THE MINIMAL GROWTH RATE OF PARTIAL MAXIMA

By Michael J. Klass¹

University of California

Let X_1, X_2, \cdots be i.i.d. random variables and let $M_n = \max_{i \le j \le n} X_j$. For each real sequence $\{b_n\}$, a sequence $\{b_n^*\}$ and a sub-sequence of integers $\{n_k\}$ is explicitly constructed such that $P(M_n \le b_n \text{ i.o.}) = 1$ iff $\sum_k P(M_{n_k} \le b_{n_k}^*) = \infty$. This result gives a complete characterization of the upper and lower-class sequences (as introduced by Paul Lévy) for the a.s. minimal growth rate of $\{M_n\}$.

1. Introduction. Let X, X_1, X_2, \cdots be a sequence of independent, identically distributed (i.i.d.) random variables and put $M_n = \max_{1 \le j \le n} X_j$. For each real sequence $\{b_n\}$, $P(M_n \le b_n \text{ i.o.})$ assumes a value of either zero or one. A series criterion is presented, identifying which is the case. The proof involves construction of blocks of certain sub-sequences of events. These are partitioned into sub-blocks and then split further. Thereby, probabilities of unions are approximated in terms of their constituent events. The technique employed is quite general. Indeed, it can be adapted to evaluate $\lim_{n\to\infty} S_n/a_n$, where $S_n = Y_1 + \cdots + Y_n$ is a sum of any i.i.d. non-negative infinite mean random variables and $\{a_n\}$ any sequence of positive reals (see Klass, 1982).

Provided $\{b_n\}$ and $\{P(M_n \leq b_n)\}$ are eventually non-decreasing and non-increasing, respectively, Barndorff-Nielson [1961] proved that

(1)
$$P(M_n \le b_n \text{ i.o.}) = \begin{cases} 1 & \text{if } \sum_{j=3}^{\infty} P(M_j \le b_j) j^{-1} \log \log j = \infty \\ 0 & \text{if } \sum_{j=3}^{\infty} P(M_j \le b_j) j^{-1} \log \log j < \infty. \end{cases}$$

Independently, Robbins and Siegmund [1970] rediscovered an essentially equivalent form of (1). The requirement that b_n be non-decreasing causes no real problem. However, as noted by Barndorff-Nielson, (1) can fail if $P(M_n \leq b_n)$ is not eventually monotonic. Seeking a result valid for all sequences $\{b_n\}$, we rewrite the series condition in (1), assuming $P(M_n \leq b_n)$ is non-increasing for n large.

For $k \geq 3$ let $n_k = [\exp k/\log k]$, where [x] denotes the greatest integer in x. (Beginning with Erdös [1942] this sequence has had a long history in connection with delicate laws of the iterated logarithm.) Take k sufficiently large. By monotonicity of $P(M_j \leq b_j)$ for $j \geq n_k$,

$$\begin{split} P(M_{n_{k+1}} \leq b_{n_{k+1}}) \; \sum_{n_k \leq j < n_{k+1}} j^{-1} \mathrm{log} \; \mathrm{log} \; j \leq \sum_{n_k \leq j < n_{k+1}} P(M_j \leq b_j) j^{-1} \mathrm{log} \; \mathrm{log} \; j \\ \leq P(M_{n_k} \leq b_{n_k}) \; \sum_{n_k \leq j < n_{k+1}} j^{-1} \mathrm{log} \; \mathrm{log} \; j \end{split}$$

since $\lim_{k\to\infty}\sum_{n_k\leq j< n_{k+1}}j^{-1}\log\log j=1$, the two series $\sum_{j=3}^{\infty}P(M_j\leq b_j)j^{-1}\log\log j$

Received November 1982.

¹ This research was supported in part by National Science Foundation grant no. MCS-80-64022. AMS 1980 subject classifications. Primary 60F15; secondary 60F20, 60F10, 60G99.

Key words and phrases. Partial maxima, minimal growth rate, upper and lower class sequences, strong limit theorems.

and $\sum_{k=3}^{\infty} P(M_{n_k} \leq b_{n_k})$ converge or diverge together. Thus

(2)
$$P(M_n \le b_n \text{ i.o.}) = \begin{cases} 1 & \text{if } \sum_{k=3}^{\infty} P(M_{n_k} \le b_{n_k}) = \infty \\ 0 & \text{if } \sum_{k=3}^{\infty} P(M_{n_k} \le b_{n_k}) < \infty \end{cases}$$

provided $\{b_n\}$ and $\{-P(M_n \leq b_n)\}$ are both eventually non-decreasing.

(Barndorff-Nielson's proof of (1) used the divergence half of (2), whereas Robbins and Siegmund [1970] stated a result similar to (2), replacing $P(\mathbf{M}_{n_k} \leq b_{n_k})$ by $\exp\{-n_k P(X > b_{n_k})\}$ and assuming that

- (i) X has a continuous distribution function,
- (ii) b_n is eventually non-decreasing, and
- (iii) $\lim_{n\to\infty}\inf n(\log\log n)^{-1}P(X\geq b_n)\geq 1.$

The subsequence $\{n_k\}$ of $\{n\}$, while used to combat the extreme dependence existing among neighboring events in the sequence $\{M_n \leq b_n\}_{n\geq 1}$, is not always adequate. Suppose X has a continuous distribution and that b_n is chosen so that

$$P(X \le b_n) = \exp\left(\frac{2 \log k}{j_k}\right)$$
 for $j_k \le n < j_{k+1}$,

where $j_k = 2^{2^k}$ for $k = 1, 2, \dots$. Then $P(M_n \le b_n \text{ i.o.}) = P(M_{j_k} \le b_{j_k} \text{ i.o})$, which is zero by the Borel-Cantelli lemma. However, $\sum_{k=3}^{\infty} P(M_{n_k} \le b_{n_k}) = \infty$ and so (2) does not hold. (This is the Barndorff-Nielson counterexample.)

If (2) is to remain valid in general, the subsequence $\{n_k\}$ must be redefined. Clearly, it must depend on both X and $\{b_n\}$. Regard any subsequence $\{n_k\}$ of $\{n\}$ as a collection of check-points along which the events $\{M_n \leq b_n\}_{n\geq 1}$ are to be monitored. To ensure accurate detection of infinitely many such events, the subsequence $\{n_k\}$ must satisfy $P(M_{n_k} \leq b_{n_k} \text{i.o.}) = P(M_n \leq b_n \text{ i.o.})$. This condition limits the growth of $\{n_k\}$. For purposes of easy evaluation, $P(M_{n_k} \leq b_{n_k} \text{i.o.})$ should be zero or one depending on convergence or divergence of $\sum_k P(M_{n_k} \leq b_{n_k})$. This condition forces $\{n_k\}$ to grow sufficiently fast to capitalize on the asymptotic independence of distant events among $\{M_n \leq b_n\}_{n\geq 1}$. These two opposing constraints on n_k are not mutually exclusive, as we now indicate.

Fix $0 < \lambda < 1$. Suppose $\{b_n\}$ is non-decreasing and, to avoid trivialities, suppose $P(M_n \le b_n) \to 0$ (otherwise $P(M_n \le b_n \text{ i.o.}) = 1$). Let $n_1 = 1$. Having defined n_1, \dots, n_k , let

(3)
$$n_{k+1} = 1 \text{st } j > n_k : P(M_j \le b_j | M_{n_k} \le b_{n_k}) \le \lambda.$$

The events $\{M_{n_k} \leq b_{n_k}\}$ are sufficiently uncorrelated to yield $P(M_{n_k} \leq b_{n_k} \text{ i.o.}) = 1$ iff $\sum_k P(M_{n_k} \leq b_{n_k}) = \infty$. Moreover, from (3) it follows that $P(M_{n_{k+1}} \leq b_{n_{k+1}} | M_j \leq b_j) > \lambda$ for $n_k < j \leq n_{n+1}$; in consequence, $P(M_n \leq b_n \text{ i.o.}) = P(M_{n_k} \leq b_{n_k} \text{ i.o.})$. Thus indeed (2) holds with this choice of $\{n_k\}$ (see Theorem 3).

Besides the above construction of n_k , two additional equally viable alternatives are presented. Specifically, if n_{k+1} satisfies either

(4)
$$n_{k+1} = 1 \text{st } j > n_k : P(M_j \le b_{n_k} | M_{n_k} \le b_{n_k}) \le \lambda$$

or

(5)
$$n_{k+1} = \begin{cases} 1 \text{st } j > n_k : P(M_{n_k} \le b_{j_k} | M_{n_k} \le b_j) \le \lambda \\ n_k + 1 & \text{if no such } j \text{ exists.} \end{cases}$$

Then (2) holds, provided $\{b_n\}$ is non-decreasing and $P(M_n \leq b_n) \to 0$. Actually, slightly more general constructions of feasible n_k 's are given.

We have asserted that no loss of generality ensues from the assumption that b_n be non-decreasing. To see this, note first that we may assume $P(M_n \le b_n) \to$ 0, as usual. Hence there exists n^* such that $P(X > b_n) > 0$ for $n \ge n^*$. Let

(6)
$$b_n^* = \begin{cases} b_{n^*} & \text{if } 1 \le n \le n^* \\ \max_{n^* \le j \le n} b_j & \text{if } n \ge n^*. \end{cases}$$

Clearly, $P(M_n \le b_n \text{ i.o.}) \le P(M_n \le b_n^* \text{ i.o.})$. Now if $\lim_{n\to\infty} P(X \le b_n^*) = p < 1$, then $\sum_{n} P(M_n \le b_n^*) \le \sum_{n} p^n < \infty$ and so $P(M_n \le b_n^* \text{ i.o.}) = 0$; a fortiori, $P(M_n \le b_n \text{ i.o.})$ = 0. If p = 1, let $t_1 = n^*$ and, having defined t_1, \dots, t_k , let $t_{k+1} = 1$ st $n > t_k : b_n$ = $\max_{n^* \le j \le n} b_j$. $(t_{k+1} \text{ is defined for every } k \ge 1 \text{ since } p = 1.) Since <math>b_n^* = b_{t_n}$ for every $t_k \leq n < t_{k+1}$,

$$\begin{split} P(M_n \leq b_n^* \text{ i.o.}) &= P(\cup_{t_k \leq n \leq t_{k+1}} \{ M_n \leq b_n^* \} \text{ i.o.}) \\ &= P(\cup_{t_k \leq n < t_{k+1}} \{ M_n \leq b_{t_k} \} \text{ i.o.}) \\ &= P(M_{t_k} \leq b_{t_k} \text{ i.o.}) \qquad (\text{since } M_n \nearrow) \\ &\leq P(M_n \leq b_n \text{ i.o.}). \end{split}$$

Therefore $P(M_n \le b_n \text{ i.o.}) = P(M_n \le b_n^* \text{ i.o.})$, regardless of the value of p, and so $\{b_n\}$ may always be replaced by an equivalent, non-decreasing sequence. We proceed with the results.

2. The theorems. Theorems 1, 2 and 3 of this section verify that the various constructions of n_k 's satisfying either (5), (4) or (3), respectively, each yield the criterion given in (2) for determining the value of $P(M_n \leq b_n \text{ i.o.})$.

THEOREM 1. Let X, X_1, X_2, \cdots be i.i.d. random variables and put $M_n =$ $\max_{1 \le j \le n} X_j$. Let $\{b_n\}$ be a sequence of non-decreasing constants. To avoid trivialities, assume X and $\{b_n\}$ satisfy

(7)
$$P(X > b_n) \to 0 \quad and$$

(8)
$$P(M_n \le b_n) \to 0 \quad (equivalently, nP(X > b_n) \to \infty).$$

Take any reals $0 < \lambda_* \le \lambda^* < 1$. Construct $1 \le n_1 < n_2 < \cdots$ such that

(9)
$$P(M_{n_k} \leq b_{n_k} | M_{n_k} \leq b_j) \begin{cases} \leq \lambda^* & \text{for } j \geq n_{k+1} \\ \geq \lambda_* & \text{for } j < n_{k+1}. \end{cases}$$

Then

(10)
$$P(M_n \le b_n \text{ i.o.}) = \begin{cases} 0 & \text{if } \sum_k P(M_{n_k} \le b_{n_k}) < \infty \\ 1 & \text{if } \sum_k P(M_{n_k} \le b_{n_k}) = \infty. \end{cases}$$

PROOF. If
$$\sum_{k} P(M_{n_k} \leq b_{n_k}) < \infty$$
, then

$$\begin{split} P(M_{n} \leq b_{n} \text{ i.o.}) \\ &= \lim_{N \to \infty} P(\cup_{j \geq n_{N}} \{M_{j} \leq b_{j}\}) \leq \lim_{N \to \infty} \sum_{k=N}^{\infty} P(\cup_{n_{k} \leq j < n_{k+1}} \{M_{j} \leq b_{j}\}) \\ &\leq \lim_{N \to \infty} \sum_{k=N}^{\infty} P(M_{n_{k}} \leq b_{n_{k+1}-1}) \\ &\leq \lim_{N \to \infty} \sum_{k=N}^{\infty} P(M_{n_{k}} \leq b_{n_{k+1}-1}) \frac{P(M_{n_{k}} \leq b_{n_{k}} | M_{n_{k}} \leq b_{n_{k+1}-1})}{\lambda_{*}} \\ &= (\lambda_{*})^{-1} \lim_{N \to \infty} \sum_{k=N}^{\infty} P(M_{n_{k}} \leq b_{n_{k}}) = 0. \end{split}$$

Henceforth assume $\sum_{k} P(M_{n_k} \leq b_{n_k}) = \infty$.

We group the events $\{M_{n_k} \leq \hat{b}_{n_k}\}$ into blocks. Fix $0 < \gamma < 1$. Let $m_1 = n_1$. Having defined m_1, \dots, m_i , let

(11)
$$m_{i+1} = 1 \text{st } n_k > m_i : P(M_{m_i} \le b_{n_k}) \ge \gamma.$$

 $(m_{i+1} \text{ is always defined and finite since } P(X > b_n) \to 0$. Moreover, since $P(M_n \le b_n) \to 0$, $P(M_{m_i} \le b_{n_k}) < \gamma$ for $n_k < m_{i+1}$ for all i large.) Let $A_i = \bigcup_{m_i \le n_k < m_{i+1}} \{M_{n_k} \le b_{n_k}\}$ and $A'_i = \bigcup_{m_i \le n_k < m_{i+1}} \{\max_{m_{i-1} < j \le n_k} X_j \le b_{n_k}\}$, where $m_0 \equiv 0$. For j = 0 and j = 1, the events $\{A'_{2i+j} : i \ge 1\}$ are independent. Applying the Borel-Cantelli lemma separately to the even indices and odd indices, note that if

$$\sum_{i} P(A_{i}') = \infty,$$

then $P(A_i' \text{ i.o.}) = 1$. We claim that, in fact, (12) entails $P(M_{n_k} \leq b_{n_k} \text{ i.o.}) = 1$. To see this, suppose (12) holds and fix $\varepsilon > 0$. For each i there exists $c_i < \infty$ such that $P(\bigcup_{j=i}^{c_i} A_j') > 1 - \varepsilon$. Let

$$\tau_i = \begin{cases} \text{last} & i \leq j \leq c_i \text{ such that } A'_j \text{ occurs} \\ \infty & \text{if no such } j \text{ exists.} \end{cases}$$

Note that $P(\tau_i \neq \infty) = P(\bigcup_{i=1}^{c_i} A_i') > 1 - \varepsilon$. Then

$$\begin{split} P(\cup_{j=i}^{c_i} (\cup_{m_j \leq n_k < m_{j+1}} \{M_{n_k} \leq b_{n_k}\})) &= P(\cup_{j=i}^{c_i} A_j) \geq P(\tau_i \neq \infty, A_{\tau_i}) \\ &\geq \sum_{j=i}^{c_i} P(\tau_i = j, M_{m_{j-1}} \leq b_{m_j}) \\ &= \sum_{j=i}^{c_i} P(\tau_i = j) P(M_{m_{j-1}} \leq b_{m_j}) \\ &\geq \gamma \sum_{j=i}^{c_i} P(\tau_i = j) = \gamma P(\tau_i \neq \infty) > \gamma (1 - \varepsilon). \end{split}$$

By the Hewitt-Savage Zero-One Law, we may conclude that $P(M_{n_k} \leq b_{n_k} \text{ i.o.}) = 1$. Therefore, it is sufficient to prove that divergence of $\sum_k P(M_{n_k} \leq b_{n_k})$ implies that

$$\sum_{i} P(A_i) = \infty$$

(since (13) implies (12)). We must lower-bound $P(A_i)$. To do so, we partition A_i

into sub-blocks of events. Let $m_{i,1} = m_i$, and having defined $m_{i,1}, \dots, m_{i,j}$, let

(14)
$$m_{i,j+1} = \begin{cases} 1 \text{st } n_k \ge m_{i,j} + m_i & \text{if such } n_k \le m_{i+1} \text{ exists} \\ m_{i+1} & \text{otherwise.} \end{cases}$$

Then set $l(i) = \text{last } j : m_{i,j} \le m_{i+1}$. For $1 \le j < l(i)$, let

$$A_{i,j} = \bigcup_{m_{i,j} \le n_k < m_{i,j+1}} \{ M_{n_k} \le b_{n_k} \}.$$

Thus $A_i = \bigcup_{j=1}^{l(i)} A_{i,j}$. To obtain disjoint sub-blocks, let

(15)
$$B_{i,j} = \bigcup \{ \{X_k > b_i^*\} : m_{i,j+1} < k \le m_{i,j+1} + m_i \},$$
where $i^* = \max\{n_b : n_b < m_{i+1}\}.$

Note that $A_{i,j} \cap B_{i,j}$ is disjoint from $A_{i,j'}$ for $j' \ge j + 2$. Moreover, since $P(M_n \le b_n) \to 0$, the construction of $\{m_i\}$ yields $P(B_{i,j}) = 1 - P(M_{m_i} \le b_{i^*}) > 1 - \gamma$ for i large. Thus for i large,

$$\begin{split} P(A_{i}) &\geq P(\cup_{j=1}^{l(i)} (A_{i,j} \cap B_{i,j})) \\ &\geq 2^{-1}(P(\cup_{j \text{ even }} (A_{i,j} \cap B_{i,j})) + P(\cup_{j \text{ odd }} (A_{i,j} \cap B_{i,j}))) \\ &= 2^{-1} \sum_{j=1}^{l(i)} P(A_{i,j} \cap B_{i,j}) \quad \text{(by disjointness)} \\ &= 2^{-1} \sum_{j=1}^{l(i)} P(A_{i,j}) P(B_{i,j}) \quad \text{(by independence)} \\ &\geq (1 - \gamma) 2^{-1} \sum_{j=1}^{l(i)} P(A_{i,j}). \end{split}$$

Finally, we extract the individual events which comprise $A_{i,j}$.

$$\begin{split} P(A_{i,j}) &= P(\cup_{m_{i,j} \leq n_k < m_{i,j+1}} \{M_{n_k} \leq b_{n_k}\}) \\ &\geq P(M_{m_{i,j}} \leq b_{m_{i,j}}) + \sum_{m_{i,j} < n_k < m_{i,j+1}} P(M_{n_k} \leq b_{n_k}, M_{m_{i,j}} > b_{n_{k-1}}) \\ &= P(M_{m_{i,j}} \leq b_{m_{i,j}}) + \sum_{m_{i,j} < n_k < m_{i,j+1}} P(M_{n_k} \leq b_{n_k}) \\ &\qquad \times (1 - P(M_{m_{i,j}} \leq b_{n_{k-1}} | M_{n_k} \leq b_{n_k})) \\ &= P(M_{m_{i,j}} \leq b_{m_{i,j}}) + \sum_{m_{i,j} < n_k < m_{i,j+1}} P(M_{n_k} \leq b_{n_k}) \\ &\qquad \times (1 - \{P(M_{n_{k-1}} \leq b_{n_{k-1}} | M_{n_{k-1}} \leq b_{n_k})\}^{m_{i,j}/n_{k-1}}) \\ &\geq \sum_{m_{i,j} \leq n_k < m_{i,j+1}} P(M_{n_k} \leq b_{n_k})(1 - (\lambda^*)^{m_{i,j}/n_{k-1}}) \quad \text{(by (9))} \\ &\geq (1 - \sqrt{\lambda^*}) \sum_{m_{m_i} \leq n_k < m_{i,j+1}} P(M_{n_k} \leq b_{n_k}). \end{split}$$

Consequently, there exists $\delta > 0$ such that

$$\sum_{i=1}^{\infty} P(A_i) \geq \delta \sum_{k=1}^{\infty} P(M_{n_k} \leq b_{n_k}) = \infty. \quad \Box$$

REMARK 1. Theorem 1 can be restated directly in terms of the X-distribution as follows: assume $b_n \nearrow$, $P(X > b_n) \to 0$, and $nP(X > b_n) \to \infty$. Take reals $0 < \lambda_{**} \le \lambda^{**} < 1$ and construct $1 \le n_1 \le n_2 < \cdots$ such that

(16)
$$n_k P(b_{n_k} < X \le b_j) \begin{cases} \le \lambda^{**} & \text{for } j < n_{k+1} \\ \ge \lambda_{**} & \text{for } j \ge n_{k+1}. \end{cases}$$

Then

(17)
$$P(M_n \le b_n \text{ i.o.}) = \begin{cases} 1 & \text{if } \sum_k e^{-n_k P(X > b_{n_k})} = \infty \\ 0 & \text{if } \sum_k e^{-n_k P(X > b_{n_k})} < \infty. \end{cases}$$

To verify this fact, note first that

$$\lim_{k\to\infty} \sup_{j\geq n_k} |P(M_{n_k} \leq b_{n_k}| M_{n_k} \leq b_j) - e^{-n_k P(b_{n_k} < X \leq b_j)}| = 0.$$

Hence Theorem 1 applies. Secondly, note that the convergence or divergence of both series $\sum_{k} P(M_{n_k} \leq b_{n_k})$ and $\sum_{k} e^{-n_k P(X > b_{n_k})}$ depend only on those terms for which $n_k P(X > b_{n_k}) < 2 \log k$. For such terms k,

$$\frac{P(M_{n_k} \leq b_{n_k})}{\exp(-n_k P(X > b_{n_k}))} \to 1.$$

Hence both series converge or diverge together.

THEOREM 2. Let X, X_1, X_2, \cdots be i.i.d. random variables and put $M_n = \max_{1 \le j \le n} X_j$. Let $\{b_n\}$ be any non-decreasing sequence of constants. Suppose

$$(18) P(X > b_n) \to 0 and$$

(19)
$$P(M_n \le b_n) \to 0 \quad (equivalently, nP(X > b_n) \to \infty).$$

Take any $0 < \lambda_* \le \lambda^* < 1$. Choose any $1 \le n_1 < n_2 < \cdots$ such that

(20)
$$P(M_j \le b_{n_k}) \begin{cases} \le \lambda^* & \text{for } j \ge n_{k+1} - n_k \\ \ge \lambda_* & \text{for } j < n_{k+1} - n_k. \end{cases}$$

Then

(21)
$$P(M_n \le b_n \text{ i.o.}) \begin{cases} = 1 & \text{if } \sum_k P(M_{n_k} \le b_{n_k}) = \infty \\ = 0 & \text{if } \sum_k P(M_{n_k} \le b_{n_k}) < \infty. \end{cases}$$

PROOF. Define m_i , $m_{i,j}$, l(i), A_i , and $A_{i,j}$ as the proof of Theorem 1, using the present sequence of n_k 's. If $\sum_k P(M_{n_k} \leq b_{n_k}) < \infty$, then

$$\begin{split} P(M_n \leq b_n \text{ i.o.}) &= \lim_{N \to \infty} P(\bigcup_{k=N}^{\infty} \bigcup_{n_k < j \leq n_{k+1}} \{M_j \leq b_j\}) \\ &\leq \lim_{N \to \infty} \sum_{k=N}^{\infty} P(\bigcup_{n_k < j \leq n_{k+1}} \{M_j \leq b_j\}) \\ &\leq \lim_{N \to \infty} \sum_{k=N}^{\infty} P(M_{n_k+1} \leq b_{n_{k+1}}) \\ &\leq \lim_{N \to \infty} \sum_{k=N}^{\infty} (P(M_{n_{k+1} - n_k - 1} \leq b_{n_{k+1}}))^{-1} P(M_{n_{k+1}} \leq b_{n_{k+1}}) \\ &\leq \lim_{N \to \infty} \sum_{k=N}^{\infty} (\lambda_*)^{-1} P(M_{n_{k+1}} \leq b_{n_{k+1}}) = 0. \end{split}$$

Next, assume $\sum_{k} P(M_{n_k} \leq b_{n_k}) = \infty$. Arguing as in the proof of Theorem 1, there

exists c > 0 such that $P(A_i) \ge c \sum_{j=1}^{l(i)} P(A_{i,j})$. To lower-bound

$$P(A_{i,j}) = P(\bigcup_{m_{i,j} \le n_k < m_{i,j+1}} \{M_{n_k} \le b_{n_k}\})$$

in terms of $\sum_{m_{n,j} \leq n_k < m_{n,j+1}} P(M_{n_k} \leq b_{n_k})$ it suffices to discard any n_k 's for which $P(M_{n_k} \leq b_{n_k})$ is abnormally small relative to the other terms. With this in mind, fix (i,j) and let

(22)
$$k^* = \text{last } k : n_k < m_{i,i+1}$$

and

(23)
$$k_* = \text{first } k : n_k \ge m_{i,j} \text{ and } P^{1/4}(X \le b_{n_k}) \ge P(X \le b_{n_k}).$$

For $m_{i,j} \leq n_k < m_{i,j+1}$, let

(24)
$$B_{n_b} = \{ \max_{n_b < l \le n_{b,b}} X_l > b_{n_b} \}.$$

Note that for $k_* \leq k \leq k^*$,

$$P(B_{n_k}) = 1 - P(M_{n_{k+1}-n_k} \le b_{n_k}) = 1 - \{P(X \le b_{n_k})\}^{n_{k+1}-n_k}$$

$$\ge 1 - \{P(X \le b_{n_k})\}^{(n_{k+1}-n_k)/4} = 1 - \{P(M_{n_{k+1}-n_k} \le b_{n_k})\}^{1/4}$$

$$\ge 1 - (\lambda^*)^{1/4}.$$

Lower-bounding,

Consequently, $\sum_i P(A_i) = \infty$.

Arguing again as in the proof of Theorem 1, we may conclude that $P(M_n \le b_n \text{ i.o.}) = 1. \square$

REMARK 2. As noted in Remark 1, the conditions satisfied by n_k 's of Theorem 2 may be expressed directly in terms of tail probabilities. Thus, if there are $0 < \lambda_{**} \leq \lambda^{**} < \infty$ such that

(25)
$$jP(X > b_{n_k}) \begin{cases} \geq \lambda_{**} & \text{for } j \geq n_{k+1} - n_k \\ \leq \lambda^{**} & \text{for } j < n_{k+1} - n_k \end{cases}$$

then

(26)
$$P(M_n \le b_n \text{ i.o.}) \begin{cases} = 1 & \text{if } \sum_k P(M_{n_k} \le b_{n_k}) = \infty \\ = 0 & \text{if } \sum_k P(M_{n_k} \le b_{n_k}) < \infty. \end{cases}$$

Moreover, the series $\sum_k P(M_{n_k} \leq b_{n_k})$ and $\sum_k e^{-n_k P(X > b_{n_k})}$ converge or diverge together.

LEMMA 1. Let $0 < x_1 \le x_2 \le \cdots \le x_L \le 2x_1$, and $0 < P_1 \le P_2 \le \cdots \le P_L$. Suppose $P_i^{x_i} \le e^{-1}$ for $1 \le i \le L$ and that $P_i^{x_{i+1}-x_i} \le \lambda$ for $1 \le i \le L$ and some $0 < \lambda < 1$. Then

(27)
$$\sum_{i=1}^{L} P_{i}^{x_{i}} \leq (2 + 3(\log \lambda^{-1})^{-1}) \sum_{i=L_{*}}^{L} P_{i}^{x_{i}},$$

where

$$L_* = \min\{1 \le i \le L : P_i > P_L^4\}.$$

PROOF. Let $\mathscr{C}_j = \{1 \le k \le L : (P_L)^{4j} < P_k \le (P_L)^4\}$. For simplicity write P_i as e^{-y_i} . Then

$$\begin{aligned} |\mathscr{C}_j| &\leq 1 + \sum_{\{i < L: i \in \mathscr{C}_j\}} y_i(x_{i+1} - x_i) / \log \lambda^{-1} \\ &\leq 1 + 4^j y_L \sum_{\{i < L: i \in \mathscr{C}_j\}} (x_{i+1} - x_i) / \log \lambda^{-1} \\ &\leq 1 + 4^j y_L (x_L - x_1) / \log \lambda^{-1} \leq 1 + 4^j x_L y_L / 2 \log \lambda^{-1}. \end{aligned}$$

Hence

$$\begin{split} \sum_{i=1}^{L} P_{i}^{x_{i}} &= \sum_{j=1}^{L} \sum_{i \in \mathscr{C}_{j}} P_{i}^{x_{i}} \leq \sum_{i \in \mathscr{C}_{1}} P_{i}^{x_{i}} + \sum_{j=2}^{L} \sum_{i \in \mathscr{C}_{j}} P_{L}^{4j-1}x_{i} \\ &\leq \sum_{i \in \mathscr{C}_{1}} P_{i}^{x_{i}} + \sum_{j=2}^{L} |\mathscr{C}_{j}| P_{L}^{4j-1}x_{L}/2 \\ &\leq \sum_{i \in \mathscr{C}_{1}} P_{i}^{x_{i}} + \sum_{j=2}^{L} (1 + 2^{2j}x_{L}y_{L}/2 \log \lambda^{-1})(e^{-x_{L}y_{L}})^{2^{2j-3}} \\ &\leq \sum_{i=L_{*}}^{L} P_{i}^{x_{i}} + \sum_{j=2}^{\infty} (e^{-x_{L}y_{L}})^{2^{2j-3}} \\ &+ (8x_{L}y_{L}/\log \lambda^{-1})e^{-2x_{L}y_{L}} \sum_{j=2}^{\infty} (4e^{-8x_{L}y_{L}})^{j-2} \\ &\leq \sum_{i=L_{*}}^{L} P_{i}^{x_{i}} + e^{-2x_{L}y_{L}}(1 - e^{-8x_{L}y_{L}})^{-1} \\ &+ (8x_{L}y_{L}/\log \lambda^{-1})e^{-2x_{L}y_{L}}(1 - 4e^{-8x_{L}y_{L}})^{-1} \\ &\leq \sum_{i=L_{*}}^{L} P_{i}^{x_{i}} + (1 + 3(\log \lambda^{-1})^{-1})e^{-x_{L}y_{L}} \quad \text{since} \quad x_{L}y_{L} \geq 1 \\ &\leq (2 + 3(\log \lambda^{-1})^{-1}) \sum_{i=L_{*}}^{L} P_{i}^{x_{i}}. \quad \Box \end{split}$$

We now verify that the intuitive construction of $\{n_k\}$ given in (3) satisfies (2).

THEOREM 3. Let X, X_1, X_2, \cdots be i.i.d. random variables and put $M_n = \max_{1 \le j \le n} X_j$. Let $\{b_n\}$ be any non-decreasing sequence of constants. Suppose

$$(28) P(X > b_n) \to 0$$

and

$$(29) P(M_n \le b_n) \to 0.$$

Take any $0 < \lambda_* \le \lambda^* < 1$. Choose any $1 \le n_1 < n_2 < \cdots$ such that

(30)
$$P(M_j \le b_{n_k+j}) \begin{cases} \le \lambda^* & \text{for } j = n_{k+1} - n_k \\ \ge \lambda_* & \text{for } j < n_{k+1} - n_k. \end{cases}$$

Then

(31)
$$P(M_n \le b_n \text{ i.o.}) \begin{cases} = 1 & \text{if } \sum_k P(M_{n_k} \le b_{n_k}) = \infty \\ = 0 & \text{if } \sum_k P(M_{n_k} \le b_{n_k}) < \infty. \end{cases}$$

PROOF. Suppose $\sum_{k} P(M_{n_k} \leq b_{n_k}) < \infty$. Notice that

$$\lim \inf_{k \to \infty} P(M_{n_{k+1} - n_k} \le b_{n_{k+1}}) = \lim \inf_{k \to \infty} P(M_{n_{k+1} - n_k - 1} \le b_{n_{k+1}}) \ge \lambda_*.$$

Hence

$$P(M_n \le b_n \text{ i.o.}) \le \lim_{N \to \infty} \sum_{k=N}^{\infty} P(\bigcup_{n_k \le j \le n_{k+1}} \{M_j \le b_j\})$$

$$\le \lim_{N \to \infty} \sum_{k=N}^{\infty} P(M_{n_k} \le b_{n_{k+1}})$$

$$\le \lim_{N \to \infty} \sum_{k=N}^{\infty} P(M_{n_{k+1}} \le b_{n_{k+1}}) / \lambda_* = 0.$$

Finally, assume $\sum_{k} P(M_{n_k} \leq b_{n_k}) = \infty$. Since

$$P(M_{n_{k+1}-n_k} \le b_{n_k}) \le P(M_{n_{k+1}-n_k} \le b_{n_{k+1}}) \le \lambda^*,$$

the proof of Theorem 2 applies verbatim, yielding $P(M_{n_b} \leq b_{n_b} \text{ i.o.}) = 1$.

By interchanging inequalities and strict inequalities, companions to the preceding theorems can be derived. To illustrate the point we state such a companion result, giving the full strength of what has actually been proved.

THEOREM 4. Let X_1, X_2, \dots be i.i.d. random variables and put $M_n = \max\{X_1, \dots, X_n\}$. Let $\{b_n\}$ be any non-decreasing sequence of constants. Suppose

$$(32) P(X \ge b_n) \to 0$$

and

$$(33) P(M_n < b_n) \to 0.$$

Take any $0 < \lambda_* \le \lambda^* < 1$, and choose any $1 \le n_1 < n_2 \cdots$

If

$$(34) (n_{k+1} - n_k) P(X \ge b_{n_k}) \ge \lambda_*$$

then

(35)
$$P(M_{n_k} < b_{n_k} \text{ i.o.}) = 1 \quad \text{if} \quad \sum_k e^{-n_k P(X \ge b_{n_k})} = \infty.$$

If

$$(36) (n_{k+1} - n_k) P(X \ge b_{n_k}) \le \lambda^*$$

then

(37)
$$P(M_n < b_n \text{ i.o.}) = 0 \quad \text{if} \quad \sum_k e^{-n_k P(X \ge b_{n_k})} < \infty.$$

REFERENCES

Barndorff-Nielson, O. (1961). On the rate of growth of the partial maxima of a sequence of independent identically distributed random variables. *Math. Scand.* 9 383-394.

ERDÖS, P. (1942). On the law of the iterated logarithm. Ann. Math. 43 419-436.

HAAN, L. DE and HORDIJK, A. (1972). The rate of growth of sample maxima. Ann. Math. Statist. 43 1185-1196.

KLASS, M. J. (1982). Toward a universal law of the iterated logarithm, Part III. (Preprint).

MORI, T. and OODAIRA, H. (1976). A functional law of the iterated logarithm for sample sequences. Yokohama Math. J. 24 35-49.

PICKANDS III, J. (1967). Sample sequences of maxima. Ann. Math. Statist. 38 1570-1574.

Resnick, S. I. and Tomkins, R. J. (1973). Almost sure stability of maxima. J. Appl. Probab. 10 387-401

Robbins, H. and Siegmund, D. (1970). On the law of the iterated logarithm for maxima and minima. Sixth Berkeley Symposium, 51-70.

WICHURA, M. J. (1974). On the functional form of the law of the iterated logarithm for the partial maxima of independent identically distributed random variables. *Ann. Probab.* 2 202–230.

DEPARTMENTS OF STATISTICS AND MATHEMATICS UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720