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THE OSCILLATION BEHAVIOR OF EMPIRICAL
PROCESSES: THE MULTIVARIATE CASE

By WINFRIED STUTE
University of Siegen'

We derive sharp finite sample estimates and exact almost sure limit
results for local deviations of multivariate empirical processes. These are
useful for obtaining, e.g., exact convergence rates of multivariate kernel
density estimators. It is also indicated how local properties of multivariate
empirical processes may be used to study various problems in nonparametric
multivariate analysis.

0. Introduction. In this paper we derive sharp finite sample tail estimates
and exact almost sure asymptotic results on local deviations of empirical processes
in higher dimension. These correspond to those of Stute (1982a) for dimension
one.

One major difficulty in dealing with multivariate empirical processes comes
from the fact that the parameter set is no longer linearly ordered. It turns out
that a detailed study of such processes must involve their exact path structure
and distributional character. In Kiefer (1961) a certain conditioning technique
using the Markovian structure of empirical distribution functions has been
successfully applied to derive exponential bounds for the maximal (global)
deviation between the empirical and the true distribution function. Here an
appropriately modified method is used to derive bounds for the local deviation at
a point and for the oscillation modulus (Section 1). The induction argument is
based on a sharp exponential bound derived in Stute (1982a). Some asymptotic
results are stated in Section 2.

As we have shown in our previous paper, an application of such local results
easily yields tightness of the empirical process, both in the Skorokhod topology
and under sup-norm metrics. We also obtained weak conditions for the conver-
gence of the so-called quantile process, and gave a straightforward proof of
Kiefer’s uniform Bahadur representation of sample quantiles. Finally (see also
Stute, 1982b) local properties turn out to be crucial for deriving exact rates of
convergence for kernel density estimators, histograms and nearest neighbor
estimators. In Section 3 of this paper, similar results are obtained for multivariate
kernel density estimators. In Section 4, we discuss possible applications in various
fields of nonparametric multivariate analysis. Some further applications are
indicated in Section 5. Proofs are given in Section 6.

In the following let £, £, &, - - - denote an independent sample in R, d = 1,
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362 WINFRIED STUTE

with common distribution function (d.f.)
H(t) =P <t), tERY

defined on a probability space (2, &, P). Let H, be the empirical d.f. of the
sample £, - -+, &, and let

an(t) = n'*(H.(t) — H(t)), t€E R,
denote the corresponding empirical process. Similarly, for a rectangle I, put
an(I) = nl/z(ﬂn(l) - M(I))’

where p, and p are the probability measures pertaining to H, and H, respectively.

Now, it will be convenient to deal with a specific representation of «,. For
this, write H(t) = H(t,, - - -, ts) = C(F\(t,), - -+, Fy(ts)), where F,, --., F, are
the marginals of H and C is the pertaining copula (or dependence) function (see,
e.g., Schweizer and Wolff, 1981). In particular C is a d.f. on the unit cube in R¢
with uniform marginals. Let o, = (5}, ---, 7), i =1, 2, --- be an independent
sample with d.f. C. Put & = (Fi'(n}), -+, Fi'(n¥)),i=1,2, ---. Then &, &,
- - - are independent with d.f. H. Denote with C, the empirical d.f. of ,, - - -, 3,.
It is easy to see that H,(t,, - - -, ty) = C.(F\(t,), .- -, F4(ts)), so that

(0.1) an(t) = n'*Co(Fi(t), -, Fa(ta)) — C(Fi(ty), - - -, Fa(ta))].

Since C has uniform marginals it will therefore be sufficient to consider the case
when F, = ... = F; = U, the uniform distribution on the unit interval. We shall
mainly be concerned with the process {a,(I):] € #}, where # is some class of
(small) rectangles in the unit cube, possibly depending on n. For notational
convenience, write I,y = [li<ia(x;, ¥;] whenever x = (x;, -+, 2g) <y =
(¥1, + + +, ¥a) componentwise. Furthermore, put | I, || = max;<;<4(y; — x;). For 0
=a=<b<wx, #(a,b) is the class of rectangles I = I, , with max,<;<4(y; — x;) <
b and min,<;<4(y; — x;) = a. Thus, I € #(0, b) if and only if | I | < b. In our local

investigations the vector a = (a,, ---, as) € [0, 1] always serves as the right
upper corner of a (small) rectangle with left lower corner 0 = (0, ---, 0) €
[0, 1]°.

1. Local deviations. In this section we shall state some finite sample
bounds for local increments of «,. The basic inequality (1.1) below is obtained
by induction on d. The case d = 1 has been treated in Stute (1982a). See also
Shorack and Wellner (1982).

LEMMA 1.1. Let G be a continuous d.f. on the real line with inverse G™*(p) =
inf{t ER: G(t) =p},0<p=<1. Then, foreach0<6<land 0<a<4/4,if8 <
(s0)?,

P(sup,a,(t) > sva) < 2 P(a,(a) > s(1 — 8) Va),
with the supremum extended over all t between G™(0) and G™Y(a).
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Here «, and &, denote the empirical processes pertaining to samples of size n
with d.f.’s G and U, respectively. '

ProoF. It follows from Lemma 2.3 in Stute (1982a) upon using the represen-
tation a,(t) = a,(G(¢)). 0

A similar bound will now be stated for a general d. As for Kiefer’s (1961) tail
estimates for | H, — H || = sup, | H,(t) — H(t) |, the method of proof exploits the
Markovian structure of H, (Lemma 6.1). Though, the resulting estimates are
completely different in our case, thus reflecting the local character of the setup.
In the following, H will be assumed to be continuous with uniform marginals. In
particular, the support of H is contained in the unit cube. Fix some 0 < q,, ---,
aq < Y2 such that H(a) = H(a,, - - -, ag4) < 8/4, where § < Y.

LEMMA 1.2. Under the above assumptions there exists some constant C = C(5)
< o such that

(11)  P(suposizacs(t) > s VH(@)) = C Plan(a) = s(1 — 28)¢ VE(a))
for all s >0 with 2 < s ¥nH(a) and 32 < (s6(1 — 25))>.

Since in applications 6 will be a small positive number and C = C(§) is finite,
(1.1) tells us that essentially nothing is lost when replacing the supremum by
a,(a). The proof of Lemma 1.2 will be given in the last section of this paper. An
explicit bound for the right hand side of (1.1) is obtained from a standard
Bernstein-inequality for the Binomial random variable nH,(a) = n. Though there
are somewhat sharper bounds available, the present one is appropriate for most
purposes.

LEMMA 1.3. Given 0 < § < 1, there exists some (small) x;> 0 such that for a
Bin(n, p)-random variable 7

P(|n— np| = 2) < 2 exp[—(1 — 6)z*/(2np)],

provided that 0 < z < npx;.

Lemma 1.3 provides a type of exponential bound which is usually needed for
proving LIL results. It is also valid with 2np(1 — p) rather than 2np. Since we
shall only deal with small p, the factor (1 — p) may be thought of as being
absorbed by (1 — 6).

A bound similar to (1.1) may also be obtained for the probability that
info<i<ac, (t) < —svH(a). Together with Lemma 1.3 we therefore get the following
estimate.

THEOREM 1.4. For each 0 < § < Vs there exists some finite C = C(8) such that
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for all 0 < ay, ---, ag < % with H(a,, ---, ag) < 6/4 and every 0 < s <
x; VvnH(a) one has

(1.2)  P(suposi<a | an(t) | > svH(a)) = C exp[—(1 — 6)(1 — 28)*'s°/2].

PROOF. Of course, it remains to show (1.2) for all s = ¢ = ¢(6) > 0, say, since
for s < ¢, (1.2) is trivially true for C large enough. Now, since s < x; VvnH(a), we
may find some ¢ = ¢(§) > 0 such that the growth conditions in Lemma 1.2 are
satisfied for s = c¢. With z = s(1 — 26)? vnH(a) the result therefore follows from
(1.1) and Lemma 1.3.0

In most applications both a = a(n) and s = s, will depend on n in such a way
that H(a(n)) — 0 and nH(a(n)) — o, with s, = o(¥nH(a(n))). Given 6 > 0, let
e < Y% be such that 1 — 6 < (1 — ¢)(1 — 2¢)*. Then (1.2) is applicable for ¢, at
least for all large n. Hence

(1.3)  P(suPost<am | @a(t) | > s,VH(a(n))) = C(5)exp[—(1 — 8)s7/2].

As in Stute (1982a), the estimates (1.2) and (1.3) can be used to.study the
oscillation modulus of «, defined by

w,(a) = supf| a,(Ixy) |: ¥i —x: < a; for 1 =i < nl.

For this one has to observe that the bound (1.2) also holds if instead of «,(t), O
< t < a, one considers o, (I ), X =t < x + a, with H(a) replaced by u(Iy x+a)-
Application to every x of an appropriate finite grid of the unit cube then yields
an upper bound for the tails of w,(a). We shall first state an estimate for the
important case when H has a smooth density f w.r.t. Lebesgue measure on the
unit cube which is bounded below away from zero.

THEOREM 1.5. Suppose that H has a continuous density f on [0, 1]%, with f =
m > 0, and uniform marginals. Then for given 0 < § < Y, there exist some (large)
finite C = C(8) and some (small) y; > 0 such that for all small enough 0 < a,,
.-+, aqand every 0 < s < y;vn min, <;<qaf

(1.4) ®(wn(a) > sVa, --- agsup,f(x)) < C [min,<;=qa;] %exp[—(1 — 8)s%/2].

The boundedness condition f = m > 0 is important if one is interested in
bounds for w, which are associated with the tails of a normal distribution (cf.
Lemma 1.3). If one admits more general (but less tractable) bounds for binomial
tails (see Bennett, 1962), the condition f = m > 0 may be omitted.

It may happen that one is interested in fluctuations of «, when restricted to a
fixed subrectangle I, of the unit cube, namely

wn(a, I()) = sup{ | an(Ix,y) |: yi— X =< aq forl<i< d, Ix,y C Io}

A slight modification of the proof of Theorem 1.5 then shows that (1.4) is still
true with the supremum extended over all x € I,. In this case only f| I, = m >0
is needed.
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As in Stute (1982a) and (1982b), local properties of empirical processes suggest
themselves for an empirical study of the unknown density f of H. For this it is
necessary to study local deviations of a, on small but not too small rectangles.
Recall that, for 0 < a < b < =, _#(a, b) denotes the class of rectangles

I,y with max,<i<¢(¥; — %) < b and min,<,<a(y; — %) = a.
THEOREM 1.6. Under the conditions of Theorem 1.5, then, for given 0 < § <

1 and 0 < c¢; < ¢y < ®, there exists some y(8, ¢1, ¢2) > 0 such that for all small a >
0 and 0 <s < yvna*

| Qn (I) |
(1.5) ]P)<Sllple 7 (c1a,c0a) m

where C < o depends only on c,, ¢, 6 and d.

> s) < C a%exp[—(1 — 8)s%/2],

So far we have stated our main results under the additional assumption that
H has uniform marginals. For the general (smooth) case the corresponding
estimates are easily obtained from (0.1). For example, (1.2) yields the same bound
for P(sup; | o, (t) | > svH(a)), provided that F;(a;) <%, 1 <i < d, and where the
supremum extends over all t with t; < a;, 1 =i=<d.

Also, (1.5) is valid in more general situations. For example, if F;, 1 < i < d,
have derivatives F! such that (on their support) 0 < M, < F/ < M, < o, then
ca<y,—x <ca,l=<i=<d,implies c;Ma < Fi(y;) — Fi(x;) < c2Mza,1 <i <
d. Hence (0.1) and (1.5) applied to ¢, M, and ¢, M, rather than ¢, and ¢, yield the
same bound for an arbitrary (smooth) H = C(F,, ---, Fy) (possibly with a
somewhat larger constant). Note also that if H has a (smooth) positive density f
and positive marginal densities F/, 1 < i < d, the copula function C has the
density

k(z1, -+, 2a) = f(F1'(21), - -+, Fa'(2a))/[I1=i=a F{(F7'(2:))],

0< 2z <1,1 =i = d. Clearly, the boundedness condition 2k = m > 0 is too
restrictive -for most applications, if one admits uniformly continuous H with
unbounded support. Observe, however, that as remarked before, for the trans-
formed empirical process a version of (1.4) and hence of (1.5) is also valid when
restricted to a fixed subrectangle of the unit cube. For the non-transformed
empirical process, this entails that given a rectangle I, C R¢, a version of (1.5) is
valid (with the supremum restricted to all I C I,,), if k| (Fy, - - -, F3)(Ip) = m > 0.
Under some mild smoothness assumptions on f, this is easily verified for each
bounded I,. For example, consider the case when, on Iy = []1<i<a(x:, ¥:), f| Io and
F! | (x;, y;) are bounded away from zero and infinity.

As to (1.4) one has to be more careful. Take d = 2 for simplicity and write F
=F,G=F;,a=a,and b = a,. Assume F’, G’ < M,. For I = (x, y1] X (x2, ¥2]
we have F(y,) — F(x;) < M,a and G(y2) — G(x2) < M,b whenever y;, — x; < q,
yo—xo<b. Fork€E Nputd;,=[i/k, (+2)/k],i=0,1, .-, k— 2. If Msa, Myb
< 1/k, then F(x,), F(y,) € J; and G(x;), G(y.) € J, for some jand l. Let ¢ <1



366 WINFRIED STUTE

be close to one and assume that
inf.e; F'(F~'(2)) = q sup.e,;F'(F7'(2)),
inf.e,G"(G™(2)) = ¢ sup.esG'(G™(2).

Condition () cannot be satisfied for j, [ = 0 or & — 2, if the density quantile
functions F’'(F~1(z)) and G’(G~'(z)) tend to zero as z — 0 or 1. It will, however,
be satisfied under suitable regularity assumptions on F and G, for all J; and J,
contained in some [e, 1 — ¢], say, when k is large. Now, using (0.1), let c, be
defined by the equation a,(t,, t;) = ¢, (F(t,), G(t2)). Obviously the event {| a,(I) |
> svab-supxes,f(X)} then implies the event

{@n(@, b, J; X i) > sVab supxerf(X)/[sup.es,F’ (F~(2)) - sup.e;,G'(G7'(2))]}

(+)

C {@n(@, b, J; X J)) > 5qVab supq, zyesxsk (21, 22)},

where &, is the oscillation modulus of c,, and @ = a sup.ey; F'(F42)), b =
b sup,e;,G’(G™'(z)). Now apply (1.4) to bound the probability of the last event.
For bounded I’s summation over appropriate j’s and s then gives the bound
(1.4) for P(w,(a, b, I;) > sVab supxerof(X)).

So far the results of this section have been stated for a “standardized” «,. For
example, (1.1) yields an upper bound for the tails of supo=¢<act»(t)/vH(a). This
is necessary if one is interested in exact rates of convergence for w,(a(n)) — 0
as n — oo, and similarly for the results of Section 3. If one is merely interested
in suitable upper bounds it suffices to bound supo<t<ac.(t) and w,(a). For such
an estimate the conditions may be substantially weakened. To be precise, replace
s in Lemma 1.2 by s/vH(a) (assume H(a) > 0 since otherwise the resulting
estimate becomes trivial). The condition 2 < svnH (a) then reduces to 2 < svn.
Since H(a) < min, <;<4a; we therefore get

(1.1)* P(Supo=t=atts (t) > 5) < C P(a,(a) > s(1 — 28)%,

provided that 2 < svn, 32H (a) < (s6(1 — 26))? and min, <;<qa; < §/4. Instead of
Lemma 1.3 the following version of a Bernstein-inequality is more appropriate
to bound the right-hand side of (1.1)*:

(1.6) P(|n — np| = vns) < 2 exp[—s*/(2p + (25/3 VYn))], s> 0.

Using (1.1)* and (1.6) rather than (1.1) and Lemma 1.3, we then obtain the
following result.

THEOREM 1.7. Suppose that H has uniform marginals. Then there exist
constants C1, C; > 0 (not depending on s, n, a,, - - -, ag or H) such that

.7 P(w,(a) > s) < Ci[min,;<;<40;] exp[—Cos%/min; <izqai],

provided that 2 < s ¥n and Csmin a; = s/ Vn, Cs finite.

When H has a bounded Lebesgue-density, the exponential term may be
improved to exp[—C.s?/[[a:], provided that Cs[Ja; = s/ Vn.
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From Theorem 1.7 it is now trivial, via Borel-Cantelli, to obtain almost
sure upper bounds for w,(a(n)) under various growth conditions on a(n) =

(aln’ ] adn)-

2. Asymptotic results. In Stute (1982a) the one-dimensional analogue of
(1.4) has been used to study the oscillation modulus of a, as a = a,, | 0, n — 0.
For an almost sure limit result, the following mild growth conditions for a, were
needed:

(i) na, 7 o (ii) In a;' = o(na,) (iii) In a;'/Inln n — oo,
Such sequences were called bandsequences. In dimension d (i)-(iii) have to be
assumed for a¢ rather than a,,.

THEOREM 2.1. Suppose that H has a continuous density f on the unit cube
with f =2 m > 0, and uniform marginals. Then, if (a2), is a bandsequence, we have
with probability one

(2.1) lim, o wp(@n, -+, @,)/¥2a¢ In a,;% = Vsupxf(x).

Proor. This follows from Theorem 1.5 in much the same way as Theorems
2.14 and 2.15 in Stute (1982a) followed from Lemma 2.4 there. In fact, that d =
1 was not very essential there. In particular, the poissonization argument is also
valid in higher dimension. That a, has to be replaced by a2 comes from (1.4) and
the fact that for general d the growth of w,(a,, - - -, a,) is related to the maximal
deviation of «, on small pairwise disjoint rectangles I,, ---, I, where || [;| =
0(a,),j=1, ---,rand ris of order a;%. 0

Similarly, from (1.5) we get the following result.

THEOREM 2.2. Under the assumptions of Theorem 2.1 we have for all 0 < ¢,
< ¢y, < o with probability one

. | (1) |
2.2 lim,, e SUP/e / (¢ya,,000) T =
(2.2) Die s (c1a,,c00,) 9:(D) In a.°
This is the d-dimensional analogue of Theorem 2.12 in Stute (1982a).
If F,, - - -, F, are not necessarily uniform on [0, 1], Theorems 2.1 and 2.2 take

on the following form.

THEOREM 2.3. Suppose that on Iy = [[i<i=a(xi, ¥:), H admits a uniformly
continuous density f such that 0 <m =< f|y =M< oand 0< M, < F! = M,
<o, 1<i=<d. Then forall 0 <c, < c, <, we have with probability one

(2.1)’ limy e (@n, -+ -, Gn, Ip)/v2alln a;? = Vsupxerf(x)

5 e ()|
1Mo SUPJE 5 (cyan,c000),ICT W =1,

provided that (a?), is a bandsequence.

(2.2)
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'3. Kernel density estimators. Suppose that H has a nonspecified (Le-
besgue -) density f. There is an extensive literature on nonparametric methods
for estimating f. A survey of available methods is contained in Wertz (1978).
Perhaps the best studied estimator is the so-called kernel density estimator

ful®) = az f K(“")H,,(dm, tem,

n

introduced for d = 1 by Rosenblatt (1956) and Parzen (1962). Here K is a
probability kernel on R? and (a,), is a bandwidth-sequence tending to zero as
n — o. Nadaraya (1965) was the first to establish rates for the almost sure
uniform convergence of f, to f. He always considers kernel functions of bounded
variation, thus making integration by parts possible. After that an application of
the Dvoretzky-Kiefer-Wolfowitz (1956) exponential bound for the (global) devia-
tion between the empirical and the hypothetical d.f. then yields the desired rate.
A more detailed investigation of the large sample behavior of kernel type
estimates may be found in Révész (1978), who uses strong approximation results
for empirical processes. See also Révész (1982) and Silverman (1978). In the
multivariate case (d > 1) kernel density estimators have been first investigated
by Cacoullos (1964). Riischendorf (1977) extended Nadaraya’s (1965) work, using
Kiefer’s (1961) estimate instead of the D-K-W bound. It should be obvious,
however, that such global estimates are not appropriate to get exact rates for
local type estimates. As to Révész’s (1978) technique, the existing results on
strong approximation of multivariate empirical processes (cf. Csorgo and Révész,
1975, Philipp and Pinzur, 1980) do not yield the same bounds as obtained by the
direct local approach described below. To this end take ¢; =1 = ¢ in (2.2)". Then
each I has the form I = I;—, 2 t+a,2 fOr some t. Put

fn(t) = a;dﬂn(It—a,/Z,t+an/2) and fn(t) = a;dﬂ(lt—an/2,t+an/2)’

which is the expectation of f,(t). Note that f, is the d-dimensional analogue of
the naive kernel density estimator, since

(3.1) o = at | K(t = ")Hn<dx>,

-

n

where (in obvious notation) K = 1_1/2,1/2). Under the smoothness assumptions
of Theorem 2.3 a version of (2.2)’ is still true with u(I) replaced by A(I)f(t),
where ) is Lebesgue measure on R? Thus (2.2)’ implies

. d Ifn(t)_fn(t)l -
(3.2) lim,_...supe;, vnad ———W 1

with probability one.

As in Stute (1982b) the relation 3.2 may be extended to an arbitrary simple
kernel function. The general form of the right-hand side of (3.2) then becomes
(J K*(x) dx)". In a second step the same may be obtained for an arbitrary
smooth kernel function of bounded support, which is of finite variation. For this,
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K has to be approximated by a suitable simple kernel function K° to which the
general form of (3.2) applies. Furthermore, it must be shown that the normalized
error between the two resulting estimators f, and {3 can be made arbitrarily small
if K° gets close to K. In this part of the proof an integration by parts argument
and the fact that K has bounded support will be needed to bound the deviation
between f, and f by the oscillation modulus of «,. To make integration by parts
possible, K has to be of finite variation in the sense of Hardy and Krause (see,
e.g., Hlawka, 1961, and Hobson, 1927). In particular, this is fulfilled if K has
finite support and bounded partial derivatives of order two. In summary, we get
the following result.

THEOREM 3.1. Let K be a continuous kernel function with bounded support
and finite variation. Suppose that on Iy = [] (x;, v;), H = C(F\, ---, F;) has a
uniformly continuous density f such that f| I, and F!| (x;, y:), 1 < i < d, are
bounded away from zero and infinity. Then with probability one

. d
(3.3)  lim,_..Supes, \/21':1“; 1(® f(f 0T ( f K(x) dx) ,

provided that (a?), is a bandsequence.

In density estimation theory, the sequence (a,), is usually called the sequence
of window-widths.

As in Stute (1982b), certain extensions of (3.3) are possible, such as for kernel
functions with unbounded support, but with certain growth properties at infinity.

From (3.3) it is now possible to derive exact error terms for the deviation
between f, and f. To get explicit bounds for the bias f, — f, some smoothness
assumptions will be needed for f. In principle, to require a certain type of
smoothness is a matter of taste, according to what class of K’s is to be considered
and what rate of convergence one has in mind. As a rule, bounding the bias is a
trivial analytical task. Simple Taylor expansion will usually do theé job.

In this paper we shall only be concerned with nonnegative kernels integrating
to one (probability kernel). Then the following smoothness assumption on f is
appropriate:

(3.4) ft + h) =£(t) + {f/t)}"h + L W"{f (t)}h + o(hTh)

uniformly in a t-neighbourhood of I, as h — 0. Here

(%1 0= (2
f1(t) = (ax," lsis< d)x=t’ f7(t) = (axiaxj )X_t’

and T denotes transposition. Under the structural assumptions of Theorem 3.1
we get

a[Fa®) - f®)] = 3 | ki dy + o)
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uniformly in t € I, provided that K is symmetric. Hence, from (3.3),

. g 2(8) — f(t 2 v
lim,,_..8up¢e;, \ / 5 lrrllaa;d lf(\)/)Tt:( )| = <f K*(x) dx> ,

whenever a2 = o((In a;%/na?)"?), i.e. when nat*¢/In a;¢ — 0. On the other hand,
the stochastic component f, — f, is negligible, if nat*¢/In a;¢ — . The optimal
rate of convergence is obtained if a2 and (In a,%/na?)*? are of the same order.
This is achieved if we set a, = const X (In n/n)Y“*% where the constant depends
on f (and f”) and is hence unknown (see Stute, 1982b, for d = 1). It should be
worthwhile making some comments on the growth conditions (ii) and (iii) (with
a, replaced by a2). Now, (3.3) trivially implies

supier, | f(t) — Fa(t) | = O(((In az?)/naz)’?)

with probability one, and, as we have seen, similarly for the deviation between f,
and f. Of course, to obtain consistency of f,, the last term should be o(1). Hence
(ii) is not only a sufficient but also a desirable growth condition on a, (respectively
a?). Condition (iii) prevents a? from being too large. Roughly, it has to be slightly
smaller than 1/ln n. Such a condition is necessary to obtain equality in (2.1),
(2.2) and (3.3), rather than an upper bound. See Stute (1982a) for details.

4. Applications in multivariate nonparametric analysis. In this sec-
tion we shall indicate how Theorem 1.7 may be applied to various problems in
nonparametric multivariate analysis. To this end, recall H = C(F,, - - -, Fy), with
C denoting the copula function of H. For F,, - - -, Fq continuous, we have

(4'1) C(ul’ ) ud) = H(Fl_l(ul)v Tty Fgl(ud)),
O<wuy;<1 for i=1,.--,d.

It is easily seen that the (empirical) copula function C, pertaining to H, is also
given, in analogy to (4.1), by

Cn(uh Sty ud) = Hn(Fl_nl(ul)9 Sty F;I}(ud)),

with F;, denoting the ith marginal d.f. of H,. Putting (u:, ---, us) =
@/n, -+, 0a/n), 1 =1y, -+, ig < n, we see that C, is a certain multiparameter
rank type process (see Ruschendorf, 1976). It is further known (cf, e.g., Schweizer
and Wolff, 1981), that

H(ty, ---, ty) = Fi(ty) --- Fo(ty) for all real ¢y, ---, ta
if and only if
C(u1,~~-,ud)=u1~~~ud forall 0 =u =<1.

It is therefore reasonable to base tests on multivariate independence on the
process

Colttr, ++yUg) —Uy -+~ Usy, 0=, <1, 1=i=<d.

The collection of statistics, which can be defined through C,, includes Kolmo-
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gorov-Smirnov and Cramér-von Mises type statistics as well as Spearman and
Kendall type rank correlation coefficients. For nondegenerate limit results one
has to study the so-called (standardized) copula process

cn(uly ) ud) = n1/2[Cn(u1’ tt ud) - C(ub M) ud)]9 0= u = 1.

The main difficulty in dealing with C, comes from the fact that C, is equal to H,
evaluated at the random points (Fia(w1), ---, Faa(uq)). It turns out, however,
that the distribution of C, does not depend on F, - - ., Fy, so that again we may
assume w.l.o.g. F; = U, the uniform distribution on the unit interval. Observe
that in this case

I Fii = F' |l = sup.| Fin'(w) — Fi'(w) | = sup,| Fin(t) — Fi(¢) |,

1 = i = d. Hence, by the Chung-Smirnov LIL for empirical d.f.’s, we obtain
| F7! — Fi*|| — 0 as O((Inln n/n)"?), with probability one. We may therefore
apply Theorem 1.7 and the Borel-Cantelli lemma (with appropriate a = a, and s
= s,) to get bounds for the convergence

SUPy,,. . uy | tn(Fin (1), « -+, Fan (Ua)) — an(u, -+, ug) | = 0,

from which it is possible to eliminate the random effect in the argument of H,,.
In particular, it may be shown that under appropriate smoothness assumptions
on C, ¢, has the representation

Calun, -+, Ug)
- d ;
= an(uly Sty ud) - Z:j=1 a_u C(ulv ) ud)an(]-, sy Uiy o0y 1)

+ Rn(uly Sty ud)

where &, is the empirical process pertaining to C(=H if F, = ... = F;,=U) and
the error term satisfies
(4.2) sup | R, (w1, - -+, ug) | = O(n™*(In n)"*(Inln n)"*)

as n — oo, with probability one. Clearly, such a representation easily yields
Strassen-Finkelstein and Donsker type invariance principles for ¢, (see Gaens-
sler and Stute, 1979).

The copula function also enters, via its partial derivatives, into the represen-
tation of the conditional d.f. of £2 given £', where £ = (£, £2) and & are R%-valued
random vectors (i = 1, 2) with d;, + d, = d:

P& = (taers -5 ta) | ' = (&, -+, ta)) = Co(Fr(t), - -, Falta)),

where
Ud, +1 Uq
CO(ul’ M) ud) = b o k(uly ct udly 21, "'yzdz) dzl dzdg
ah

= m Cluy, -+, ua).

In his interesting discussion of Stone’s (1977) paper on nonparametric regression,
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Professor Parzen proposed estimation of the conditional d.f. by the function (in
our terms)

(tl, Tty td) i Cn(Fln(t1)9 ] Fdn(td))-

He, and also Professor Stone in his reply, admit that “many theorems remain to
be proved” and “much work seems required” to justify “the efficiency of this
procedure”. It will be indicated below that as for (4.2), local results for «,, will at
least be helpful to give more insight into the structure of C, (Fyny_ + -+, Fan). For
example, consider the naive kernel estimate of C,. In this case C. (Fl,,(tl), .
F..(t4)) is equal to the (standardized) number of sample points & = (£}, £7), 1
<j = n, for which £} < (4,41, - - -, ta), subject to the condition (where a, denotes
a preassigned bandwidth)

( I_I%<F1n(t1) - %) y " Ft;lln(Fdln(tdl) - %))
_ a, _ a,
<t = (FI'%(Fln(tl) + E) y s Fdlln(Fdln(tdl)‘ + E)) )

or equivalently (with §; denoting the ith component of §;)
(4.3) Fi(t) = 5 < Funlty) < Fa(t) + "E forall 1=<i=<d,.

The last condition expresses the fact that subject to £ < (t4+1, - - -, ta) one has
to count those £}’s which are close to (t, ---, ts,) in the sense of (4.3). This
notion of closeness, which uses an a,-neighborhood principle, is defined through
the sample and does not use the particular (Euclidean) metric on the sample
space.

Our bounds on local deviations of multivariate empirical (and copula) processes
turn out to be the key tool in order to get a representation of the process C,.(Fin,

., F4,). From this it will be possible to get exact rates of convergence and weak
limit results for the process

(tr, -+, ta) = [Ca(Fin(tr), - -+, Fan(t)) = Co(Fi(tr), -+, Fa(ta))],

and to determine the optimal rate at which the “bandwidths” a, should converge
to zero. Since these problems are more statistical in nature, a detailed study of
these processes will be contained in a separate paper.

Moreover, once knowing the structure of the process C,(Fy,, - - -, Fa,) it will
also be possible to get Bahadur-Kiefer type representations of the pertaining
quantiles (when d, = 1). More generally, one may study the conditional M-
estimate 6, (of location), being the root of the equation

f \[/(t - o)én(Fln(t1)9 Ty Fd—l,n(td—l)’ Fdn(dt)) = 0’
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where y is a given score-function. In particular, putting Y(2) = 2, we get

on = f t Cn(Fln(t1)9 Sty Fd—l,n(td—l), Fdn(dt))
as an estimate of the regression function E(£*| £' = (ti, - - -, ta-1))-

5. Further applications. As in our previous paper Stute (1982a), a
straightforward application of Theorem 1.7 yields tightness and hence, in view
of the convergence of the finite dimensional distributions, the invariance principle
for empirical processes in higher dimensions. Furthermore, local results are
useful to prove the convergence of «, and c, in sup-norm metrics. In particular,
the latter is important for proving, e.g., weak limit results for rank correlation
statistics [ [ J © Codu; - - - duq with unbounded score functions J. As one further
application we mention that local type results for empirical processes are useful
for handling various problems in nonparametric sequential analysis. For example,
they play an important role for obtaining efficient fixed-width confidence inter-
vals for the unknown density. See Stute (1983) for the univariate case. Finally,
local results are useful for improving the existing strong approximation results
for multivariate empirical processes (cf. Csorgd and Révész, 1975, Philipp and
Pinzur, 1980, and Cso6rgo, 1979).

6. Proofs. We shall first consider the case d = 2. Lemma 1.2 will then be
an easy consequence of Lemmas 6.1 and 6.2 below. Write a = a, and b = a,. Now,
take some 0 < g < 1 to be specified later on, and let the grid {t;};=o,...;, in [0, a]
be defined by t; = a(1 — ¢’),j =0, 1, - - -, jo, and t;+, = a, where jo € N. Suppose
that x’ = (x{, x5) € [0, a) X [0, b), and let j be such that ¢; < x{ < ts:. In the
conditioning argument to follow we shall be concerned with independent Ber-
noulli random variables each having probability of success p = [H(tj+1, x2) —
H(x}, x5)]/(1 — H(x}, b)). Observe that since p < (t;s1 — t;)/(1 — ti+1), we have

-~

ag/ —ag™' _1-¢ .
psl—a+aqj+ls p for j<jo
and
ag’® 4’0 . i
pslzasg for j = jo.

Hence choosing g < 1 so large that (1 — q)/q < 6 and then making j, so large
that 4¢”°/3 < 6, we obtain a grid {t;} such that p <  for each x’ € [0, a) X [0, b).
Furthermore, j, depends only on & but not on a, b, n, s or H.

That p can be made arbitrarily small by an appropriate partitioning of the
interval [0, a] makes things easier compared with global estimates of Kiefer
(1961), where his Lemma 5-m and Lemma 6-m had to be included in order to
handle the case when x1 is close to one.
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Now, similar to Kiefer (1961), define, forj=1, ---,jo+ 1
Vi={(x;, %): 0 <x < b, tji1 < x; =t}

"Vj = l(xl, X):0=<x =< b, X = tj}’
and let, with r = s vH(a, b),
Bj(s) = {supxev,an(x) = r}

Ci(s) = {supxew,an(x) = r}.

Put Cy(s) = 3.

LEMMA 6.1. Suppose that 2 < r ¥n and 32 < (3s)>. Then
P(Ci(s(1 — 28)) | Ci=1(s), Bi(s)) =1 — (8s/4) > =%, j=1,---,jo+ 1
PrOOF. We have to show the first inequality, the second being a trivial
consequence of our second growth assumption. Now, if B;(s) occurs, there exists
a smallest x{ in t;—; < x; < ¢; for which a,(x{, x2) = r, for some x;, 0 < x, < b.

Let x4 be the smallest of such x,, thus defining uniquely a random vector X’ =
(X!, X3). We shall show that for each possible value x° = (x?, x3) of X’

Plan(ty, x3) = r(1 = 28) | C-i(s), Bi(s), X’ = x°) =1 — (35/4) 7,

proving the Lemma. Since C;_;(s) occurs, x > t;_;. By continuity of the margin-
als,

nH,(x}, b) < nH(x?, b) + m'? + 1

with probability one. Let N denote the number of sample points not contained
in [0, x9] X [0, b]. Then

N=n(l-H®xb)—rm?—1=M.
If M <0, we have rn™?=1— H(x%,b) —n™'=1—t; — n”"and thus
H,(t;, x9) — H(t;, x8) = Ha(x9, x3) — H(x?, x3) + H(x?, x3) — H(t;, x2)
= rn"2 — [H(t;, b) — H(tj-1, b)]

H(t, b) = H(m ) (e
1-¢

=rnV2 -

> rn"2(1 - 5) — én"' = rn”V2(1 — 20),

by choice of g and jo, and the fact that 1 < rn'/%. If M > 0 and hence N > 0, let
@ denote the event

Q = {au(tj, x3) — an(x}, x8) = —26r}.
For the proof of the lemma it suffices to show that for each v = M
(6.1) P(Q| Ci—1(s), Bi(s), X' = x°, N=0v) = 1 — (6s/4) 2
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Since @ occurs if and only if
n[H,(t, x3) — Ha(x1, x9)] — vp
vup(1 = p)

- —2n"25r + n[H(t;, x3) — H(x}, x)] — vp _ y
- Vup(1 - p)

and since the conditioning event in (6.1) depends only on {H,(x,, x2): x; < x%, x»
< b}, the conditional probability of @ is equal to the unconditional probability
that a standardized Binomial random variable exceeds y. The relation M < v <
n implies

nr(=2+p)+p _ —n'ro/2 _-ré/2 _ 55/4
Vop(l—p) " Vpl-p)~ b © ‘

Relation (6.1) now easily follows from Chebyshev’s inequality. 00

In the following Lemma we shall derive an upper exponential bound for
P(C;(s)).

LEMMA 6.2. Suppose that H(a, b) < 8/4 and 8 < (s6(1 — 20))? are satisfied.

Then
P(C;(s)) = 2P(an(a, b) = s(1 — 8) vH(a, b)).
Similarly, for ®(C;(s(1 — 26))), i.e. for s replaced by s(1 — 26).

PrOOF. Consider a, restricted to W; U {(x1, x2): x; = t;, x. = b} = T. Since
the parameter set T' is homeomorphic to a closed subinterval of the real line such
that the corresponding rectangles [0, x], x € T, are linearly ordered, we may
apply Lemma 1.1 with a replaced by H(a, b) to get the desired result. 0

Using the inequality

P(Ci(s(1 = 29)))
P(Ci(s(1 = 26)) | -1 (s), Bi(s))

we obtain from Lemma 6.1 and Lemma 6.2
P(B;(s)) = P(C;—i(s)) + 2 P(C;(s(1 — 25)))
(6.2) < 2 P(a,(a, b) = s(1 — 8) YH(a, b))
+ 4 P(ay(a, b) = s(1 — §)(1 — 26) VH(a, b)).

P(B;(s)) = P(Cj_1(s)) +

?jZ]"

PRrROOF OF LEMMA 1.2. Since
{Sup05ts(a,b)an(t) >s VH(“, b)} C Ujo=+11 Bj(S),
the assertion follows from (6.2) and the fact that j, only depends on é.
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For a general d = 2 we have to set
Vj= {(xl, -~-,xd):05x,-$ai for2<i=<d, tiii1=sx = tj}
Wi={(x, - %):0<x<afor2=<i=sd x =t}

On Bj(s), the random vector X’ = (X{, -+, X4) is defined in close analogy to
the case d = 2, thus denoting, in a sense, the “smallest” point x = (x,, - - -, xz) in
the unit cube for which o, (x) = r. A version of Lemma 6.1 also holds, with the
same method of proof, for arbitrary d, while a corresponding Lemma 6.2 follows
by induction on d. In summary, this proves Lemma 1.2 for a general d. [

Theorems 1.5—1.7 will be rather obvious from our fundamental inequality
(1.1). For notational convenience we shall only treat the case d = 2. Write a = a,
and b = a,.

PROOF OF THEOREM 1.5. Let R be the smallest positive integer satisfying

min(a, b)/144 > l/R Write I,J(t) = I(;/R;/R) (i/R,j/R)+t fort € [0 1]2 To bound
wn(a, b), observe that each I = I, y, y1 — %1 < @, y» — %» < b, may be represented
as I = I;;(t) + I, + I, + I, for some t < (a, b) and 0 < i, j <R — 1, where I, and
I, (possibly empty) are adjacent to I;(t), the horizontal (vertical) side of I, (I3)
being less than or equal to 1/R, the other being less than or equal to b(a). The
rectangle I,(if nonempty) has one point in common with the boundary of I;(t),
with both sides being less than or equal to 1/R. Simple inspection now shows
that

wn(@, b) < maxo<;j<r—18UPost=(as | o (Lij(t)) |
6.3) + 2 maxo<;j<r-18UPo=r=1/rb | on (i (7)) |
+ 2 maXosij=r-15UPosr=(a1/m | @n(Lij(7)) |
+ 4 maxos;j=r-15UPosr=1/r| an(L;(7)) |.
For given 0 < 6 < ¥ the left-hand side of (1.4) is therefore less than or equal to
Bl P(suPosesan | an(T;(1)) | > sVu(Iy(a, b)/(1 + 5))
+ 2 P(suPos=a/mp | anl;(7)) | > s3Vab sup /6(1 + 5))
(6.4) + 2F7Z P(sUPosr=a/m | an(l;(7)) | > s6ab sup f/6(1 + )
+ 387, Plsupos-zum| anlly() | > s5vab sup f/12(1 + 5)).
By choice of R,
5+ab sup f/6 = 3vab sup f/12 = Vu(;(x, )

where (x, y) = (a, 1/R), (1/R, b) or (1/R, 1/R). Let y; = °x;vm/288 > 0. If s <
ysvn min(a®, b*), then for each (i, j)

s < 62x;vnm min(a?, b%)/288 < x;vnm/2(R — 1) < x;vnm/R
< x;Vnu(L;(x, y)) < x;vnu(l;(a, b)).
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We may therefore apply (1.2) to bound each of the above probabilities. Hence,
for some finite C,

P(w.(a, b) > svab sup f) = CR? exp[—(1 — 8)(1 — 28)*s%/2(1 + 6)?].

For small enough a and b, we may do the same reasoning with some 8’ > 0 such
that the last exponent is less than —(1 — 6)s%/2, where 6 > 0 is given. This proves
the theorem. 0

PROOF OF THEOREM 1.6. Fix some 0 < g = ¢(§) < 1 to be specified later on,
and let my € N U {0} be defined by the relation ¢™*'¢, < ¢; = ¢g™c;. For0< a <
B,0<y=pandI=(x,y] X (x, y:], write ] € £, B; 7, p) iff a <y, — %, <
B and v < y, — x, < p. Since

S (c1a, c;a) C U, #°(q™ e, gleaa; ¢ 'cza, g¥cra)

and m, depends only on §, ¢; and ¢, it suffices to bound sup;| a,(I) |/Vu(I),
when I ranges over one of the above #%s. Now, by assumption, f is uniformly
continuous with 0 < m = f = M < o, From this it is easy to see that
inf; f/sup,, f = q for each I, and every I,, for which || I, ||, || I;| and the Hausdorff
distance between I, and I, are sufficiently small. Now, fix [ and k and let I be a
member of the pertaining #°. Introduce R as in the proof of Theorem 1.5, but
for (¢'cza, g*coa) rather than (a, b). Consider the partition I = I;(t) + I, + I; +
L, and take K;;= {(21, 22): i/R < 2z, < i/R + q'c:a, j/R < 2z, < j/R + q*c,a}, so that
I;(t) C K;;. We have (with A for Lebesgue measure)

u(I) = infif M) = ¢’supk,f - (c2a)’¢"* = ¢°u(Kj)).

This gives
n Ii' t .
LonTy®) | ‘ﬂ;f,)” | < 4 5upos emgtenn | an (L)) | V().

The rectangles I, I; and I, are treated similarly. Hence, as in the proof of
Theorem 1.5, we get in summary

I Qp (I ) I
[@(sup;e 7 (¢1a,¢90) m

Finally, for a given 0 < 6 < 1, choose some small 5’ > 0 and some large g < 1
such that the last exponent is less than —(1 — §)s?/2. The same reasoning for 6’
then yields the assertion of the theorem. O

> s) < Caexp[—(1 — 6)(1 — 26)*g®s%/2(1 + 6)?).

PrOOF OF THEOREM 1.7. Choose some 0 < § < 1/2 and let R be as in the
proof of Theorem 1.5. Since C; and C, are unspecified, we may assume w.l.o.g.
that the second and third growth condition for (1.1)* are satisfied. Recall (6.3)
and use (6.4), in a non-standardized form. Since a, b > 1/R the bound (1.1)* may
also be applied to the summands in line 2-4 of (6.4). The assertion now follows
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from (1.6) and the fact that the probability of success p = u(I(x, y)) is less than
or equal to min(a, b). 0

When H has a bounded Lebesgue density an improved exponential factor may
be obtained by observing that the probability p is now of order o([] a;).
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