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THE MINIMAL GROWTH RATE OF PARTIAL MAXIMA

By MicHAEL J. Krass!

University of California

Let X1, Xz, -+ be iid. random variables and let M, = max;<;<.X;. For
each real sequence {b,}, a sequence {b}} and a sub-sequence of integers {rn.}
is explicitly constructed such that P(M, < b, i.0.) = 1 iff 3» P(M,, =< b%) =
oo, This result gives a complete characterization of the upper and lower-class
sequences (as introduced by Paul Lévy) for the a.s. minimal growth rate of
{M.}.

1. Introduction. LetX,X;, X, - - - be a sequence of independent, identically
distributed (i.i.d.) random variables and put M, = max<;<.X;. For each real
sequence {b,}, P(M, < b, i.0.) assumes a value of either zero or one. A series
criterion is presented, identifying which is the case. The proof involves construc-
tion of blocks of certain sub-sequences of events. These are partitioned into sub-
blocks and then split further. Thereby, probabilities of unions are approximated
in terms of their constituent events. The technique employed is quite general.
Indeed, it can be adapted to evaluate lim inf,_S./a@», where S, = Y1+ :-- + Y,
is a sum of any i.i.d. non-negative infinite mean random variables and {a.} any
sequence of positive reals (see Klass, 1982).

Provided {b,} and {P(M, < b,)} are eventually non-decreasing and non-
increasing, respectively, Barndorff-Nielson [1961] proved that

1 if -3 P(M;=<b,)j 'loglogj = o

(1) P(M, = baio) = {o it S, P(M; = b,)jlog log j < .

Independently, Robbins and Siegmund [1970] rediscovered an essentially
equivalent form of (1). The requirement that b, be non-decreasing causes no real
problem. However, as noted by Barndorff-Nielson, (1) can fail if P(M, =< b,) is
not eventually monotonic. Seeking a result valid for all sequences {b.}, we rewrite
the series condition in (1), assuming P(M,, < b,) is non-increasing for n large.

For & = 3 let nx, = [exp k/log k], where [x] denotes the greatest integer in x.
(Beginning with Erdos [1942] this sequence has had a long history in connection
with delicate laws of the iterated logarithm.) Take % sufficiently large. By
monotonicity of P(M; < b;) for j = na,

P(Mn;erl = bnkﬂ) an5j<nk+1 j_ll‘)g IOgj = ansj<nk+1 P(Mf = bj)j—ll()g lOgj
S P(Mnk S bnk) 2"k5j<nk+l j_llog lOgj
since lims o0 Y,<jcn., J10g log j = 1, the two series },5-3 P(M; < b;)j log log j
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and Y %-s P(M, =< bn,) converge or diverge together. Thus

. _J1 if Yis PMy, < b) =
(2) P(Mn = bn 1.0-) = {0 if 2;:=3 P(Mn’}: < bn’}:) < o
provided {b,} and {—P(M, < b,)} are both eventually non-decreasing.
(Barndorff-Nielson’s proof of (1) used the divergence half of (2), whereas
Robbins and Siegmund [1970] stated a result similar to (2), replacing P(M,, <
br,) by exp{—n.P(X > b,,)} and assuming that )

(i) X has a continuous distribution function,
(ii) b, is eventually non-decreasing, and
(iii) lim,_inf n(log log n)'P(X = b,) = 1.)

The subsequence {n:} of {n}, while used to combat the extreme dependence
existing among neighboring events in the sequence {M, < b,}»=1, is not always
adequate. Suppose X has a continuous distribution and that b, is chosen so that

21
PX<b, = exp( ;)g k) for jr=n <jp+,
k

where j, = 2*for k= 1,2, ... . Then P(M,, < b, i.0.) = P(M;, < b, i.0), which is
zero by the Borel-Cantelli lemma. However, ), %-3 P(M, < b,) = « and so (2)
does not hold. (This is the Barndorff-Nielson counterexample.)

If (2) is to remain valid in general, the subsequence {n:} must be redefined.
Clearly, it must depend on both X and {b,}. Regard any subsequence {n.} of {n}
as a collection of check-points along which the events {M, < b,},-1 are to be
monitored. To ensure accurate detection of infinitely many such events, the
subsequence {n,;} must satisfy P(M,, < by, i.0.) = P(M, < b, i.0.). This condition
limits the growth of {n:}. For purposes of easy evaluation, P(M,, < b, i.0.) should
be zero or one depending on convergence or divergence of Y P(M,, < b,,). This
condition forces {n:} to grow sufficiently fast to capitalize on the asymptotic
independence of distant events among {M, < b,},=1. These two opposing con-
straints on n, are not mutually exclusive, as we now indicate.

Fix 0 < A < 1. Suppose {b,} is non-decreasing and, to avoid trivialities, suppose
P(M, < b,) = 0 (otherwise P(M,, < b, i.0.) = 1). Let n; = 1. Having defined n,,
ceo, Ny, let '

(3) Npsr = Ist j > np: P(M; < bj| M, < bs) < A.

The events {M,, < b,,} are sufficiently uncorrelated to yield P(M, < b, i.0.) =1
iff }» P(M,, < b,,) = ®. Moreover, from (3) it follows that P(M,,,, < b,,,, | M,; < b;)
> X for ng < j < np+1; in consequence, P(M,, < b, i.0.) = P(M,, < b,, i.0.). Thus
indeed (2) holds with this choice of {n:} (see Theorem 3).

Besides the above construction of n,, two additional equally viable alternatives
are presented. Specifically, if n;.1 satisfies either

(4) Np+1 = 1st j > np: P(M; < bp, | My, < bn) <\
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or
(5) Masy = {lstj > ng: P(M,, < b, | M, < b)) <A

n,+1 if no such j exists.

Then (2) holds, provided {b,} is non-decreasing and P(M, < b,) — 0. Actually,
slightly more general constructions of feasible n,’s are given.

We have asserted that no loss of generality ensues from the assumption that
b, be non-decreasing. To see this, note first that we may assume P(M, < b,) —
0, as usual. Hence there exists n* such that P(X > b,) > 0 for n = n*. Let

b+ if 1=n=n*
® n
©) br = {max,,~s,~5,,b,~ if n=n*

Clearly, P(M,, < b, i.0.) = P(M,, < b} i.0.). Now if lim,_.P(X =< b%) = p < 1, then
¥u P(M, < b}) < Y. p" < » and so P(M,, < by i.0.) = 0; a fortiori, P(M, < b, i.0.)
=0.If p=1,1let &4 = n* and, having defined ¢, .-, t, let tps1 = Ist n > tr: b,
= mMaXn+<j=n bj. (tr+1 is defined for every 2 = 1 since p = 1.) Since b; = b, for
every &, =n < tp+1,

P(M, = by i.0.) = P(Uy<n=ns, {Mn= bz} i.0.)
= P(Ugzn<trs; {Mn < b} 1.0.)
= P(M;, < b, i.0.) (since M,, /)
=PWM,<b,io.).
Therefore P(M,, < b, i.0.) = P(M,, < b} i.0.), regardless of the value of p, and so

{b,} may always be replaced by an equivalent, non-decreasing sequence.
We proceed with the results.

2. The theorems. Theorems 1, 2 and 3 of this section verify that the various
constructions of n,’s satisfying either (5), (4) or (3), respectively, each yield the
criterion given in (2) for determining the value of P(M, < b, i.0.).

THEOREM 1. Let X, X;, X3, - be iid. random variables and put M, =
maxi<;<.X;. Let {b,} be a sequence of non-decreasing constants. To avoid
trivialities, assume X and {b,} satisfy

(7) PX>b,)—0 and
(8) P(M, < b,) > 0 (equivalently, nP(X > b,) — ).
Take any reals 0 <A, = A* < 1. Construct 1 < n, <nz < -.. such that

=A* for j=npa

9) PM,, < bn,| M, < bj){Z Ao for j<npa.

Then

0 if Y% P(M,,<b,)<w

(10) P(M, = brio.) = {1 if Y& P(M,, <b,)=o.
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PrOOF. If s P(M,, < by) < ®, then
PWM, = b, i.0.)
= imy_wP(Uj=ny {M; < b;}) < limy_w X 5=n P(Un,<j<nen {M; =< b,})
= limy_» Y5-~v P(My, < by,,,—1)

P(Mnk = bnk'Mnk = b"k+l_1)
A

= ].iva)oo Z;:=N P(Mnk = bnk+1—1)

= (\,) limy e Y5y P(M;, < by,) = 0.

Henceforth assume Y P(M,, < b,) = .
We group the events {M, =< b,} into blocks. Fix 0 < y < 1. Let m: = n,.
Having defined m,, --., m;, let

(11) Mis1 = 1st ng > mi: PMp, < by,) = v.

(mi+1 is always defined and finite since P(X > b,) — 0. Moreover, since
PM, = b)) = 0, P(M,, < b,) < y for nr < mi+ for all i large.) Let A; =
Upsni<mn {(Mn, < bn} and A} = U, ., {max,, _;.,X;=<b,}, where mo = 0. For
J=0andj = 1, the events {A%.,:i = 1} are independent. Applying the Borel-
Cantelli lemma separately to the even indices and odd indices, note that if

(12) Yi P(A;’) = oo,

then P(A;i.0.) = 1. We claim that, in fact, (12) entails P(M,, < b, i.0.) = 1. To see
this, suppose (12) holds and fix e > 0. For each i there exists ¢; < o such that
PUS;Aj) >1 — ¢ Let

last i=<j=<c¢; suchthat A} occurs
T = . ..
o if no such j exists.

Note that P(r; # ) = P(Uj.; A}) > 1 —&. Then
P(US, (Up cnam (M, < B2,})) = P(U5i, A)) = Pl % 0, A.)
= Y5, P(ri=j, M, , < bm)
= Y2 P(1i = ))P(Mpm,_, < bm)
=y 2%, Pri=j) = yP(r; % ®) > y(1 — ).

By the Hewitt-Savage Zero-One Law, we may conclude that P(M,, < b, i.0.) =
1. Therefore, it is sufficient to prove that divergence of Y P(M, < b,,) implies
that

(13) Yi P(A) =
(since (13) implies (12)). We must lower-bound P(A;). To do so, we partition A;
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into sub-blocks of events. Let m; 1 = m;, and having defined m;,, --- , m;;, let

1st np =m;; + m; ifsuch n,=<m; exists
Mis1 otherwise.

(14) mij+1 = {
Then set 1(i) = last j:m;; < m;+1. For 1 <j < (), let
Aij= Uy <n<m, {Mn, =< by}
Thus A; = U{¥ A, ;. To obtain disjoint sub-blocks, let
(15) Bij=U{{Xx>b}}:mijn<k=mijn+myj,
where * = max{n,:n, < miu}.

Note that A;; N B;; is disjoint from A; ;- for j' = j + 2. Moreover, since P(M, <
bn) — 0, the construction of {m} yields P(B;;) =1 — P(M,, < b;) > 1 — yfor i
large. Thus for i large,

P(A) = P(U%, (A;; N B;))
= 27 (P(Ujeven (Ai; N Bi))) + P(Ujoaa (Ai; N Bi)))
=271y P(A;;N B;)) (by disjointness) ‘
=271 Y49 P(A;)P(B;,) (by independence)
= (1- )27 Zi% P(As).
Finally, we extract the individual events which comprise A; ;.
P(A;)) = P(Un, =n<m.,. {Mn, <bn})
= P(My,; < bm,) + Ym<n<m,o P(Mn,, < bpjy Min,,> bn,_)
= P(My,, < bn,) + S <nicm P(Min, < B2)
X (1 = P(Mon,; < bn,_,| My, < by))
= P(My,, < bn,) + Sm<ns<myn P(M, < by)
X (1= {P(My,_, < bn,_,| Ma,_, < by)}™/™)
= Yo <mu<myo P(Mp, < by, ) (1 = (A*)™/™)  (by (9))
= (1= VA*) o snu<mes P(M, < bn,).
Consequently, there exists § > 0 such that
Y21 P(A) =8 Y51 PM,, < b,) =o. O
REMARK 1. Theorem 1 can be restated directly in terms of the X-distribution

as follows: assume b, /, P(X > b,) = 0, and nP(X > b,) — . Take reals 0 <
Aix =A** <1 and construct 1 < n; < n, < ... such that

=A** for j<npm

(16) nkP(bnk <X= bi){z }\** for ] = Np+1.
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Then

1 if Zk e MPX>by) = o

(17) P(Mn = bn iO) = {O if Zk e—nkP(X>b,.‘) < 0.

To verify this fact, note first that

HiMtSUDjny | P(Min, < b, | My, < bj) — e ™POx<Xb) | = 0

Hence Theorem 1 applies. Secondly, note that the convergence or divergence of
both series ), » P(M,, < b,,) and ) e-P&>b.) depend only on those terms for which
n.P(X > b,) < 2 log k. For such terms &,

PO, <by)
exp(— n,P(X > b,,)) ’

Hence both series converge or diverge together.

THEOREM 2. Let X, X;, Xz, --- be iid. random variables and put M, =
maxi<;<.X;. Let {b,} be any non-decreasing sequence of constants. Suppose

(18) PX>b,)—0 and
(19) PM, < b,) = 0 (equivalently, nP(X > b,) — ).

Take any 0 < A, < A* < 1. Choose any 1 < n;<n; < ... such that

. =A* for j=npa—
(20) PM;= bn,,){2 A for j<npa— .
Then

. =1 if Y PM, <b,)=c
(21) PM, < b, 1.0.){= 0 if SuPM, <b,)<o,

Proor. Define m;, m,;, [(i), A;, and A;; as the proof of Theorem 1, using the
present sequence of ny’s. If Y, P(M,, < b,) < o, then

P(Mn = bn i.O.) = th—moP(U 720=N Un,,<j5n,,“ {M = bl})
= limN_mo 2;:=N P(Un,,<j5n,,“ {M = bl})
= limyow Y i-v P(M,, 11 = b,,,)

=< limn_., Y-~ (P(M,

Rgv1— Nk~

1= b,,))'P(My,

k+1 = b"k+1)

< limyow $5-n (A ) 'P(M,,,, < by,,,) = 0.

Next, assume Y P(M,, < b,,) = ®. Arguing as in the proof of Theorem 1, there
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exists ¢ > 0 such that P(4,) = ¢ Y}¥) P(A;,). To lower-bound
P(A;j) = P(U,, <n,<m,,.. {Mn, < bn})
in terms of Y, _.<m,. P(M, < by) it suffices to discard any n;’s for which

P(M,,= b,,) is abnormally small relative to the other terms. With this in mind,
fix (i, j) and let

(22) k*=last k:n, < m;j+1
and
(23) ky=firstk:ny =m;; and PY4(X=<b,)=PX=<b,,).

For m;; < np < mjj11, let

(24) Bnk = {maxm,<lsn/.+1Xl > bnk'}'

Note that for k, < k< k*,

P(B,)=1-PM,,, _,, <b,)=1—{PX<by.)}" ™

=1-{PX= bnk)}(nkn—m)/'i =1-{PM,,, ., < bnk)}l/?t
=1— (A9

Lower-bounding,

P(A;;) = P(Up <k<r+ {Mn, < b,} N By,)

= Yr.<t<t* PUM,, = b,} N B,,) (by disjointness)

= Yr.<k=t* P(M,, < b,)P(B,,) (by independence)

= (1= (A" Tr.<p<i+ P(M,,, < by,)

= (1 - A" CY <ni<m,.. PMy, < b), (by Lemma 1 to follow),
where C= (2 + 8 (log (A\*)™)~ )7L,

Consequently, Y; P(A;) = oo.
Arguing again as in the proof of Theorem 1, we may conclude that
PM, < b,i.0.) =1.0

REMARK 2. As noted in Remark 1, the conditions satisfied by n’s of Theorem
2 may be expressed directly in terms of tail probabilities. Thus, if there are 0 <
Asx =< A** < o0 such that

=Ny, for j=ngs —ne

(25) JPX > b"k){s A** for j<nps1— ng

then

P(M,, <b,) =

. =1 if Y,
(26) PM, < b, 1.0.){= 0 if Zk P(Mn,z < b"k) < 00,
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Moreover, the series Y, P(M, < b,) and Y, e ™P®%) converge or diverge
together.

LEMMA L. Let0<x1=x=<:.--=x1=<2x,and0< P, =Py < ... <P,
Suppose P <e ' for1 <i< L and that P}*™ <\ for 1 <i < L and some 0 <
A<1. Then

27 Y Pi=(2+3(log\™H)7Y) ¥, PR

where

,=min{l=i=<L:P;>Pi}.

ProOF. Let 4= {1 <k =<L:(PL* < Pi < (P.)*}. For simplicity write P; as
e™. Then

| 6] = 1+ Yii<vicq) yi(Xis1 — xi)/log A7
=<1+ ¥yL V<rvicq (xiv1 — x)/log A7
<1+ 4%yr(xz — x1)/log \ ™' =1+ 4/x,y:/2 log A%,
Hence
S Pi = B Siew Pi < Siew PY + By Siey P
< Sien Pi+ Tjua | %] PY 7
= Yiew Pii+ Y5y (1+ 2¥x1y0/2 log A (e ) 2™
= She P 55, o
+ (8xryr/log A\ Ve L ¥, (4e 8Ly 2
= ZiL=L, P 4 @ 2un(] — g 8%y1)~1
+ (8xyr/log A™)e 2 (1 — 417!
=Y. Pi+ (1+ 3(log A7) e ™ since xryr=1

=@+3logA ) ) ¥, P O
We now verify that the intuitive construction of {n.} given in (3) satisfies (2).

THEOREM 3. Let X, X3, Xo, -+ be iid. random variables and put M, =
maxi<;<, X;. Let {b,} be any non-decreasing sequence of constants. Suppose
(28) PX>b)—0
and
(29) P(M, = b,) - 0.
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Take any 0 <A, =A* < 1. Choose any 1 <n,<n, < --. such that

=A* for j=npa—m
(30) P(M; = "”+j){2 Ay for j< nk:l — .
Then
. =1 if YwPM, <b,) =0
(31) PM,. < b, 1~°-){= 0 if YpP(M, <b,)<oo.

PRrROOF. Suppose Y» P(M,, =< b,,) < . Notice that
lim infy P(Mp,,,-n, < bn,,,) = lim inf, ,oP(M,,,, n,1 < bn,,) = A,.
Hence
P(M, = by i0.) < limy—w ¥5-~ P(Un<jzn,.. {M; < b;})
=limy.o Yi-n P(M,, < b,,,,)
=limy,e Y i-n P(M,,,, < bn,, )/, = 0. ‘
Finally, assume )z P(M,, < b, ) = . Since
P(M,,,,-n, = bn,) < P(My,,,—n, < bn,,) = \*,
the proof of Theorem 2 applies verbatim, yielding P(M,, < b,, i.0.) = 1.
By interchanging inequalities and strict inequalities, companions to the pre-

ceding theorems can be derived. To illustrate the point we state such a companion
result, giving the full strength of what has actually been proved.

THEOREM 4. Let X, Xi, Xy, --- be iid. random variables and put M, =
max{X,, ---, X,}. Let {b,} be any non-decreasing sequence of constants.
Suppose

(32) P(X=b,)—>0
and
(33) P(M,<b,)— 0.
Take any 0 <A, <A* <1, and choose anyl<n,<ngy ---
If
(34) (Me+1 —np) P(X = by,) = A,
then
(35) P(M,,<bn,i0)=1 if Y,e™PE2b) = oo,
If

(36) (Nes1 — me) P(X = by,) < \*
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then
(37) P(M, <b,i0)=0 if Ype™PX=b) < oo,
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