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SELF-INTERSECTIONS OF RANDOM FIELDS

By JAY ROSEN?

Bar-Ilan University and Weizmann Institute

We show how to use local times to analyze the self-intersections of
random fields. In particular, we compute the Hausdorff dimension of r-
multiple times for Brownian motion in the plane, Brownian sheets and Lévy’s
multiparameter Brownian motion.

1. Introduction. A now classical theorem of Dvoretzky, Erdos and Kaku-
tani (1954) states that for any r, planar Brownian motion W, has r-multiple
points, that is, points x € R* with x = W,, = W,, = ... = W, for distinct
ti, - -+, t.. In fact, Taylor (1966) has shown that the set of r-multiple points has
Hausdorff dimension 2. This is equivalent to the statement that {t,, ---, t,
distinct | W, = - .. = W, }, the set of “r-multiple times”, has Hausdorff dimension
1. Taylor’s approach is to use potential theory, and determine which stable
processes “hit” the set of r-multiple points. (See Wolpert, 1978, for an alternate
proof.) Our view is that the set of r-multiple times is simply the zero level set L
of the random field

(101) X(th Tty tr) = (Wtz - th Wt3 - th Tty Wt, - Wt,_l)’

and the best way to study level sets of a random field is through its local time.
In Section 2 we will show in detail how the theory of local times can be used
to prove the following theorem. Let R = {(¢,, - - -, t,)| 0 < ¢; distinct}.

THEOREM 1. dim(L" N R”.) = 1 with probability one.

The same proof shows that we still have dimension 1 even if we require the ¢;
to be separated by some fixed constant. Our method actually yields information
on the Hausdorff measure function for L" N R’;, a more discriminating concept
than that of Hausdorff dimension (see Proposition 3).

The real advantage of our approach is its broad applicability. In this paper we
will study two additional examples: the N-parameter Wiener process in R¢, W<,
and the index-g process W*

W4 also known as the Brownian sheet, is the Gaussian random field indexed
by t € R¥with d independent components W%, each mean zero with covariance

(1.2) E(WIHWYeh) = [TX; min(s;, t;)
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SELF-INTERSECTIONS OF RANDOM FIELDS 109

fors=(sy ---,sn), t=(t ---, ty). Define X™ in analogy to X:
(1.3) XMNd(ty, o, ty) = (WY = W, ..., Whd — wid),

In Section 3 we will prove the following theorem where Ly 4 = (X™%)7}(0) is
the set of r-multiple times for Wy, 4.

THEOREM 2. If Nr > d(r—1)/2, then
dim(Ly¢ N (R%)N) = Nr — d(r-1)/2
with probability one.
W$, for 0 < B8 < 1, is the Gaussian random field indexed by t € R" with d
independent components W*#* each mean zero with covariance
(1.4) E(WEWE) = (¢/2){1s]™ + |t]* — |s — t|*}.

(When 8 = % this is Lévy’s multiparameter Brownian motion). Define X* as
before :

(1-5) Xﬂ(tla Tty tr) = (W}tsz - W‘t?p Tty Wg. - Wtﬁ,_1)9

and let L; = (X?)7'(0) be the set of r-multiple times for W*. If we use the
notation

RZI,\{:= {(tl’ Sty tr)ltt #* O’as Itl_ t:ll Sb, Vi 9&]}’
Kono (1978) has shown that when 2N > 3d, then
LENR¥ # 0 forany 0<a<b.

Independently of this, in Section 4 we establish the following theorem:

THEOREM 3. If Nr> Bd(r — 1), then
dim(L; N R) = Nr — Bd(r — 1)

with positive probability, for any 0 < a < b. (Of course, this also gives
dim(Lj N (R)%).)

Let us now describe our approach to self-intersections. Given a random field
X: RP — RY, whose components are Holder continuous of any order < 4, it is a
general result (see Adler 1981, Lemma 8.2.2) that

(1.6) dim(X'(y)) <p — qé

for almost every y. However, in our specific case we are not interested in knowing
about “almost every” y, but about one specific y, y = 0. It is here that local time
comes in.

We first recall the definition of local time. (For an excellent overview see
Geman and Horowitz, 1980.) For any Borel set B C RP we define the occupation
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measure of X by
(1.7) us(A) = ,(X7'(A) N B)

for all Borel sets A C RY, where )\, denotes p-dimensional Lebesgue mesure. If up
< )\, we say that X has a local time on B, and define its local time by

d
= kB
(1.8) a(x, B) ax, (x).
Of course this only determines a(x, B) a.e. d\,(x). Intuitively, a(x, B) is the
amount of “time” from B spent by X at x.
X is said to have a jointly continuous local time on the hypercube I =
[1%: [a;, a; + h] if we can choose

a(x, [1%: [a;, a; + t])

to be a continuous function of (x, t;, - - -, t,), 0 < t; < h. We remark that under
these conditions we can choose a(y, -) to be a finite measure supported on
XNy). ~
Returning to level sets, it is a theorem of Adler (1978) that if X has a jointly
continuous local time, then (1.6) holds for all y, in particular we have

1.9) dim(X~1(0)) < p — 4q.

Furthermore, in the examples we consider, our proof of joint continuity will
easily yield

(1.10) «(0, B) < c|B|*

for any p < 1 — 8q/p and any sufficiently small hypercube B. The fact that
«(0, -) is a finite measure on X~*(0) and satisfies an inequality of the form (1.10)
will show that

(1.11) dim(X~*(0)) = p — 8q, whenever «(0, -) > 0.

It is easy to prove that «(0, -) > 0 with positive probability, which will result in
Theorem 3. To obtain the probability 1 statements of Theorem 1 and 2 we need
to use some form of zero-one law. These are available for W and W™“—but
apparently not for W*.

As can be seen, the key step in our approach is to establish the joint-continuity
of the local time for the random fields X, X™¢ and X*. The only general method
available for proving joint continuity is that of local non-determinism (LND),
see Berman (1973), Pitt (1978) and Cuzick (1981). We shall, in fact, make use of
the result that W# is LND in Section 4, but our fields X, X and X* do not
appear to be LND and we must establish joint-continuity directly. Finally, we
would like to mention that the approach of this paper is applied in Geman,
Horowitz and Rosen (1983) to study the intersections of independent random
fields, and in Rosen (1983) to a more detailed analysis of the local time of

X(s,t) =W, — W,

when W, is two or three dimensional Brownian motion.
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We have recently received the paper of Cuzick (1982) who obtains some of our
results by very different methods.

2. Planar Brownian motion. In this section we carry out in detail our
approach to the r-multiple times of planar Brownian motion. Let I = [}, [a;, a;
+ h] denote a fixed hypercube in

RL={(ty, -, t)|0<tr1 <ta<.-- <t}
so that
(2.1) a;+ h < aiy.

We first show that X (see (1.1)) has a local time on I.

PROPOSITION 1. For any Borel set B C I, X has a local time a(x, B) on B, and
a(x, B) € L{R*V, dx) a.s.

PROOF. Let up be the occupation measure of X (see (1.7)). It will suffice to
prove the finiteness of

E(fz( 1 | 15(U) |2 dU)

(2.2) = J;%_n j; J; E(exp(i U - (X(T) — X(S)))) dS dT dU

= f f f exp(— 1 V(U - (X(T) — X(S)))) dU dS dT
B JB JR2Ar-D 2

with notation S = (sy, - -+, 8,), T=(t, ---, t,) and U = (uy, - - -, u,—;) with each
u; € R% We now evaluate

V(U - (X(T) - X(S)) = V(EE wi - (W, — W] = [W,,, — W)

= V(Zl—l u; - ([Wt,-.,,l s,+1] [Wt,' - Wsi]))
(2.3)
= V(Ti1 (U1 — w) - (Wt,- - Ws;))

leul_ul—lllt |’ uo*ur*(),

where in the last step we used independence, which follows from (2.1).
Foreachp=1, ---,r,{u;— ui—;, 1 =i <r,i # p} is a set of coordinates for
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RV, Using (2.3) and the generalized Holder’s inequality for (2.2) we see that

E(f L i) 1° dU)
R2(r=1)
1
fff exp(——Z,Ll|u,~—u,~_1|2|t,~—s,-|>dUdeT
B JB Jp20-1 2
L L e
1
'exP<_ 2(7‘ — 1) 2€=l,i#p Uu; — Ui—1 |2 | t; — Sil) au dS dT
=), J e
f r 1/r
—_ T . =y 21t - s .
( eXp( 2()" _ 1) El-l,t#p I U; Ui—1 | | tl Si I) dU) dS dT

=c J; J; Mp=1 Mi=vinp |t = 817" dS 4T

(2.4)

=c f f i1 |t — 8| "7V dS dT < .
B ~B
This proves Proposition 1.

PROPOSITION 2. With probability one, X has a jointly continuous local time
onI.

Proor. Fix some v < 1/(r — 1). We will prove the finiteness, for all k& even
of

k L1y
J; o J; M= | U7

(2.5)
exp(-% V(Zh1 X(TV) - Uj)) dT' ... dT*dU" ... dU*
where TV = (t4, ---, t{), U/ = (u, - - -, us_y1). According to Section 26 of Geman

and Horowitz (1980), as explained in detail in Geman, Horowitz and Rosen
(1983) Section 2, this will suffice to prove our proposition.

Let 7!, ---, #" be r (not necessarily distinct) permutations of {1, ---, k}.
Define
A(ﬂ", Sty 7rr)
(2.6)

={(T, -, TH) | 7D <70 1<i<rl<jsk-1}.
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Let u)) = u! = 0, and ¢7'**) = ¢17D. By (2.1) we see that the order relation in
(2.6) is also true if we allow j = k. We will now evaluate V(¥ %, X(T’) - U’) on
A(xt, - -+, 7"). We first rewrite

. S X(TY) - U7 = S} T ul - (W, — W)
2.7 )
= leisr,lsjsk v];‘(Wtf0+1) — W:;“”)
where
vi=3" uh
with the sum running over all pairs (I, m) such that [t;,, tp+1] 2 [t}’i(f ), U+,
The relation is possible only for m =i, (#)™*(l) =jand m =i — 1, (z)7}(1) > .
Thus
(2.8) U{: = Yi<j ur® + Yisj urd.
(2.7) and independence show that
(2.9) V(S X(TY) - UY) = Simizrasj=e | V12T = 1)
where we have set ¢} = £,
Note from (2.8) that
(2.10) vl — 0Tt = urY — ufP, (0f = k).
Also for any p =1, - - -, r and some constant ¢ independent of k
| U7 | < ¢ Shevinp |0 — wi_ | < cllinp (1 + |uf—ul])
(2.11) > .
< ¢ [Tiginp (1 + |07 = 0F97)), by (2.10),
where 7! = (7')7}, and therefore
M U] = ¢* T Tpm1 (Timnimp (1 + [0F9 — 0FO2 )1
(2.12) < ¢* [Tpmt (IMhenimp i @+ |07 | + [0FO )
< ¢* T p=1 (M asinn(1 + [0I 12"
Let
CP = {(l’j)ll =is r, 1 S] = k’ (i’j) #* (p9 1)’ T (P, k _1)}
={G, )i # p} U {{p, k}}.

From (2.10) we see that {v/, (i, j) € C,} is a set of coordinates for R%"V* On
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A(x, - - -, ") we now have the bound

J;%_m Ik | U’I”ﬂp(-% V(X i X(T) - Uj)) du! ... dU*
=ct J;%_,),, o= Hanec, (L+ 10127
'eXp(- %, Saiec, | vHAEM - t_’,:)> du! ... dU*
(2.13) < c* [Tp=1 (J;%_m e, @+ |02

1 j i — 1/r
'exP(_ g 2o [0II%(E™ - ti-)) dut ... dUk)
< ¢* [Ip=1 Me, (B571 = 3y~ @nam
< c® [Lijjwr (BT = £y~ 0/n0+D

where we used (2.1) in the form £¥*! — ¥ = t}1 — ¢F = ais1 — (a: + h) > 0. This
immediately shows that (2.5) is finite for ¥ < 1/(r—1), proving Proposition 2.

REMARK. . The methods of Section 26, Geman and Horowitz (1980) allow us
to conclude that a(x, B) is a Holder continuous function of x of any order
< 1/(r—1). We are, however, more interested in the following “Holder continuity
in the set variable”.

PROPOSITION 3. For each x € R?™™ there exist a.s. finite random variables c,
6 such that

alx, B) = c|B|"|1g(|1g| B| )|, as.

for all hypercubes B C I of edgelength less than 8. Furthermore, for any fixed T €
I we can choose ¢, 6 such that

a(x, B) = c|B|"|lg(|1g|BI )|

for all hypercubes B C I of edgelength less than § with a corner at T.

PROOF. Let B have edgelength h. Using the bound (2.13) with vy = 0, and
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Section 25 of Geman and Horowitz (1980) we have
E([a(x, B)]*)

< ¢* f f exp(— L vish, x(rv - Uf)) du dT
Bk JR2Ar-DE 2

= Ck 2,,1 - f Hijj#k (t_]':+1 - t_]l:)_(r_l)/r dT
T BHAGY, )

(2.15) = c”(k!)’[ f f @t =)y g dtk]

o<t<..-<tp1<h

=< ck(k!)'h[ f e f M (S — Sim) - 9/rds,y ... dSk_l]

0<S§)<-.-<Sp1<h

h - h(l—(r—l)/r)(k—l)[(k — 1)!](r—l)/r r
k(LYY
$c(k.)[ T

< c*hk(k!)TD.

In the last inequality we have used the lemma of Kono (1977). The methods of
that paper now yield our proposition (see also Ehm (1981), and Geman, Horowitz
and Rosen (1983), Theorems 2 and 3).

PrOOF OF THEOREM 1. We are now ready to carry out the ideas described
in the introduction. X has Holder continuous paths of any order < V2. Propositions
2 and 3 now show (see Adler, 1981, Theorems 8.73, 8.74)

dim(X7'0)NnI) =<1

with equality if «(0, I) > 0.
We next use an idea of Tran (1976). Let

I, =iz [2rn + i, 2rn + i + %).

An easy computation shows that E(a(0, I))) > 0, hence if A, = {«(0, I,,) > 0} we
have P(A,) = 6 > 0 for some & > 0. Since the A, are independent and P(A,) = §
for all n, the Borel-Cantelli lemma says that a.s. we can find an n with

«(0, I,) > 0.
Since RZ can be covered by a countable number of hypercubes I,
dim(X'(0)NR.) =1 as.
and symmetry now finishes the proof of Theorem 1.

3. The N-parameter Wiener process in R?. In this section we study the
r-multiple times of the N-parameter Wiener process in R%, W™¢ (see (1.2)). We
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will see how to modify the arguments of Section 2. Note first that for reasons of
symmetry, in proving Theorem 1 it sufficed to consider hypercubes I C RZ.
However, with W4, each of the N-parameters may be ordered differently. The
following observation will be helpful in handling such situations. Let p be a
permutation of {1, - .., r}. We then have

T uiapeen — apw) = BiA * U rnisncpo pie G — 1)
(3.1) = Yiat Qitperparmanin £ W)@ — ar)
= 2;:11 (a1 — a;), with
(3.2) U = YipG)pG+D120L1+1) £ Ui

In these formulae [p(i), p(i + 1)] is the interval between p(i) and p(i + 1) (we
allow p(i) > p(i + 1)), and the sign in * u; is positive or negative depending on
whether or not p(i) < p(i+ 1).

‘We now show that

(3.3) Upy — Upy-1 = U — U1, (To = uo = 0).

This will prove that {u,} — {i,} is a nonsingular linear change of coordinates. To
establish (3.3) write out

(3.4) Goy — Upy-1 = Vietp(i),p(i+DI2ApW,p1+1] £ Ui = Dic[p(),p(+DI2ApW-1,p0) £ Ui

The only u;’s that survive correspond to those i’s such that [p(i), p(i + 1)] does
not contain both [p(!) — 1, p(!)] and [p(!), p(I) + 1]. This means that p(l) is an
endpoint of [p(i), p(i + 1)]. If p(l) < p(l + 1), we get a contribution + u; from the
first sum, while if p(l) > p(l + 1) we get a contribution from the second sum,
which is also (recall our convention on signs) + u;. Similarly we find that we
always have a contribution —u;_,. This proves (3.3).

With these preliminaries aside, let I denote a hypercube in (R". )”. For ease of
notation we sometimes write X for X,

PROPOSITION 4. Let Nr> d(r — 1)/2; then for any Borel set, B C I, X™¢ has
a local time a(x, B), and a(x, B) € LA R%" Y, dx) a.s.

PROOF. Since I is a hypercube in (R7.)", we can find N permutations of

{1, ---,r}, p, 1 =1 =< N, such that for any T € I with

T = (th Sty tr)’ ti = (ti,l, ti,2’ M) ti,N)
we have

(3.5) iy < bl < + -+ < Lok, 1 1<I!=<N.

Let B denote d-dimensional Brownian motion. We first bound the variance
V(u - (X(T) — X(S))) by a sum along the axes (see Rosen, 1981, or Ehm, 1981)
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and then use (3.1) with p = (p’)™:
V(u - (X(T) — X(S)))
2 ¢ Yim V(ZE w - ([Be,,, — Byl — [By, — By,1)
= ¢ 2L V(I Gt + ([Buwns = Bspend] = [Bros = Boai))

=¢ 3y Biar | iy — Wimaa|? ] iy — S

(3.6)

where E,[ = tpl(i),l, S_i,l = Spli),1-
We now use the generalized Holder inequality and the calculations of (2.4) to
obtain the bound

fB f f exp(- 5 Viw - (X(T) - X(S») du ds dT

f.‘;f(r—n =1
( 2;—1 Iu,l—u,_ul |t,1—$,1|>dudeT
I}

T2

3.7 f | § A
B
N
(f eXP(‘ % Sron | dig — Gic 12| iy — §,~,1|) du) ds dT

<c L L H{il Hf=1 I t—i,l _ s'i,ll—d(r—l)/er ds dT

<o if Nr>d(r-1)/2

as in the proof of Proposition 1. This proves our proposition.

PROPOSITION 5. If Nr> r(d — 1)/2, then X% has a jointly continuous local
time on I, with probability one.

PROOF. As in the previous proof, with the notation used there
V(Zha X(T7) - ) =z e Ty V(Ek T2t w! - By, — Bi))
(3.8) =¢ 2[ =1 V(Z_,-l Zl"l dll (Bt’l(+1)t Bt{,l(i),l))

= ¢ YN, iy lvd, 12(E3 — )
on
Alal, -y wh) = (T - -, TR |19 < 670, Vi, j, 1)

where &), = ¢, :(,), > and for each fixed , =1, -- -, N, v’ is formed from the al
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as in (2.8) (see (2.7)). We now use the genéi'alized Holder’s inequality

f f IT5- |u”l’eXP<— Ly xa - uf)) du dT
*OA(xd, - - -7l Rék(—1) 2

= JI:'nA J;dk(r—n H{il (H";l IuPP/N)

(3.9) ) exp(— % Yoj |0 |(F — E{,,)) du dT

= f | ) A
"na
1N
8 . — —
: ( f oy T 1?7 exp(—N§ S 10, 1% = ) du)) dT

Fi+l 7o (-1 d/2
=ck J,:m I Iijyes | B = & | D@24 g

as in (2.13). As in the proof of Proposition 2, this establishes our proposition.
Similarly, our last estimate yields as before

a(x, B) = c| B|@-dt=0/280(| 1g | B| | )@/20-1)

for all hypercubes B, I sufficiently small.

PROOF OF THEOREM 2. We need only recall that W™¢ is Holder continuous
of any order < % and possesses independent increments (see Orey and Pruitt,
1973), and then we can take over the proof of Theorem 1.

4. Index-g processes. In this section we study the r-multiple times of the
index-B process W * (see (1.5)). W is known to be locally non-deterministic on C,
= {t|e < |t| < ¢!} for any ¢ > 0. This means that there exists a constant d > 0
such that for any ¢, - - -, tm € C, satisfying

(4.1) |t1+1—t[|5|t1+1—t,'|, Visisl=sm,
we have
(4.2) VR w - (WE=WE ) =d TR 16— 6 lwl?

(see Pitt, 1978).

PROOF OF THEOREM 3. If ¢, ---, t, € RY we say they are spatially ordered
if (4.1) holds, and we write this as

h=t=<... =t

Let T € R};,. We can always find a hypercube T C C, for some ¢ > 0, such that
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T € I, and I is so small that for any
T, ..., T*e I, TV=(t}, ---, t)), t €R"

there is a spatial ordering of the points ¢/ such that the sets {t/, i fixed} occur in
blocks. More precisely, there is a permutation p of {1, - . -, r} such that

(4.3) thiy = twy, Vi, j, ]

Whenever we estimate an integral of the form considered in Section 2, we may
restrict our attention to the set of T, ..., T* satisfying (4.3) for a fixed
permutation p. On this set the considerations of (3.1) show that after a change
of variables we can assume p is the identity. We are then formally in the situation
of Section 2 where I C RZ, and (4.2) provides an adequate substitute for
independence. The methods of that section show that for Nr > 8d(r — 1)

dim(L; N I) = Nr — Bd(r — 1)

with equality holding on a set of positive probability. Since R}, can be covered
by a countable number of such I’s, and W # is Holder contininous of any order
< B, Theorem 3 is proven.
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