X in B, if and only if X induces a tight measure
in B,. Every Gaussian process with paths in B; induces a tight measure in B;. (See [10] or
[11].) In this paper we give examples showing that a Gaussian process X with paths in B,
need not induce a tight measure in B, if p > 1. However, if p > y = y(X), then X does
induce a tight measure in B,. (Theorem 4.3).

Throughout, the letters ¢ and ¢; will denote positive constants. Their values are
unimportant and may change from one context to another, even from line to line.

2. Preliminaries. The following lemma implies our assertions about the functions f.
defined in (1.13).

LEMMA 2.1. Let (ax) € ¢~ be a real sequence. Then the function
(2.1) ) = Yo ar27*Psin(@*7t), te [0, 1]
isin B, for p > 1. If f. is given by (1.13) and ¢ # ¢’ are two *1 sequences, then | f. — f.|»
> 2.
Proor. WehaveforO0=s<t¢=<1
[ F(® = )| = | Xk ax2 7P (sin(2%7£) — sin(2*7s))|
+ | ¥ a2 7*P(sin(2*7t) — sin(2*7s))|

where Y.’ is the sum over £ < | Log(t — s)|, and Y,” is the sum over the remaining %’s; Log
denotes the logarithm to base 2. If | @, | =< ¢, 2 = 1, we get the obvious estimate

[f@) —fG)| <cm|t—s|Y 2k2a7*P 4 2¢ 3" 27H/P
=c|t—-s|"”
for some ¢; > 0 (independent of s, £). This estimate proves the first part. For the second
part we first observe that for j = 1
(2.2) || sin(2’z8)||,, > 2777
To see this, let ¢, =277, i=0, 1, .-., 2/*". For this partition
(2.3) | sin(2/mtis1) — sin(2/me)|? =
for each i, so (2.2) follows. If € # ¢/, then there exists j such that e, = &%, -++ , g1 = &}-1, &
# ¢j. For this j we pick the partition of [0, 1], as above, and we have
I(f = £ (1) — (f = £ (@&)] = | & — €/|277P | sin(2/mtis1) — sin(@mty)|
=9.97/P

by using (2.3). This shows || £, — f./ |, > 2.

We now turn to L-expansions of Gaussian processes with paths in B,. It is obvious
from the definition that if a separable process has paths in B,, then the sample paths must
have right and left limits at every ¢,a.s. Therefore the following theorem, which is proved
in’ [10], applies to Gaussian processes with paths in B,. For a discussion of fixed and
moving discontinuities of a process we refer to Doob [2]. As usual » denotes the mean
function,

m({t)=EX({), 0=t=<1

THEOREM 2.2. Let {X(¢):0 <t =1} be a separable Gaussian process with almost all
sample paths having right and left limits at every t. Then the following holds:

(i) Almost surely the paths of the process have no moving discontinuities. The set of
fixed discontinuities is countable and coincides with the set of points of stochastic
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discontinuity of the process. In particular, if X is stochastically continuous, then X has
continuous paths a.s. If X is not stochastically continuous, then with probability one, the
sample paths are discontinuous at every point of stochastic discontinuity.

(ii) The L3(P) closure of the linear span of {X(t)—m(t):0 <t < 1} is a separable
Hilbert space with the L*(P) norm, and if {£.} is a complete orthonormal system
(necessarily, £, are independent, Gaussian with mean 0 and variance 1) in this Hilbert
space, then

where
(2.5) @n(t) =I £,X(t) dP.

For each fixed t, the series in (2.4) converges in L?*(P) and a.s.
The following theorem contains a zero-one law. We give it here for later use.

THEOREM 2.3. Let {X(t):0 < ¢t < 1} be a separable Gaussian process such that
P{X(., w)€ Bp} > 0. Then this probability is 1, the mean function s € B,, ¢, € By, forn
= 1 (where g, is defined by (2.5)) and there exists ¢ > 0 such that E[exp(e|| X (-, v) )]
<

PRrOOF. The zero-one law and the fact that » € B, and ¢, € B, follow from Proposition
6.2 in [11], which loosely speaking states that if X is a separable Gaussian process with L>-
expansion (2.4) and L is any linear function space then P{X(., w) € L} > 0 implies that
P{X(-,w) EL}Y =1, m € L and ¢, € L for n = 1. The last assertion in Theorem 2.3
obviously follows from Fernique’s result on measurable seminorms. However, since B, is
nonseparable and X may not induce a tight measure in B,, we have to proceed with
caution. Note that if X(-,w) € B, a.s. and » € B, then the process {X(¢, w) — #(¢):0 =
t < 1} has paths with left and right limits and is therefore separable (since X is separable).
Let S denote a separability set with 0 € S and 1 € S. Let E be the linear space of all real-
valued functions on S and & the o-algebra generated by the cylinder sets. Define the
seminorm N(f) on E by

N(HE =) "+ sups Xk | Ftas1) — (&) |*

where the sup is taken over all finite partitions 7:0 =ty < t; < --- <t, =1withtL €S, k
=0, 1,.--, n. By Fernique’s theorem ([5]) there exists ¢ > 0 such that

E{exp(eN*(X(-, w) — m(+)))} < co.
Since || X(-, w) — #(+) |, = NX(:, w) — #(-)), a.s. we get
E exp(e| X (-, @) — m(+)|2)} < .

The theorem now follows since ». € B,.
The next lemma generalizes a lemma of Fernique [6].
We will write for a process X

(2.6) ox(s, t) =E|X(s) - X(@)]|.
LEMMA 24. Let {X(t):0 <t < 1} be a separable, centered Gaussian process. F is a

non-decreasing function on [0, 1] with F(0) = 0. If ¥ is a nondecreasing continuous
function on [0, F(1)] such that for some ¢; >0, ¢z > 0,

(2.7) Y(0) =0, up(v) < c1y(wv) for 0=v=<F() and O0=u=1,
(2.8) ox(s, t) = Y(F(t) — F(s)), s=¢,



50 N. C. JAIN AND D. MONRAD

and

(2.9) J Y(he™"%) dx = 0/(h)), k|0,
0

then there exists ¢c; > 0 such that for0=a<b=<F(1) andx=1
(2.10) P{supsicrian| X(s) — X(¢) | > cs¢(b — a)x} < exp(—x7/2),
where I(a, b) = {t:a < F(t) < b}.

ProoOF. Let
a=F(1), R={F@t):0=t=<1}

and
V=[0,a] —R.

We shall show that there exists a separable, centered, stochastically continuous Gaussian
process {Y (6, w) : 0 < 6 < o} such that P{X (¢, w) = Y(F(t), w) for all £} = 1.
First observe that

(2.11) V=Uuz,V;

where the V/’s are disjoint open or half-open intervals. This is seen from the fact that if F'
is discontinuous at ¢, then either F(t,)) < F(ty+) or F(to—) < F(to). If F(t,) < F(to+), then
either the open interval (F(&), F(to+)) or the half-open interval (F(t), F(to+)] is a
maximal connected component of V—depending on whether F(f,+) € R or F(t,+) € V.
Similarly, if F(to—) < F(t), then either (F(t,—), F(t)) or [F(to—), F(f)) is a maximal
connected component of V.

We now construct the Gaussian process Y (), 6 € [0, «] as follows: if § € R, define

(2.12) Y(0, w) = X(t, w)

where F(t) = 0. This definition is unambiguous because if H(6) ={t: F(t) = 6} contains
more than one point then it is a nonempty interval. By our assumption on the paths of X
and (2.6) and (2.8) the process is a.s. constant on H(#). Since such intervals are only
countable in number, we can set aside a P-null set. Now let § € V. If § € V; and is an
endpoint of V;, say the right endpoint, then § = F(f,+) for some ¢ and we define Y ()
=X(t,+). (Pick any random variable representing the L2limit of X(s) as s | ¢, which exists
by (2.8).) If € V; is the left endpoint of V;, then 8 = F(¢,—) for some ¢, and we define Y (6)
= X(—). On the interior of V; the paths of Y are defined linearly. The process Y we get
is a centered, Gaussian process on [0, a] with X (-, w) =Y (F(-), w) for a.a. w. And Y is
separable with separant F(S) U S;, where S is a separant for X and S; is any countable
dense subset of V.

It is clear from our construction that if 6;, . € R, then oy (61, 62) =< c2y(| 61 — 6:]).
Furthermore, if 6y, 6: are in V; =(u1, u;], then

or (0, ) = 01— %1
(2.13) Uz — U

= cicoy(| 6 — 02])
by Fatou, (2.7) and (2.8). It is easily seen that for any 6, 6,,
(2.14) oy(61, 02) < cay(| 61 — 62]).

So Y is stochastically continuous. (Actually, Y has continuous paths a.s. But we don’t
need this fact in the proof of Lemma 2.4.)
To finish the proof of the lemma, let

(2.15) Z((s1, 82), w) =Y (51, w) — Y{(s2, w), (51, s2) € [0, a]?.

oy(us, u2) <

0, — 6.
I_l__zl o (ue — w1)
2— U1
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The Euclidean distance on [0,a]? is denoted by d. As a consequence of (2.14) and (2.7) we
get

(2.16) 0z((s1,82), (&1, &2)) = E|Z(s1, 8) — Z(t1, &) |
= esW(d((s1, 82), (11, 12))/V2).

We now apply a lemma of Fernique (Lemma 1.1 [9], page 138) to the Z-process for a =< s,
ss =< b. We have by (2.14)

SUPa=sy 526 EZ2(51, 82) = SUPazsre=b E| Y(s1) — Y(s2) |* = c&y*(b — a).
By Fernique’s lemma we get for x > 0(k = 2 here) and any integer n > 1,

@.17) P{SUPazs1.0=b| Z(s1, 82) | > ce¥/(b — @)x + ¢5 X p=1 0(p)(n(p) (b — @)}

o

=n* J e 2 dt + Yo n(p)* J e~ dt,
x o(p)

where 6(p) > 0 and n(p) = n®”. If we pick 6(p) = 4x(log n(p))*”?, then

¥ (log n(p))*(n(p) (b — a)) = wj Y((b — a)e™?) du
(2.18) 0
=< csy((b — a)),

where we used (2.9) at the last step. We also have for x > 1, n = 2

0

Y» n(p)* j e du<e 2y, n(p)*
(2.19) o

—_2
< cpe ™72

Using (2.18) and (2.19) in (2.17) we get c10 and ¢1; (independent of a, b) so that for x = 1

(2.20) P{SUPazsrs=s| Z(s1, $2) | > cro¥(b — @)x} < 11 €72,

This inequality readily implies (2.10) for some c; > 0 and the lemma is proved.

3. Conditions for paths to be in B,. As we remarked in the previous section, if for
some p = 1 we have P{X (-, w) € B,} = 1, then almost all sample paths must have right
and left limits at every £. By Theorem 2.2 such a process has no moving discontinuities and
the set of its fixed discontinuities coincides with the set of stochastic discontinuities.

We now consider conditions in terms of the mean function and the covariance for the
process to have sample paths in B,, a.s. It follows from Theorem 2.3 that X has paths in
B, if and only if » € B, and the centered process X — » has paths in B,. We now focus on
centered Gaussian processes. Assume that » = 0 and write

3.1) a(s, ) =E| X(s) — X(9)|
and
(3.2) log*(s) ='max(1, | log(s)]), s>0

logs (s) = log*(log*(s)).
For p = 1 we define
3.3) G (p; 0) = sup, 2 (0(L, te+1))”,
and

(34) Ga(p; 0) = sup, Y [0(te, ter1) (logs (o (B, t+1)))* T,
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where the sup is taken over all finite partitions 7:0 = t, < t; < .-+ < ¢, = 1 (and the
summand is 0 if o (¢, tx+1) = 0). Obviously, G (p, 6) < Gz(p, o). Let

(3.5) y=inf{p=1:G(p; o) < =}
(with the understanding that y = oo if the set is empty). If G (p; 6) < «, then G:(p’; 0) <
oo for p’ > p. So Gz(p; o) can be used in place of G(p; o) in the definition of y.

THEOREM 3.1. Let {X(t):0 <t < 1} be a separable centered Gaussian process for
which G (p, o) < x for some p = 1, then for almost every w there exists C(w) such that for
s=t

(3.6) | X(s, w) — X(t, w)| = C(w)a(s, t)| log*(a (s, D)2,
where the right side is 0 if o(s, t) = 0.

Proor. Since G(p; o) < o, the function defined by
3.7 F(t) =sup. Y E | X(tr1) — X (t2)[7,

where 7 ranges over all partitions 0 = tp < #; < - - - < ¢, =, is a nondecreasing real-valued
function (we have used the well-known property of Gaussian moments). For s < ¢

(3.8) E|X(s) = X(@)|)? = F(t) — F(s).

The set D of discontinuities of F'is countable and X (¢) is stochastically continuous at every
t € D. Now consider each variable X (f) a point in the Hilbert space L%(P). The function
o defines a pseudo metric on the set {X(¢):0 < ¢ = 1} and by (3.8) we have (for some c;
> 0)

(3.9) a(s, t) < c(F(t) — F(s))?, s<t.

For ¢ > 0 let N{e) denote the minimal number of balls of o-radius < ¢ that cover the set
{X(t):0 =<t = 1}. From (3.9) it is clear that there exists c¢; > 0 such that

(3.10) N(e) =ce™, €>0.

Let @ denote the rational numbers in [0, 1]. Then the countable set of variables {X(¢):
t€ DU Q} is dense in {X(f):0 < ¢ < 1} in the o-metric. Since X is separable with D U @
as a separant, it follows from a theorem of Dudley [3] (see Theorem 5.1 in [9]) that for
almost all w, there exists §(w) > 0 such that o (s, ) = §(w) implies

a(st)

(3.11) | X (s, w) = X(t, 0)| =< ¢4 J’ (log N(e))'/* de

0

where ¢, > 0 does not depend on w. We now use the estimate in (3.10) to conclude that for
o(s, t) = 68(w)

(3.12) | X (s, w) — X(t, w)| = cs 0 (s, B)| log o (s, O
Since the paths of the process are bounded on [0, 1], this ctearly implies (3.6).

THEOREM 3.2. Let {X(¢):0 <.t = 1} be a separable, centered Gaussian process. If
Ga(p) < , then

(3.13) P{X(-,0) €EB,) =1.

In particular, if p > v, then (3.13) holds. Conversely, if (3.13) holds then G(p) < =, so if
p <7ythen

(3.14) P{X(-,w) € B} = 0.
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Proor. We have
E(V,(X)) =sup, 3 E | X(te1) — X(&)|°
= csup, 3, (0(ts, tr+1))”.

If (3.13) holds, then by Theorem 2.3 we have E (Vp(X)) < o, so by (3.15) we have G(p)
< 0. We now prove the first assertion. In [11] we showed that G (1) < « is both a necessary
and a sufficient condition for X to have a.a. sample paths in B;. So we need only consider
the case p > 1. The main part of the argument is contained in Theorem 3.1 and Lemma
2.4. After these two estimates are available, the rest of the argument is the same as given
by Taylor [17]. See also [13]. We give the argument here for completeness. For0 = ¢t <1
define

(3.15)

(3.16) F(t) = sup, Y, [0(te, trr1)Qogs (0 (&, te1)))2P

where 7 ranges over all finite partitions 0 =t < t; < ... <, = t. We also take
3.17) () =t llogs (1% 0=t=F(Q).

Then it is easily checked that for s < ¢

(3.18) a(s, t) = cY(F(t) — F(s)).

As in Lemma 2.4, let

(3.19) I(a,b) = {t€[0,1] : a < F(t) < b}.

We now define for n = 1
(3.20) =127, (j+2277), j=0,1,...,[2""'F()],

where [x] denotes the greatest integer less or equal to x. Let 2 and m be constants such
that 2 + p/2 < m + 1 < &, let ¢; be the constant in (2.10) and put

(3.21) Anj= {w: Supssea,, | X(s, 0) — X(t, )| = cs V2 277},
(3.22) Zo(w) =#{j:w € Ay ).

By Lemma 2.4 we get

(3.23) P(A,) < (nlog(2))™*.

Therefore,

(3.24) E(Z,) <= 2"'F(1)(nlog(2)) ™.

By Markov’s inequality, we get
(3.25) S P(Z,>2"n"™} =Y, en %™ < o,
By the Borel-Cantelli lemma, there exists for a.a. w a number ¢(w) such that
(3.26) Zn(w) =c(w)2"n™, n=1.
Letm:tp=0<t< ... <ty =1 be a partition of [0, 1], aﬁdlet
A@) = (i 1] X(t;, ©) = X(ti1, 0)|” > 4(es V2R (F(8) = F(6-1))}
and
A, ={i: 2" = F(t) — F(ti-1) <271},

Obviously

(3.27) Yieaw | X (&, ©) = X(t1, 0)|” < 4(cs V2R)PF(1).
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Also,
(8.28)  Yieaw | X(ti, w) = X(tio1, 0)|P = Yne1 Yicawina, | Xt 0) — X(t1, w)]P.

Since G:(p) < ® by assumption, we have G (p) < . We can therefore use the estimate
(3.6) of Theorem 3.1 to conclude that this last expression is dominated by

Y Vicawna, Cw)[o(ti1, t)(og* (o (i1, £:)))/*17.
By (3.18), this quantity has an upper bound
T Tieawna, C(@)[y 277 (log* (¥(2™ 7)) P
Finally, #(A(w) N A,) < 4 Z,(w), and using (3.26) we get the upper bound
Y C'(w)2"n ™27 (n + 1)P/% < .

Therefore by (3.27) and (3.28) we conclude that X (., w) € B,, a.s.
We will show in the next section that if p > 1, then G2(p) < = is the best possible
sufficient condition for the process to have a.a. paths in B,.

4. Conditions for tightness of the induced measure. If the process has paths in
B, a.s., does it induce a tight measure on the Borel subsets of B,,? Recall that a probability
measure g on the Borel subsets of a Banach space B is tight if given ¢ > 0, there exists a
compact subset K such that u(K) > 1 — ¢ this is also equivalent to the existence of a
separable Borel set A such that u(4) = 1. Suppose X (-, w) € B, a.s., and let &/ denote the
class of Borel subsets A of B, such that P{X (-, w) € A} is defined. Then /is a c-algebra.
Since a.a. sample paths £ — X (¢, w) have left and right limits it follows that for any g € B,,,
the process {X(¢) — g(t):0 < t =< 1} is separable, too. Let S denote a countable separant
for this process. Then V,(X(-, w) — g(-)) is almost surely attained if the partition points
in (1.1) are restricted to S. Therefore, V,(X (-, w) — g(-)) is a random variable. It follows
that .o/ contains the o-algebra generated by the balls B(g, r) = {f € B,:|f — gll» <7},
£ € B, r >0, which will be denoted by %,. It is easily seen that %, contains the compacts.

We first state a theorem (proved in [10]) which gives several equivalent conditions for
the process with paths in B, to induce a tight measure in B,.

THEOREM 4.1. Let {X(t):0 <t =< 1} be a separable, centered Gaussian process with
paths in B,, a.s. Then the following conditions are equivalent:
(4.1) The process induces a tight measure on the Borel subsets of B, .

4.2)  If {pn}, {&.} are sequences as in Theorem 2.2(ii) and S, (t, )
= Y711 i) (w), then P{lim, || S.(-, w) — X(-,w)|p =0} = 1.

(4.3) For everye >0, P{|| X(-, w) |, <€} >0.

The next theorem deals with the case p = 1. It was proved in [10]; a different proof was
given in [11].

THEOREM 4.2. If the separable Gaussian process {X(t):0 < t < 1} has paths in B;
a.s., then it induces a tight measure in B;.

. For p > 1 the situation is quite different. The next theorem gives a sufficient condition
for a B,-path Gaussian process to induce a tight measure in B,.

THEOREM 4.3. Let {X(¢t):0 =<t =1} be a separable centered Gaussian process. If for
some € >0

(4.4) sup, Y (0 (&, ter1))” (0g* (0 (Er, ter1)) P> < 0

(in particular, if p > vy, where v is given by (3.5)) then the process has paths in B, a.s. and
induces a tight measure in B,.
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Proor. Following Rudin [16], for 0 < a < 1 let lip a denote the set of bounded real-
valued functions f on [0, 1] such that

lim, joSupo<s—s<c| F(s) — f() | /|s — t|* = 0.
It is well-known that the space lip « is a separable Banach space with norm
| Fllipa = | F(O) | + supssc|f(s) — f(&) |/|s — ¢]*
If p > 1 and a = 1/p, then clearly
I lo =l flhipa, f € lip a.

Therefore lip 1/p is a separable subset of (B, || - ) when p > 1. Given F': [0, 1] — [0, 1],
a nondecreasing function, the linear operator ®r: B, — B, defined by

Op(f)=f°F
is continuous. Therefore ®r(lip 1/p) is a separable subset of B,. This set consists of g € B,
for which g(s) = g(¢) if F(s) = F(t) and
lim,joSupo<re -rui< | 8(s) — &) | /| F(s) — F(¢)|"” = 0.
Let £ > 0 be as in (4.4), and define
4.5) F(t) = sup, Y4 (0 (&, te+1))? 10g* (0 (fe, B+1)))”/***

where the sup ranges over partitions 7 of [0, ¢]. We will show that X (-, w) belongs a.s. to
®r(lip 1/p), where F is given by (4.5). This will prove the theorem.
By (4.4) we have G(p) < ». Therefore, by Theorem 3.1 we have a.s.

(4.6) | X (s, w) — X (¢, @) [P < CP(w)o” (s, t) |log* (o (s, £))"/°.

If s < t and F(s) = F(t), then clearly X (s, w) = X (¢, ) a.s. Since X is separable, almost all
paths satisfy the condition that F(s) = F(¢), s # t, implies X (s, w) = X (¢, w). By (4.6) we
have

P{X(.,w) € @r(lip 1/p)} = 1.

We now proceed to discuss a class of examples which illustrate the sharpness of the

conditions in Theorems 3.2 and 4.3.
In what follows, p > 1, m is a positive integer such that m(1 —p~') >1and g = 4™ Let
(p(n)) be a real sequence satisfying

(4.7) Y- len) |g™F < oo,

and define

(4.8) f(t) = p(n)g *Psin(qg™nt), 0=t=1,
4.9 f@)=Yn-11ut),0=t=1

We observe that the argument used to prove (2.2) shows

(4.10) || sin(g™nt) ||, = g™,
therefore

(4.11) I£lle = |@(n) |-

The following lemma will be useful.

LEMMA 4.4. Iffis defined by (4.9), then f € B, if and only if (p(n)) € ¢£*. Furthermore,
the series defining f converges in B, if and only if p(n) — 0, as n — oo,

ProoF. If (p(n)) € ¢, then f € B, is shown by an argument similar to the one given
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in the proof of Lemma 2.1. Now assume that sup|@(n)| = . We can find |(N)|
arbitrarily large so

(4.12) lp)|<|e®)|, n=1,2,---,N.

Consider the partition
k
(4.13) =3 g k=01,...,2¢".

Forn> N, fo(tx) =0,0 <k =<2g", so

(4.14) [£(te) = F(ta=1) | = | fiv(teser) — Fv(8x) | = A= [ fo(te) — fo(B-1) |
=|o(N) g™/

Summing on 0 < k < 2¢", we conclude that

(4.15) Vo(f) = 2|@(N) [P/3".

Since | ¢ (N) | can be arbitrarily large, this proves the first assertion.
If the series defining f converges in B,, then the nth term should tend to 0 as n — , s0O
¢ (n) — 0 by (4.11). Now assume ¢ (n) — 0. Then

|fu(s) = fu(8) | < | @(n) | g Pmin{2, g"7|s — t]}.

Using this estimate and making the first part of the argument used in the proof of Lemma
2.1 we see that | Y- fi|l» =< c sup{|@(m) |, |p(m + D |, -+, |e@®)|} = 0asm, n— .
This proves the lemma.

As an immediate corollary of this lemma we have:

PROPOSITION 4.5. Let {£,} be independent Gaussian variables with mean 0 and
variance 1, and let (p(n)) be a monotone sequence satisfying (4.7) Then the process
(4.16) X(t, ) = Yn-1 ¢(n)g*sin(q"nt)én (@)log™*(n + 1),
has paths in B, as. if and only if (¢p(n)) € ¢7. The defining series converges in B, a.s. if

and only if p(n) > 0 as n — .

ProoF. We only need to observe that by the Borel-Cantelli lemma P {| . | > log"*(n
+ 1) i0.)} = 1 and P{|&| < 2 log”*(n + 1) eventually} = 1. For the process defined by
(4.16) we have

1/2
als, t) = (%) (N1 @ (n)%q~*/?[sin(q"nt) — sin(g"ms)]’log ™ (n + 1)}

We write the infinite sum as &’ + =”, where £’ is the sum over {n:q"7|s — t| <2} and
S is the sum over the remaining n. Then using the estimates | sin(g"nt) — sin(g7s) | =
g"7m|t—s|onZ’ and =2 on X", we get

2 1/2
a(s, t) < (;) = ¢(n)’qg~/Pq*n* |t — s|*log'(n + 1)

+ 37 @(n)’q~""P4 logX(n + 1)}

Now assume that (¢ (n)) is a slowly varying positive sequence. Then using standard facts
about regularly varying summands (see [4]) we get

o(s, t) < c|t—s|"Pp([log*| ¢t —s|1)/(log%|t — s|)2,

where ¢ > 0 is independent of s and ¢.
It follows that if (@ (n)) is slowly-varying in (4.16), then the Gaussian process defined by
(4.16) has paths in B, if and only if G3(p) < . This shows that the condition in Theorem
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3.2 is the best condition of this type. If we take @ () = 1, then the process has paths in B,
but does not induce a tight measure in B,. This shows that Gs(p) < « is not a sufficient
condition for the process to induce a tight measure in B,.
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