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ASYMPTOTIC BAYESIAN ESTIMATION OF A FIRST ORDER
EQUATION WITH SMALL DIFFUSION

By OMAR HisaB
The Ohio State University

In this paper a finite-dimensional diffusion is observed in the presence
of an additive Brownian motion. A large deviations result is obtained for the
conditional probability distribution of the diffusion given the observations as
the noise variances go to zero.

0. Introduction. Consider a diffusion process t — x*(t) evolving in R" and
governed by a generator of the form

(0.1) A =f+(¢/2) (g1 + - +gh)

corresponding to a given set of vector fields f, g1, - - - , 8. on R" It is of interest
to study the asymptotic behaviour of the probability distributions P on Q" =
C([0, T]; R") of the diffusions t — x°(t) as ¢ | 0. It turns out that the asymptotic
properties of P; depend strongly on properties of the associated control system

(0.2) x=f(x) + g(®)us + -+ + gn(x)tp.
Indeed it turns out that in some sense
T
Pi(dx(-)) ~ exp(— 1 f u(t)? dt) dx(-)
2¢ Jo
as ¢ | 0. More precisely, suppose that the diffusions t — x°(t) satisfy x°(0) = x°
almost surely and suppose that for each u in L%([0, T']; R™) there is a well-defined

solution x, of (0.2) in Q" in satisfying x,(0) = x°. Then the asymptotic behaviour
of P is given by the following estimates: For any open set G in Q" and closed set

Cin Q" one has
1 T
—inf{— f u? dt|x, in G}
2 Jo

T
lim sup, o ¢ log P5(C) < —inf{% f u? dt|x, in C}.
0

lim inf, o log P5(G)

v

0.3)

A

In 1966 Varadhan set down a general framework [1] for dealing with the
asymptotic behaviour of families of measures and certain associated expectations,
and in particular derived analogous estimates for processes with independent
increments [1]. Subsequently he derived these estimates for the case of drift-free
nondegenerate diffusions (i.e. f = 0 and g,(x), - - - , gn(x) span R" for all x) [2].
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Later Glass [3] and Wentzell and Freidlin [4] established these estimates for
nondegenerate diffusions with drift. )

In 1978 Azencott [5] established these estimates in general; his results imply
that if £, g1, - - - , &» are C? and the above stated conditions hold, then estimates
(0.3) are valid.

Suppose now that the diffusions t — x°(t) are observed in the presence of an
independent Brownian motion ¢t — b(t) € RP,

(0.4) ye(t) = fo h(x*(s)) ds + Ve b(t), 0<t=<T,

where h: R" — R” is a given map. Then thinking of t — x°(t) and t — y*(t) as
Q"-valued and Q”-valued (2° = Cy([0, T]; R")) random variables, one can write
down the conditional distribution P%j, of ¢t — x°(t) given t — y*(t). Defined
abstractly, P5|, is a distribution on Q" measurably parametrized by y in Q”, and
determined, of course, only up to Pj-null sets in Q7, where P is the distribution
of t — y*(t) on Q”.

The main result of this paper is the establishment of the analogous estimates
for P;,. More precisely, we have the following theorem.

THEOREM A. Assume that h is C? and that h, f(h), gi(h), g*(h),i=1, ---,
m, are all bounded on R". Then for all ¢ > 0 there is one and only one version

%1y Of the conditional distribution that depends continuously on y in QP, in the
sense that for all ® in Cy(Q"), the map y — EF*(®) is in Cy,(QP); this version
satisfies
05) lim inf,o¢ log P, (G) = —inf{l(u; y) | x. in G}

' lim sup,jo¢ log P%,(C) < —inf{I(u; y) | x, in C}

for all G open in Q", C closed in Q", and y in QP, where
I(u; y) = J(u; y) —inf{d (u; y) |u in L¥([0, T]; R™)}
and J: L*([0, T]; R™) X QP — R is given by

T .1 ; T
J(u; y) = A 5” +-2-h(xu) dt — | h(x,) dy.

In particular we note that for A = 0 this theorem reduces to estimates (0.3).
The plan of the paper is as follows. In section one we establish and state precisely
estimates (0.3) in the form that we need them. For completeness we include an
appendix in which a proof of (0.3) is provided. The proof presented is standard
except for the part dealing with the second estimate (0.3). Here instead of
appealing to the Markov property of t — x°(t) to deduce the fact that t — x°(¢)
can be approximated sufficiently well by its “discretized version”, we instead
appeal to the compactness of the map u > x, defined above; this leads to a quick
proof of the second estimate (0.3).
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In section two we prove Theorem A and in section three we present an
application. Other applications, analogous to some in [10], can be derived. Some
applications appear in a conference proceedings note [9].

1. Large deviations. Throughout Q" will denote C([0, T']; R"); Q™ and Q”
denote the corresponding spaces of paths starting at the origin. The topology of
Q" is that of uniform convergence on [0, T']. We suppose that we are given

(i) (possibly time-varying) vector fields f, g1, - - - , g in C*%([0, T'] X' R"; R").

(Warning: No assumptions are made on the growth of £, g1, - - - , g» at infinity or
any of their derivatives.) If g is any vector field and ¥ is a differentiable function,
let g(¥)(x) denote the directional derivative of ¥ in the direction of g at the point
x. Thus g is a first-order differential operator taking ¢ to g(¥). If g(¥) is
differentiable then g2(®) = g(g(¥)) makes sense; thus (0.1) defines a second-
order (possibly time-varying) differential operator A°acting on the space Cg (R")
of all smooth compactly supported functions on R".

Let b(t): Q™ — R™ be given by b(t, w) = w(t) and impose Wiener measure W
on Q™ Then t — b(t) = (by(t), - -+, b,(t)) is an R™-valued Brownian motion.

One way to construct diffusions on R" governed by A°®is to pick a point x° in
R"” and to let t — x°(¢t) be the unique process Q™ — Q" satisfying

(1.1)  P(x(t)) — P(x%(s)) — f A(P)(x(r)) dr = J;f 8(#)(x*(r)) db(r)

forall ®in Cy(R") and 0 < s <t < T, x°(0) = x° almost surely on Q™. Here and
elsewhere, g(¥) db is short for g,(¥) db, + - - - + g,.(¥) db,, where g;(¥) is defined
above. Similarly, u?=u?+ ... + u2, yg(h) =y:8(h1) + - - - + y,8(h,), etc. Using
the standard existence and uniqueness theorem for stochastic differential equa-
tions coupled with Ito’s differential rule, it is straightforward to verify that there
is a unique such process defined up to an explosion time {* < « characterized by
the fact that ¢t — x°(t) leaves every compact subset of R" as t 1 {*, almost surely
on {*<< oo,

As is well-known [7], the merit of the above definition is that it makes sense
on any manifold X. Indeed the Whitney embedding theorem allows one to embed
any such X into some R" and by extending the given vector fields f, g1, - - - , gm
on X to all of RY one can derive the result described above on any manifold.
What follows is stated in such a way as to lend itself easily to modification from
R" to the general manifold case.

If (= T almost surely then the probability distribution P of t — x°(t) exists
on Q" and is the unique solution to the martingale problem corresponding to A°
and starting at x° at time 0. In other words,

(1.2) ET(®(x(t)) — P(x(s)) — f AY(P)(x(r)) dr| #) =0

for all ¢ in C3(R") and 0 = s < t < T. Here x(t): Q" — R" is the canonical map
and ¥, is the g-algebra on Q" generated by the maps x(r),0 <r <s.
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Conversely, if one assumes that

(ii) for each ¢ > 0 there is a probability measure P: on Q" satisfying (1.2) and
Pi(x(0) = x°) =1,

then there is a unique such measure and the solution ¢t — x“(t) of (1.1) explodes
after time T and P; is then the distribution of ¢ — x°(¢) on Q".
In what follows we shall assume (ii) and

(iii) to each w in L%([0, T']; R™) there is a path x, in Q" satisfying (0.2) and
x,(0) = x°. In other words the solution of (0.2) starting at x° explodes after
time T, for all u in L%

Assumptions (ii) and (iii) holds, for instance, if f, g1, - - - , g grow at most linearly
at infinity and the first partial derivatives of g1, - - - , g» are bounded on R" [8].
Under assumptions (i), (ii), (iii) estimates (0.3) hold. To understand these
estimates from a more general perspective consider the following definition [1]:

DEFINITION. Let Q be a completely regular space and let P*, ¢ > 0, be a family
of probability measures on Q. We say that {P°} admits large deviation if there is
a function I of Q satisfying

(LD1) 0=sI=ox,

(LD2) Iis lower semicontinuous on €.

(LD3) {w]|I(w) = M} is a compact subset of Q for all M < o,

(LD4) For any open set G in ©, lim inf, ¢ log P*(G) = —inf{I(w) | w in G}.
(LD5) For any closed set C in Q,

lim sup,jo¢ log P*(C) < —inf{l(w) | w in C}.

The function [ is then referred to as the corresponding “I-functional”.
Estimates (0.3) then state that (LD4) and (LD5) hold for the probability
distributions {P3} of the diffusions t — x°(t), where I is given by

T
(1.3) I(w) = inff-zl- J; u? dt|x, = w}

for all w in Q", with the understanding that the infimum of an empty set of real
numbers is +o. Actually more is true.

THEOREM B. The probability distributions {P3} corresponding to A° admit
large deviation with I-functional given by (1.3).

A proof is provided in the appendix. ‘
A consequence of the above definition is the following proposition which is a
summary of results appearing in Section 3 of [1].

ProproSITION C. Let {P°} admit large deviation with corresponding I-func-
tional I and let ®, be a bounded continuous function on Q such that ®, converges
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uniformly to ® as ¢ | 0. Let Q° be given by
dQ° = exp(—(1/e)®.) dP-.
Then {Q°} satisfies
lim inf, ¢ log Q°(G) = —inf{®(w) + I(w) | @ in G},
lim sup,jo¢ log Q(C) < —inf{®(w) + I(w) | w in C},

for G open and C closed in Q.

We note that for the results of this proposition to hold, all that is required is
that the tail estimate

limg_.lim sup.jo¢ log E¥'(1i—s=r X exp(—®./e)) = —oo
holds [1].

2. Nonlinear filtering. Let h: R” — R” be a locally bounded measurable
map and let t — b(t) denote an IR”-valued Brownian motion independent of given
processes t — x°(t) on IR". Let t — y°(t) be given by (0.4). In this section we
study the conditional distribution P%, on Q" of t — x°(t) given t — y*(t). We use
Bayes’ rule to compute P5,.

Let W° denote Wiener measure of variance ¢ on Q”, let P denote the distri-
bution of t — x°(t) on Q", let P; denote the distribution of ¢t — y°(t) on Q”, let
P?,,, denote the distribution of ¢t — (x°(¢), y°(¢)) on Q" X QP, and let P5, denote
the conditional distribution of t — x°(t) given t — y°(t). Let y(t): @ — IR” denote
the canonical map.

For0 <t =< Tset

1 t t
At) = 2 f h(x(s))?ds — f h(x(s)) dy(s).
0 0 -
A(t) is then a measurable function on Q" X Q* for each t. Using (0.4) and invoking
Cameron-Martin it is easy to see that
dP{., = e~V (P; X W)

where A = A(T). Here and elsewhere, h> = hi + ... + h2, hdy = hydy, + --- +
hpdyp, etc.
Using Bayes’ rule, the conditional distribution is given by

. dPi{.,) . dP{s) d(P: X W°) .
ey v Tamxpy T amxwy apixpy
= exp(—A/e) - (EP(exp(—A/e)))™" - dP5.

If we set -

2.2) dQ%, = exp(—A/e) dP;
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then (2.1) becomes
(2.1) dP;y = dQ5,/Qx,(Q7), as. W',

which is the Kallianpur-Striebel formula [6]. We refer to @/, as the unnormalized
conditional distribution. So far (2.1) holds for any processes t — x°(¢).
We suppose that

(iv) his C®andf(h), gi(h), gZ(h),i=1, ---, m, and h are all bounded on R".
Then for each ¢ > 0 let &, on Q" be given by

T
®.(w; ¥) = =y (T)h(o(T)) + J; [yA‘(h)(w) + % h(w)? — éy2g(h)(w)2] dt.

Then &, — ) = ® as ¢ | 0 uniformly on Q”, for each y in Q°. Referring to (2.2)
and performing an integration by parts in the stochastic integral appearing in A
and invoking Girsanov’s theorem we see that

(2.3) dP;, = exp((1/9)%.) dQsi, as. W
is governed by
AY = A° — ygl(h)gl —_ . - ygm(h)gm

in the sense that
EPo(P(x(t)) — P(x(s)) — f A*(P)(x(r)) dr| &) =0

forall0 = s <t =< Tand ¥ in C§(IR"), almost surely on Q”.
We now wish to apply theorem B to {P3,}. To do so we must check that
assumptions (i), (ii), (iii) of section one hold for

fr=f—y8Mh)g — - — Ygn(h)gm, &1, -+, &n
for all ¥ in Q” (given that they hold for y = 0). But for (i), (ii) this is immediate
and for (iii) this is so because g,(h), ---, gn(h) are bounded feedback terms.

Thus theorem B applies to {P:,} and hence proposition C applies to Q%;, via
equation (2.3).
Thus let x,., denote the unique path in Q" satisfying

x=fx) +g@x)u; + - + gn(x)u, and x(0) = x°.

Then according to proposition C,
T
lim inf, o¢ log Q%,(G) = —inf-{% f u®dt + ®(xuy, y) | Xuy € G}.
0

Noting that x,., = x, where v = u — yg(h)(x,), we have
1 T 1 T T
= f u?dt + ®(xyy, y) == f [v? + h(x,)? dt — f h(x,) dy
2 Jo 2 Jo 0

and so the first of the inequalities (2.4) below follows. The second inequality
follows similarly.
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Now since P;, is governed by A®, it is straightforward to check that
y — P, is continuous in the sense that y — EF*(®) is in C,(Q”) for all & in
Cy(Q™). Since y — ®,(w; y) is continuous in y uniformly in w, it then follows that
Q% if defined by (2.3), is continuous in y. Thus @, has a version (that given
by (2.3)), that is continuous in y. Since P%,, satisfies (2.1) a.s. W*, we see that
Py, also has a version that is continuous in y. Moreover such a version is
uniquely determined since any two must agree a.s. W*and hence, being contin-
uous, must agree on the support of W* which is all of 2°. We have shown the
following:

THEOREM D. There is one and only one continuous version Q, of the
unnormalized conditional distribution. This version satisfies, for all G open in Q"
and C closed in Q",

lim inf, ¢ log Q5,(G) = —inf{J(u, y) | x, in G}
(2.4)
lim sup,o¢ log Q5,(C) < —inf{J(u, y) | x, in C}

where J(u; y) is as given in Theorem A.

As a corollary, if we choose Q" = G = C, we have
(2.5) lim,jo¢ log Q%,(2") = —inf{J(u, y) | u in L3.
This last fact, coupled with (2.1) and Theorem D yields Theorem A. In fact one
can show that {P3,} admits large deviations.

3. An application. For ¢ in B(R") let u(¥), ¢.(t): 2 — R be given by
(3.1) pi(®) = E"*(exp(—A(t)/e)P(x(¢)))
and

.(8) = ui(®)/ui(1).

The random variable @,(t)(u(®)) is the (unnormalized) conditional expectation
of t — P(x°(t)) given y°(s), 0 < s < t, in the sense that

@.(t)oy: = E(@(x(t)) | %%)

almost surely on Q™ X QF, where 2 = g[y*(s),0<s<t],t < T, and y°is given
by (0.4). A measure of accuracy of the corresponding “filter” is then

1 T T

(3.2) 5 f ho(t)* dt — f h(t) dy(t),
2 Jo 0

representing the L?-norm of the difference between y(t), 0 < t < T, and h.(2),

0 =t =< T. We note that the second integral in (3.2) is an It stochastic integral.

In this section we prove the following theorem, under our assumptions (i), (ii),

(iii), (iv).

THEOREM E. For all e > 0, there is one and only one continuous version of the
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residual (3.2). As ¢ | 0, these versions converge to

i T T
inf{-21- f [u® + h(x,)? dt — f h(x,) dy|u in L%([0, TY; 1122'")},
0 0
for all y in QP.
The proof of Theorem E is based on the well-known observation that for each
>0, (3.2) is W*— a.s. equal to —e log Q%,(2"). Given this observation, Theorem

E then follows from (2.5) and Theorem D.
To derive this observation, we note the following well-known result concerning

pi(%P).
LEMMA. Let A° be given by (0.1) and let P: be a solution to the martingale
problem corresponding to A°. Let h: R™ — RP be a bounded measurable map and

let ui(¥) be given by (3.1), where A(t) is as in Section 2. Then for all ¥ in C§(R"),
0=<s=t=T, we have

t t
1
wi(P) — ui(P) — f ur(A°P) dr = ;f ur(h®) dy(r)
We®— a.s. on QF.

ProOF. Follows from (1.2), the fact that z°(t) = exp(—A(t)/e) satisfies

1 t
2°(t) — 2°(s) = ;f h(x(r))z°(r) dy(r)
for 0 = s <t < T, and a Fubini-type argument similar to that on page 87 of [8].

. Continuing now with the proof of Theorem E, note that by the result of this
lemma, for h bounded u$(1) satisfies

pi(1) — ps1) = -1- J; he(r)us(1) dy(r)

for0 =s=<t=<T,and u§(1) = 1, for all ¢ > 0. Solving for the unique solution of
this stochastic integral equation, we see that

ui(l) = exp ;1- (fo h.(s) dy(s) — %£ h.(s)? ds) as. — We

for 0 <t < T. Since pu%7(1) = Q%,(2"), we conclude that —e log Q%,(2") and (3.2)
are a.s. equal. Applying Theorem D now yields the result.

4. Appendix. The purpose of this appendix is to give a self-contained proof
of the fact that {P;} admits large deviations with I-functional

. 1 (T
(A.1) I(w) = inf{-Z- J; utdt|x, = w}.
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Before we begin we give some elementary examples of large deviations which
will be of use later on.

If £ is an N(0, 1) random variable in R™, and P*is the distribution of Ve £,
then {P*} admits large deviation with I-functional I, (u) = u2/2, u in R™.

If &, &, ---, &y is an ii.d. sequence of N(0, 1) random variables in R™
and P° is the distribution of ve(, ---, ¢v) on R™, then here I(u) =
@i+ .- +u¥)/2, upin R™.

Suppose now that a given family {P*} admits large deviations on Q with I-
functional I and a: @ — Q' is continuous. Then it is elementary to verify that
{P°oa~'} admits large deviations on Q’ with I-functional

Li(w’) = inf{l;(w) | a(w) = w’}.
For example, consider the process
(A2) uNit)=VN/T& (k= V)T/N<t<kT/N, k=1, ..., N.
Then ¢ — u™(¢) is in L%([0, T]; R™) (henceforth denoted by L2); if P*is the

distribution of Ve u® on L? then we have

T .
Lu) = -;- J; utdt, if u(t)=u(Nt/T]/N), 0<t<T,

=+ otherwise.
Now we make a specific choice of £, - - -, £y by setting
(A3) & = (b(KT/N) = b((k = VT/N)VN/T,
k=1, ..., N, where t — b(¢) is as defined in Section 1. We now set x* = x,

where v = Ve u". Since u > x, is certainly continuous when u is piecewise
constant we have that the distributions of t — x™(t) on Q" admit large deviations
with

T
L(w) = inf-{% J(: u*dt|x, = w and u(t) = u([Nt/T]/N), 0<t=< T}.

Thus for C closed in Q7,
lim sup,jo¢e log W(x*" € C) < —inf{l;(») | w in C}.
Since I;(w) = I(w) as given by (A.1), we arrive at '
(A.4) lim sup, ;e log W(x*" € C) < —inf{I(w) |w in C},
forall N = 1.
LEMMA 1. u; — u weakly in L* implies that x,,— x, in Q".
PROOF. Let B be a ball in R" éontaining x,(t),0 =t =< T, and let 7; be the

first exit time of x, from B. Let K be a bound for f, g1, - - - , g» and their first
derivatives on B and the L%norms of u, us, ---. Since both x,, and x, are
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solutions of (0.2) starting at x,, for t < 7; A T we have

ei(t) =< Kfo ei(s)(1 + (ui(s))) ds + ri(t)

where
ei(t) = maxo<,=| xy,(8) — x.(s) |

and

ri(t) = maxo<s=<;

L 8(xu(r))(ui(r) — u(r)) dr

Now an application of Gromwall’s inequality yields
ei(r: N T) = C(K, T)ri(T).
But Ascoli’s theorem guarantees that r,(T") — 0 is i 1 « and thus for i sufficiently

large 7, > T and hence x,, — x, in Q"

LEMMA 2. For all 6 > 0 and K > 0 there exists a weak neighborhood U of 0 in
L2 such that | ullo < K and | x, — %, ]|« = 6 imply u — v is in U".

Proor. This follows from Lemma 1.

Lemma 1 also implies that I is lower semicontinuous: if w; — « in Q" then
I(w) < lim info 1 (w;).

To show this, it is enough to assume the right-hand side is finite; let w/
be a subsequence such that lim I(w/) = lim inf I(w;). Choose u; in L? such that
Y% [§ ul dt < I(w!) + i™" and x,, = w/. Since then {u;} is bounded in L? by
passing to a subsequence we can assume that u; converges weakly to some u in
L?, and hence x,, — x, in Q". Thus

1 (" 1 ("
I(w) = I(x,) SEI u? dt < lim inf—éf u? dt < lim I(w}),
0 0

which implies the result.

The above results together imply that {w | I(w) = M} is compact and so (LD2)
and (LD3) are established.

We now prove (LD4). For u in L2 set

A% = A+ giug + -+ + Znlp;
let 6% Q™ — Q™ be given by

wp) — 1 [
b (t)—b(t)+\/;j; u(s) ds.

Let W>“denote the image of Wiener measure W on Q" under the map b>“. The
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solution of (1.1) provides a map x° Q™ — Q" determined almost surely W. Since
by Cameron-Martin

dw 1fT 1J’T ,
dW‘"‘_eXp( 7 Jo udb+28 L dt ),

we see that W and W** are equivalent and so the image of W>“under the map x°
is a well-defined distribution P%* on Q". It is easily seen then that P3* is governed
by A**in the sense that for all # in C3(R"*) and0 <s<t=<T,

EP?“<‘P(x(t)) - @ (x(s)) — f A(@)x () dr| ?) =0

Now for ¢ = 0, P¢* is simply the Dirac mass §,, supported at x,. Therefore as
¢ | 0 P3* converges to d,, and so

lim,},P%“(G°) = 0

for any open set G in Q" containing x,,.
Now let 0 < # < 1 and let G be an open set in Q" with x, in G. Then

Pi(G) = W(x* € G)

Y 1 J' T
= wey P il 2 e
E (exp( 7 Jo udb + 2% Jo u dt>, x* € G>
e 1 f T
= W - U il 2 eo ol
E (exp( 7 Jo udb** + % J, ¥ dt), x°ob** € G)
= Ew<exp< f udb — — f 2 dt), xfob € G)
T T 1/2
> W(x%b"“ €G,0 f udb < <f u? dt) )
0 0
X ex (——}-—(fTuZdt)l/z—-l—fTuzdt)
P 0ve \Jo 2¢e Jo
1 fT vz fT
— A2 _ DpDe&u c o 2 I 2
=(1-40 Px(G))Xexp( 0\/;(0 udt) % Jo udt>.

Now taking the logarithm of both sides and the limit as ¢ | 0, we have

T
lim inf,joe log P4(G) = — -;— f u? dt.
0

Taking the supremum over all x, in G, we arrive at (LD4).
To establish (LD5), we need a simple device first. Let N = 1 and partition
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[0, T] into N equal pieces. For any v in L2 let v" be given by
N [FTN
vN(t) = ?f v(s)ds for (k— 1)T/N =<t < ET/N.
(

—1)T/N

Then v" is also in L? and v™¥ — v in L? as N | .

Let b" denote the process equal to b at the time points #T/N and linearly
interpolated in between. Let u™¥ = db"/dt; then u” is in L? and is given by (A.2)
where £ is given by (A.3). Note that for any v in L?

T T
f vuN dt = f v db.
0 0

Recall that x> = x.;,~ and that u — x, is continuous in the weak L? topology.
Then according to Lemma 2, for 6 > 0 and K > 0, there are v;, -+ -, v, in L* and
a > 0 such that the set Gk ;= {(u, v) | ||ull2 < K and | x, — x,]| »> 6} is contained
in the set of (u, v) satisfying | (v;, u — v) | = a from some 1 < i < p ({,) is the
L2-inner product). Hence for all N, M = 1

W(||x*N — x|, > 6 and Ve | uV |, < K)
= W(Ve(u®, uM) in Gg;)

; .
f v — uM) dt ' > a)
0
T
f N — vM) db ’ Za)
0

N A28 e/l O R
= 1sisp avor p 2¢ || ol - U{ullg .

Now as M 1 o, t — (x*M(t), xM(t)) converges in distribution to t —
(x=N(t), x°(t)) and so

W x5N = x|l > 6)
< lim infy. W(Ve(@®, uM) € Gx;) + W(¥e | u" | = K).
But according to (A.5), ‘

S max15i5p W( \/;

(A.5)
= max15i5p W( ‘/;

limypelim sup,jolim infyqee log W(Ve@®, uM) € Gg;) = —o.
Therefore
limyyelim sup,joe log W(|| Y — x| > 6)
(A6) < limyyelim sup,joe log W(Ve |u™|, = K)
< limyp. — ¥ K? = — % K?
for all K and all 6 > 0.
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Now if C is a closed set in 2" and C;is its open é-neighborhood then

PiC) =Wk €C, |2° — xV]w>08) + Wx*EC, | x° — x| e < 6)
SWEEC, |x°—xN]w=<106) + W(lx* = x°V]|w>6)
= WM € C;) + W(|x° — x| w > 8).

Combining this last inequality with (A.4), (A.6) we see that
lim sup,jo¢ log P5(C) < —inf{I(w) | w € C;} = —inf{I(w) | w € Cy}.
Now (LD2) and (LD3) imply that
sup;>oinf{l (w) | w € Cy} = inf{l(w) | w € C}
and so letting 6 | 0, (LD5) obtains.
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