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ON EVALUATING THE DONSKER-VARADHAN I-FUNCTION

By Ross PINSKY
University of California, Los Angeles

Let x(t) be a Feller process on a complete separable metric space A
and consider the occupation measure L(w, *) = [§ x((x(s)) ds. The I-func-
tion is defined for p € %(A), the set of probability measures on A, by
I(p) = —inf,e o+ fa (Lu/u) du where (L, 9) is the generator of the process
and 2 C 9 consists of the strictly positive functions in 2. The I-func-
tion determines the asymptotic rate of decay of P((1/t)L.,(w, *) € G) for
G C 2(A). The first difficulty encountered in evaluating I(x) is that the
domain & is generally not known explicitly. In this paper, we prove a theorem
which allows us to restrict the calculation of the infimum to a nice subdomain.
We then apply this general result to diffusion processes with boundaries.

1. Introduction. Let x(¢) be a time homogeneous Markov process with
state space A, a complete separable metric space. Let T be the semigroup induced
by the process and denote by (L, &) the infinitesimal generator. We. assume that
the process is Feller and lives on D([0, ), A), the space of right continuous
trajectories with left-hand limits at every point. Denote by (., the collection of
paths x(¢) € D([0, =), A) with x(0) = x. The process above induces a measure P,
on ,.

For w € Q. and a Borel set B C A, consider

Lt(w,B)=J; x @ (x(s)) ds.

So (1/t)L:(w, B) is the proportion of time up to ¢ that a particular path w = x(*)
spends in the set B. Thus (1/t)L.(w, *) € #(A), the set of probability measures
on A; (1/t)L.(w, *) is the occupation measure of the process. For u € F#(A),
define

(1.1) I(p) = —infuco+ f % du where 2*= 92 N{u:u=c>0}
A

It is easy to see that I(u) is lower semicontinuous under weak convergence on
P(A). Under suitable recurrence and transitivity conditions, Donsker and
Varadhan ([2], [3]) have proven that, for open sets G C ¥ (A),

(1.2) lim inf, ,.(1/t) log P.((1/t)Li(w, *) € G) = —inf,ecl(u)
and for closed sets C C #(A),
(1.3) lim sup;—. (1/t) log P.((1/t)Li(w, *) € C) = —inf,ecI(p).
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We see that for large ¢, if U, is a small neighborhood of u, then
exp(—t(I(p) + ¢)) = PA(1/t)Li(w, *) € U,) = exp(—t(I(n) — ¢)).

We call I(n) the I-function for the process. Donsker and Varadhan have done
much theoretical work with the I-function (see in particular [1], [2], [3]), however
little work has been directed towards evaluating the I-function explicitly. The
one main result along these lines is for the selfadjoint case. Suppose there exists
a o-finite reference measure 3 with respect to which the semigroup is selfadjoint.
Then there exists a corresponding negative semidefinite selfadjoint genera-
tor (L, D) on Ly(A, B(dx)). Donsker and Varadhan [2] have shown that for
r€ Z(A),

I(w) = I(=L)*f2|3 if p has a density du/dB = f
with 2 € D)
= 0o, otherwise.

Here, 9 1/2 is the domain of the selfadjoint operator (— —L)2

The first difficulty that arises in computing the I-function is that the domain
9 1is generally not known explicitly. One would like to be able to restrict the
calculation of the infimum to a nice dense (in sup norm) subdomain I+ C 2+,
That is, we would like it to be true that

X Lu Lu
I(p) = —inf,c 5+ J; — du = —inf,c 5+ £7 du.

Of course, if 9 is a core for the operator L, then the result is trivial. However,
even a core is not generally available explicitly. In this paper we prove that the
above result holds as long as (L, & ) determines a unique Markov semigroup, or
equivalently, there is a unique solution to the martingale problem for (L, F)
(see below).

The corresponding problem for invariant measures was considered by Eche-
verria [4]. It is well known that [4 Lu du = O for all u € Z if and only if u is
invariant for the process. Echeverria showed that if [, Ludu =0 forallu € J,
where (L, &) determines a unique Markov semigroup, then in fact Ja Ludp =
0 for all u € 2 and hence p is invariant for the process.

Consider the case of a Markov diffusion process in a bounded region, A C R";
that is the case when the generator is an extension of (L, & ) where L = % aV
.V+b-Vand 9 ={u€ C¥A):J - Vu=00ndA} with —J - n =+ >0, where
n is the outward normal vector. Let T, denote the semigroup for the process. If
the coefficients a, b and J are in C*(A), A has a C" boundary and a is strictly
elliptic, then T} leaves C"(A) invariant. From this, it is not difficult to show that

forn=2,
. L . L
_lnquC"n % f _u dﬂ = _lnqu g% f _u dﬂ;
A U A

so that F * = C*(4) N 2* would be a nice subdomain to restrict to, since it
would consist of C" functions satisfying u > 0in A andJ - V u =0 on dA.
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But we would like to consider diffusions with less restrictive conditions on the
coefficients. In particular, we would like to consider diffusion processes for which
the martingale problem has a unique solution. The martingale problem for any
operator (L, &) on a metric space A, where & is a dense subset of C(4) on
which L is defined, is the problem of finding for each x € A, a probability measure
P, on D([0, «), A) with

(i) P(x(0)=x) =1 .
(ii) f(x(t)) — f& Lf (x(s)) ds is a P,-martingale for eachf € Z.

The generator of the process will then be some extension of (L, & ). In Lemma
3.1 at the end of Section 3, we recast the Stroock and Varadhan submartingale
uniqueness theorem for diffusions [6] into a martingale uniqueness theorem.
This lemma tells us that when

L=%aV -V+b.V, F ={f€CHA):J -V f=0ondA),

and A is an open, bounded region in R", then the martingale problem has a
unique solution in C([0, ), A), the space of continuous trajectories on [0, «), if
the following conditions are met: a is continuous and strictly elliptic, b € C(A),
J € C'(9A), A has a C? boundary and the normal component of  is bounded
away from zero. It is for this class of diffusions that we would like to calculate
the I-function. (Indeed, uniqueness persists even if b is only bounded and
measurable but our methods do not cover this case.)

In Section 2, we prove a theorem which allows us to restrict the calculation of
the infimum to a nice dense subdomain. In an upcoming paper, this result will
be used to obtain an explicit representation of the I-function for diffusion
processes with boundaries.

THEOREM 1.4. Let A be a compact metric space. Let & be a dense subset
of C(A) (with sup norm) and let L: 9 — C(A) be an operator satisfying
the maxzmum principle. Assume that for each x € A, the martingale problem for
(L, D) is well posed, that is, has a umque solution. The mﬁmteszmal generator of
the process is an extension of (L, 9 ), call it (L, @) If9 satisfies the condition
that g,, -+, 8, € D implies Y(gy, -- -, &) € I when ¥: R — R is a smooth
function, then

—inf,¢ o+ f — du = —inf,c 5+ f —Lu“ du foral p€ PA).
A
Hence I(p) = —inf,c g+ [4 (Lu/u) dp.

COROLLARY 1.5. If [4 (Lu/u) du =0 for all u € & *, then p is invariant for
the process.

ProOOF. This follows directly from the fact that I is a nonnegative functional
and that I(u) = 0 if and only if u is invariant for the process [2].

Consider Theorem 1.4 applied to diffusion processes with boundaries and with
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(L, 9) as in Lemma 3.1. The lemma tells us that there is a unique solution to
the martingale problem for (L, ). Let 2 be the domain of the generator. Since
J € CY9A), weseethat I =C*N D ={uE€C:J - Vu=0o0ndA} is dense
and satisfies the condition of Theorem 1.4.

COROLLARY 1.6. Let A be an open bounded region in R". Let (L, ) be the
generator of the unique Markov diffusion process which solves the martingale
problem for (L, 2 ) where L=%aV - V+b .- Vand

G ={ueC¥A):J-Vu=0o0ndAl

Assume a belongs to C(A) and is strictly elliptic, b € C(A), J = C*(0A), A has
a C%boundary and |J - n| =y > 0. Then

Lu

I(M) = —infguec2(x)+:J.Vu=0; J; 7 dl-t-

(Here C™(A)* denotes the strictly positive functions in C™(A).)
The case in which A is a complete separable metric space may be treated
similarly. In Section 4, we briefly outline the necessary revisions.

2. Proof of the Theorem.

NOTATION. Given any function space %, we let ™ ={u € Z: u> 0}. Since
A is compact, note that functions in C(A)* are bounded away from zero.

Since
. Lu . f Lu
—inf,c o+ j; ” du = —inf ¢ 5+ . du,

we need only prove the reverse inequality. Fix an arbitrary measure u € #(A).
We will prove that if

fL—”dyz—k forall u€e 9+,

A u
then
fgduz—k forall ue 9.
4 u
Let A > 0 and consider I~— AL: 9 — C(A). Let M, = (I — \L) D and let
II, = (I — AL)™: M, — 9. Note that II, is the restriction to M, of the operator
(1/M)Ryn: C(A) > 2 where Ry, = (\I — L)™" is the resolvent.
LEMMA 2.1. (i) Iff € My, then II,f € C(A)™.
(ii) 1EMyandIl)1=1
(iii) fa log (I1,g/g) du = —kA\, for all g € MY.

It is clear that (i) and (ii) hold since II, is the restriction of (1/\)R;/\ to M,
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and R\f(x) = [§ e™E,f(x(t)) dt where x(t) is the process with generator
(L, 9).

Now consider (iii). Pick any g € M. Then~there exists u € 9 with
I—-ANL)u=gorllh)g=u.SincegE MY, u € *. Wehave \Lu=u — g =
II,g — g. Thus

_ Lu 8 — 8 1f _ 8
kSL du AL Tmg *° AA@ mQW

Since x — 1 = log x, for all x > 0, (g/I1,g) — 1 = log(g/I1,g). Hence

_ lf _ & 1f (ng)
SA .4(1 )\g)du_)\ log p du
II,g
lo du = —kA\.
f 4g>”

We now want to extend II, from the subspace M, to all of C(A) as a positive
operator II, satisfying

or

f log<ng ) du=—k\N forall ge& C(A)".
First we prove

LEMMA 2.2. If I, is a strictly positive operator, then the condition

(2.3) f log<Hg ) du = —k\ forall g€ C(A)*

is equivalent to the condition
(2.4) log ffflxg du — f log fgdu = —k\ forall f, g€ C(A)*.
A A
PROOF. Assume (2.3) holds. Then
Il,g fil,g
—kAsflo( )d—fl( )d
g g " 0og f g "
=£mmww—£mm@

ﬂ%Lﬁ@@-LW@@

by Jensen’s inequality. To go the other way, given any g € C(A4)*, g € CA)*
and hence we may define f € C(A)* by f = 1/II,g. Using this f in (2.4) gives us
(2.3).
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LEMMA 2.5. II,: My, — C(A) can be extended to I1,: C(A) — B(A), the space
of bounded measurable functions, with the following conditions holding:
() M,f(x) = IO\f(x) forall x E A, f E M,
(i) M,f=0,iff=0
(iii) [alog(I1,g/g) du = —kX for all g € C(A)*.

PrOOF. By Lemma 2.2, it suffices to show (2.4) in place of condition (iii).

For any g € My, we have
11
f 1og<~—“5) du = —k\
A g

log f fIl\g du — f log fg du = —k\ forall fe& C(A)",
A A

and hence

again by Lemma 2.2.
This may be written as

ffﬂxg dp = exp(—kA) exp( f log fg du>
(2.6) A A
forall feC(A)*, g€ M.
Consider the subspace
V= (XL fi(x)g:(y): f € C(A), & € M\} of C(A X A)

and define the linear functional A, on V by

AZE, fi(x)g:(y)} = j; YR fi(x) IIgi(x) du(x).

To see that A, is well defined, assume v € V and v = Y%, fi(x)g:(y)
Y21 hi(x)ki(y) with f;, h; € C(A) and g;, k; € M. For fixed x, Y1 fi(x)8:(¥)
™, hi(x)k:i(y) is a function in C(A). Thus we have

Y fi(x) I1gi(y) = Xia fi(x) (1/N) Ripgi(y) = (1/N) RBupn(Tia fi(%)8:(¥))
= (1/N) B (T2 hi(x) Ri(y)) = XZ1 hi(x) (1/N) Ripki(y)
= Y1 hi(x) Ik (y).
Let @,: C(A X A)" — R be a functional defined by

Qx\(u) = Supc<x)d(y)su(x,y);c,decm)’fexp("k)\)eXp<J; log ¢(x) d(x) du(x)).

Hence by (2.6), for f € C(A)*, g € M}, we have

A(f(x)8(y)) = Q\(f(x)8(¥)).
Note that @(au) = aQ(u) if « > 0. We now state two lemmas needed to prove
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Lemma 2.5. Their proofs will be deferred until the completion of the proof of the
lemma.

LEMMA 2.7. Q) is superadditive, that is, for u, v € C(A X A)*, @\(u + v) =
Ax(u) + Q\(v).

LEMMA 2.8. Foru € V*, A\(u) = @ (u).

We are now in the position to apply the Hahn-Banach theorem. In the standard
version, a functional F is defined on a subspace M of a space ¢ and is bounded
from above by a subadditive functional p defined on ¥ The functional F can
then be extended to all of & and still be bounded by p. By considering F’ = —F
and p’ = —p, we see that the hypothesis of the theorem might just as well be that
the functional F’ to be extended is bounded from below by a superadditive
functional p’. In the present case, A, is bounded from below by a superadditive
functional @,. However @, is only defined on positive functions whereas, to apply
the standard Hahn-Banach theorem, it should be defined on the entire space
C(A X A). By chasing through the proof of the Hahn-Banach theorem, we will
find that this is no problem. By the Hausdorff Maximal Principle, we extend A,:
V — R to a maximal operator A,: V — R satisfying A(u) = Q\(u) for all u €
V *. Then to show that in fact V = C(4 X A), we prove that if h(x, y) & V, then
A, can be extended to the subspace generated by V and h with the lower bound
from @ holding for all positive functions in this larger subspace. This contradicts
the supposed maximality of V. Suppose h(x, y) & V. Then for any g;, g € V
satisfying g1 —h> 0,8+ h >0, Ka(g) + Ar(gs) = Ax(g1 + 82) = Qx(~gl + g2) =
Qx(g1 — h) + Q\(g2 +h). Thus Ax(g1) — @x(g1 — h) = Qx(g2 + h) — Ax(g2) and
hence

infy cvg,-n>0Ar(81) — Qa(81 — h) = SUDge i n>0@r(g2 + B) — Ax(g2).
Pick « satisfying
infgleV;gl—h>ol~\x(gl) — Qg —h)za
= SUDg,e Vg +n>0@(82 + h) — Ax(g2).

]~)eﬁne Ax(h) = a. We must show that for any t € R, g € V with g + th > 0,
Ax(g + th) = Q\(g + th). First assume ¢t > 0. Then since g/t + h > 0, we get from
the right-hand inequality of (2.9) that

Mg + th) = A\(g) + ta = Ky(g) + t[Q\(g/t) + k) — K\(g/t)] = Qi(g + th).

If t <0, we use the left-hand inequality in (2.9). This then proves that the Hahn-
Banach theorem is applicable even when @, is defined only on positive functions.

Thus we obtain an extension A,: C(A X A) — R of A, satisfying A(w) =
Q\(u), for all u € C(A X A)*. Since Q\(u) = 0, A, is a positive functional on
C(A X A) and hence, by the Riesz representatio~n theorem, there exists a measure
B with A, (u) = [axa u(x, y) dB(x, y). Since Ay\1 = A1 = [4 1 du, we see that
B is a probability measure on A X A. Let E® denote integration with respect to
B and let %, denote the o-field on C(A X A) generated by all functions which

(2.9)
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depend only on x. Then E®(+ | #,) depends only on x. We write E2(+ | x) for the
version of E(+| %) which is a regular conditional probability distribution. For a
proof of the existence of a regular conditional probability distribution, see [7].
For g € C(A), we have [, q(x) du(x) = Ax(q) = Ax(q) = [axa q(x) dB(x, ). In
fact,

f q(x) du(x) = f 9(x) dB(z, y)
A AXA

then holds for all bounded measurable g(x). In particular, applying this when
g(x) = f(x)E®(g| x) where f € C(A), g € M,, we see that

J;f(x)ﬂxg(x) du = A\(fg) = Ax(fg) = J;M f(x)g(y) dB(x, y)
= f f(x)E®(g| x) dB(x, y)
AXA

= Lf(x)EB(glx) dy.

Since this holds for all f € C(A), we have I1,g(x) = E2(g| x) for a.e. [u] x € A.
Define IT,: C(A) — B(A) by I,g(x) = EZ(g| x). Now pick a countable set {g,}
which is dense in M,. For each &n pick a p-null set N,, with IT,g,.(x) = II,g.(x)
for all x € A — N,,. Let = U;_; N,.. Then for any g € M,, pick a subsequence
g,,k converging to g in the sup norm. For x € A — N we have ng,,k(x) =
E®(g,,| x) and the latter is a regular conditional probability distribution. Fur-
thermore II, is a restriction of (1/\)Ry/x, which is a bounded operator in sup
norm. Thus, letting n, — o, we may conclude that II,g(x) = Il,g(x) for all x €
A — N. Also, since EB(- |x) is a regular conditional probability distribution,
EB(g | x) = 0 for all x if g = 0. Hence II, is a nonnegative operator. Let’s define
Ii,: C(A) » B(A) by

Mg(x) = Mg(x) for x€EA-N
ﬁxg(x) = (1/\)Rypg(x) for x € N.
Then since II, is the restriction of (1/M) Ry, to M), we have
f[)\g(x) =1II,8(x) forall x€ A, g€ M,
fMg(x) =0 forall x€A if g€ C(A) and g=0.
Also, for f, g € C(A)*, Ai(f(x)g(y)) = Qi(f(x)g(y)) or

Lf(x)ﬁxg(x) du(x) = exp(—kM)exp J; log f(x)g(x) du(x).

Since I1,g = I, g, a.e. [p],

J;f(x)ﬁxg(x) du(x) = exp(—kM)exp J; log f(x)g(x) du(x),
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and thus by Lemma 2.2,

f log(ng > du=—k\ forall ge C(A)".

This proves Lemma 2.5.

PrOOF OF LEMMA 2.7. We must show that given u, v € C(A X A)* and f, g,
h, k € C(A)* with u(x, y) = f(x)g(), v(x, y) = h(x) k(y), we have

SUD (x)d(y) <u(x,y)+v(x,);c,dEC*(4) €XP J; log c(x) d(x) du(x)

= exp J; log f(x)g(x) du(x) + exp J; log h(x)k(x) du(x).

Hence it is sufficient to show

exp f log fg du + exp J; log hk du
A

(2.10)
= SUPc(x)d(y)sf(x)g(y)+h(x)k(y);c,dec(A)+exp L log cd d[t.
For 0 <p < 1, we have
F(e() + h)k(y) = pLEEWD | _ p) BERW)
p 1-p
- <f(x)g(y)>p<h(x)k(y)>1_p _ FP(x)R'P(x) gP(y)k P(y)
B p 1 —p pIJ (1 _p)l_p .

Let c,(x) = fP(x)h*P(x)/p® and dp(y) = g°(¥)k' P(y)/(1 — p)*. So ¢p(x)dy(x)
< f(x)g(y) + h(x)k(y). Thus to show (2.10), it suffices to show that

(2.11) exp J; log fg du + exp J; log hk du < supo<p<i1€Xp fA log c,d, du.

Maximizing the exponent on the right hand side, we obtain the equation

f log<£k> du — logp + log(1 — p) = 0.

Letting po be the value of p which solves the equation, we have

(2.12) f log<£k> du = log<1 p0p0>‘
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Using (2.12), we obtain
f log ¢p, dp, du
A
_ (fg)Pe || _(hk)'Po
- J; log[ po®* ] [(1 = po)i™ an

= Po f log('g) dp + f log hk du — polog po — (1 = po)log(1 — po)
A hk A

= polog<1 fopo> + J; log hk dp — polog po — (1 — po)log(1 — po)

= f log hk du — log(1 — po).
A

__1 f
exp(L log c;, dp, du) =1 exp( A log hk du>

is what we have on the right hand side of (2.11). On the left hand side of (2.11),
we have, using (2.12),

exp( J; log fg du> + exp( J; log hk du)
_ fg
= exp log hk du ) |1 + exp log == du
A A hk
= exp(f log hk d,‘) [1 + 20 ] — exp(f log hk dy).
A 1-=po] 1-po A

Hence (2.11) does indeed hold, proving Lemma 2.7.
To prove Lemma 2.8, we need one other lemma.

Thus

LEMMA 2.13. Let ®(x;, x5, - -+, x,): R® — R be a concave function and let
81,82 -+ ,8. € M\with ®(gy, - - -, g,) > 0 and bounded from above. (By concavity,
the same is true of ®(I1,g,, - - -, I1\g,).) Then

®(Il,g,, ---, ngn)>
lo du = —FkA\.
‘[: g( cI)(gl’ "”gn) #

PrROOF. Without loss of generality, assume ® is smooth since we may con-
volve any concave $ with smooth test functions which approach a §-function and
obtain smooth concave approximations of ® which converge to ® in the sup
norm. To simplify notation, let u = (u,, us, ---, u,) and Lu = (Lu,, -- -, Lu,).
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H(\) = J; log ®(u) du — J; log ®((I — AL)u) du + kX

for u; € & defined by u; =I,g;,i=1,2, ---, n. Then

(2.14) H@©) =0

iay ®,((I — A\L)u) Lu;
(2.15) H'(\) = J; ¥ 2 = "\D)w) du + k

) ®...,((I — AL)u)Lu;Lu;
(2.16) \
®,.((I — AL)u)Lu;
) [2" 2(T = \D)w) ] =0

since by the concavity of @, { Do, } isa nonnegatlve semi-definite matrix. Also,
for concave ®and u; € I ,i=1, 2 , n, we have the inequality
(2.17) Yy ®.(u)Lu; = LE(u).

To see this, we have
E.®(u(x(t))) — (u(x))

L®(u(x)) = lim,_,

t
I ®(E u(x(t))) — ®(u(x))
=< lim; ;o ¢
by Jensen’s inequality. And
lim,_ 2ELEO) = $UED _ 2 41 (3())) |1

= 21—1 - (u) E (uj (2(8))) | =0

=X :i_x—, (u(x)) Lu;(x).

Using (2.17), we see from (2.15) that

218)  H'(0) = f s, TlLU s f Low) 4 4

®(u) a4 ®(uw)
But the hypothesis on & was that uy, - - -, u, € < implies Y(uy, -+, Un) € G
for ¢ smooth. Thus ®(u;, ---, u,) € Z. Since ®(u(x)) = P(I,g:(x),

.., Mg.(x)) > 0, we have ®(u) € F*. However, we have assumed that
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Ja (Lv/v) du = —kforallv € F*. Hence
L&(u)
J; W) du = -k

and from (2.18), H’(0) = 0. But by (2.16), H()) is convex. Thus, since H(0) = 0,
we have H(\) = 0 for all A = 0. That is

f log ®(u) du — J; log ®((I — AL)u) du + EX = 0.
A

Or, since u; = I1,g;, and (I — AL)u; = g;,

(p(n)\gh ) H)\gn)
lo du = —kA,
J; g (p(gly ) gn) #

proving the lemma.
Now we give the

PROOF OF LEMMA 2.8. We need to show that if /; € C(4), g, € M, i =1, 2,
---,m,andf, g € C(A)* with
2T filx)gi(y) = f(x)g(y),
then
(2.19) J; 221 fix)Mgi(x) du(x) = exp(—kh)exp< J; log fg dn>.

Since A is compact, f = ¢ > 0 and hence we may define h; € C(A)* by h; =
fi/f. Substituting this into (2.19) and taking logarithms, we must show that

(2.20) log J; {2 hi(x) \gi(x)}f (x) du(x) + kX — j; log fg du = 0

forg;€ M,, h, EC(A), f, g € C(A)* and 32, h;(x)g:(y) = g(y). We minimize
the left hand side of (2.20) with respect to f(x). The variational equation for the
minimal f(x) is seen to be

[a 28 () Thgi(x)q(x) du(x) _ f a4,
[a 221 hi(®) g (0)f(x) du(x)  Ja f ¥

for all g € C(A)*. One sees that the solution to this is
folx) = [ZE1 hi(x)I1,g;(x)] 7"
Plugging this minimal fo(x) into (2.20), we see that for all f € C(A)*,

log L (X1 hi(x)I58:(x))f (%) du(x) + kX — j; log fg du

> f log<2;:1 hi(x)nxgi(x)> du + B,
A g(x)
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Thus it suffices to show that

it hi(x)T,8i(x) _
Llog( 2(x) )du = —kA\.

Since ¥, hi(x)gi(y) = g(y), we have inf, ¥, hi(x)gi(y) = g(y). Let ®(2) =
®(zy, - -, 2n) = inf, X2 hi(x)z;. ® is concave. We have ®(g1(y), - - -, g:.(¥)) =
g(y) > 0, and by the concavity of &, ®(Il,g;, - - -, I1,8,) = 0. Also, ®(II,g:1(x),
oo, Mgn(x)) < TE1 hi(x)I1\g:(x). Hence

P h,-nxgi) f log ®(I,g1, - - -, 11,8,)
Jog| 2L ) > d.
J,: °g< g #= U (g1, -+, &n) #

By Lemma 2.13, [4 log ®(II,gy, - - -, I1,8,)/®(&1, - - -, &n) du = —kA. Thus

f log<2i=l hin)\gi> du = k),
A 8

proving the lemma.

Now consider the operator I1,: C(A) — B(A). We will show that
limx—»O;n—»«»;)\nlt;(ﬁ )\)n = Tt

where T.f(x) = E.f(x(t)) is the semigroup corresponding to the unique solution
of the martingale problem. With this and the following lemma, taken from [2,
Lemma 3.1], we may prove our theorem.

LEMMA 2.21. Let T, be the semigroup of a Markov process on A with generator
(L, @). Then

1] . T, . Lu
Z [—lnffec(A)+ L log th dﬂ] < —inf e o+ J; _L-t- dp.

and

limt_,o l [—inffec(,;)“" f lOg Z-‘gf‘d/l,:l = —infue 9t f & dﬂ fOI‘ all 173 (S .@(A).
t A f A U ‘

REMARK. The corresponding I-function for a Markov chain with transition
function II(x, y) is In(x) = —infrecw)+ [ log (IIf/f) du where IIf(x) =
[ f(»)1L(x, dy). Thus the left hand side in this lemma is just (1/¢)I.(x) where I,
is the I-function for the Markov chain (x(0), x(t), x(2t), ---) induced by T:.
Hence the lemma states that (1/t)I,(u) < I(n) and lim,_o(1/¢) () = I ().

We now prove Theorem 1.4 using limx_,o;,,_,m;x,,u(ﬁx)" = T,. Then we will
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return to prove this. We have

. i}
1nfgec(A)+ J; lOg 28 d[t

8
ﬁn—lﬁ ﬁ
. ﬁn—lf[ . f[
= inf,eciay* J; log(_)\f[)\g Xg) du + infeeciay J; log(f) du

~

i f[n—l ) ft
= infyeci> f log £ dy + infgeciay f log —£ dy.
A g N g

Hence

(2.22) infgeC(A)’*flOg(

But from Lemma 2.5,

II
infgec(A)+ f lOg( ;g> d/l, = —kA.

g) dp = n infyeca) f log(ng)\g> s

Thus, from (2.22),

(2.23) infeciuy fA 1og<ngjg) du = —nkA.
But since [1} — T, as n — o0, A — 0, and nA | t, we see from (2.23), that for any
fixedg € C(A)*,
f log(T—t) du = —kt.
A g
Hence

T
infgec(,m L log(?) dp. = —kt.

Using this with Lemma 2.21 gives

_infueg*' f I_IE“ d/l, = limt_,o 1 —inffec(A)+ f lOg(‘Tt—> d/l, <k
A U t A f

This proves Theorem 1.4.

We are left with showmg that Hx — T;as A - 0, n — =, and n\ | t. We
construct a Markov chain x3, x3, - - - with IT, as the Markov transition function.
(By Lemma 2.5, I, is a Markov trans1t10n function.) We need the following
lemma.
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LEMMA 2.24. Let A be a locally compact separable metric space and x,, x1,
- - - a time homogeneous Markov chain with transition function q(x, dy) and state
space A. Let G(x) = (Il; — I)f(x) = [a(f(y) — f(x))q(x, dy). Then z, = f(x,) —
Y G(x;) is an F,-martingale where ¥, is the o-algebra generated by x,, %1,
ceey Xn.

PROOF. E(f(xn+1| F) = [af (¥)q(xn, dy) and

G(xn) = fA(f(y) = (%)) q(xn, dy).

Thus
E(zn41| F2) = E(f(X41) — Tjeo G(x;)| F2) = f(xa) — )5 G(x5) = zn.
Apply this lemma to the process x3, x}, ---. For f€ F,let g, = f — ALf €

M,. So (11, — I)g, = \Lf.
Hence, by the lemma

(2.25) zn = &(xh) — N =0 Lf(x})

is a martingale. Construct the process Y} € D([0, ), A) by Y? = x};/»;. Let Q2
be the probability measure on A X A X - .- induced by the {x}} process starting
at x} = x and let P} be the measure on D ([0, ®), A) induced by the Y} process.
Endow D([0, «), A) with the Skorohod metric. We now show that P} is weakly
relatively compact as A — 0. Let Y/(\, x, 8, t) = PX(r; < t) where 6 > 0 and 7; is
the first exit time from the ball B(x, 6). Then to prove compactness of {P}} as
X — 0, it suffices to prove that

lim, ,olim sup,_osup.ea¥(A, %, 8,¢t) =0, forall >0 [5,8].
By compactness of A, in fact, it suffices to show that for arbitrary x, € A,
lim,_olim sup,_.oSUP.eB(,s2¥ (A, %, 6, t) = forall 6> 0.

Pick p € (0, %2). Let § € C(A) be such that § = 2p on B(x, $/2) and 6 = 1 on
B(xo, 6)° and 2p < 6 < 1. Since Z is dense in C(A), we can findp <6, € I
satisfying sup,e4 | 0,(x) — 6(x)| < p. Hence

(2.26) sup{f,(x): d(x, xo) < 6/2} < 3p
and
(2.27) inf{0,(x): d(x, %) > 6} =1—p

where d(x, y) is the metric on A. Let ¢, = (I — AL)6,. Thus I1\¥,\ = 6,. Since
0, € Z, there exists a constant A, with | L8, | < A,, and thus by (2.26),

(2.28) | Ppa(x)] = |6p(x) — ALO,(x)| < 3p + NA, for all x € B(x,, 6/2).
Also, for all x € A,
(2.29) Cor(x) =2p—NA,=0 if XN=p/A,.
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Consider now only such A. By (2.27),
(2.30) [ Poa(x)| = |0,(x)| — M| LOp(x)| =1 —p — A4,
for all x € B(xo, d)°.

Using (2.25) with f = 6, and g\ = ¥,x and using the process Y? = x};/5}, we see
that
Poa(Yhn) — N T3 LO,(YA

is a martingale and thus ®,,(Y}\) — nAA, is a supermartingale since | L, | <
A,. With brackets denoting the greatest integer function, we have

SOP,X(Y?AQ) - Ap(tAT,;) = (pp,’\(Y[)\tAf,,/)\])\) - Ap(tAT‘;)

tAT
= Coa(Yiarnn) — 4p [ A B] >

Since {#,(Yiar,)) — Ap(¢A7s)} is uniformly bounded, Doob’s stopping time
theorem gives :

tA
Epz;(gpp"\( Y?A".S) - Ap(tA76)) = Ep;(gopv)\(Y?tAn/)\])\) - AP [ )\T{l >\>

< Ep;(%( Yhapn) — A [0‘;"] x),

Hence,
(2.31) EPX(®,a(Y),,) — EPXAL(tAT;) < @,.(x) < 3p + A4,
for x € B(xo, 6/2). Also by (2.29) and (2.30) for x € B(x,, 6/2),
(2.32) EP@p\(Y},,)) = (1 = p — N, Pir, < t].
Since EP*(A,(tA15)) < tA,, we have from (2.31) and (2.32) that

(1 = p = M) Pl[1; < t] — tA, < EPX®,0(Y2,,)) — EPX(A,(tATs))

=< 3p + A, for x € B(x,, 6/2).

Since A < p/A, and p < 4,

3p+)\Ap+tAp<4p+tA

P
1 -p- >\Ap = 1— 2p fOl' all x € B(x(), 5/2).

P;‘[T,s = t] =

So
4p
1-2p°
Since we have already let A — 0, there is no longer any restriction on p. Hence,
letting p — 0 gives

lim, ,olim sup)\_,osupxeB(xo,.;/g)Pi‘[f,; = t] =

. . A
hmt—»Ohm)\—>OSupxeB(xo,6/2)Px[75 =t]=0.

Thus {P}} is relatively compact as A — 0 and there exists a sequence \; with
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PY — Q. as \; — 0, where Q, is a probability measure on D([0, ), A). We now
identify Q.. From (2.25) and the fact that Y} = x};/,;, we have that

Ajn; ;
TR LA(Y)

7

Gy = 80, (YN,) —

is a P)-martingale for f € & and &, = f — NLf. We may consider
{n; = §n;(X(+)) as a function from D([0, »), A) — R defined by

)\j’j‘j Srst L (X (kA;)).

n;

§n(X(0)) = &,(X(n;)))) —

Then §‘,.J.(X(')) tends to {(X(¢)) =f(X(¢)) — [t Lf(X(s)) dsas \j — 0, nj — o,
Ajn; | t. Now the {{,} are continuous functions on D([0, »), A) with the Skoro-
hod topology and, in fact, the convergence to ¢ is uniform for compact subsets
C C D([0, »), A). This allows us to conclude that [¢ {ndei — [c¢ §dQ, for
compact C C D([0, ), A). But §,, is a P} martingale. Also, since D ([0, «), A) is
a complete separable metric space, there exists for each ¢ > 0 a compact
C, with PY(C,) = 1 — ¢, for all j. Hence we may conclude .that { =
f(X(t)) — [§ Lf(X(s)) ds is a @, martingale. Yet we have assumed that there is
a unique solution, call it P,, to the martingale problem. Thus @, = P,. Now
(f1,)"g(x) = EP*g(X(An)), so since P} => P,, \jn | t, and the measures are
supported on right continuous functions,

limj_w (11, )¥g(x) = lim;_.E"¥g(X(\;n;)) = EPg(X(t)) = Tug(x),

where T is the semigroup corresponding to the unique solution to the martingale
problem.

3. Martingale uniqueness for diffusions. We now prove a lemma which,
as discussed in the Introduction, allows us to obtain Corollary 1.6. Stroock and
Varadhan have proven the following submartingale uniqueness theorem
[6, Theorem 5.8]. (Actually, their result is more general—we are taking only
what we need.) Let A C R" be a bounded region described by 6(xy, ---, x,) =0
with 8 € C3(R") and | V8| # 0 on dA. If a is positive definite with entries in
C(A), b€ B(A), J = (Jy, ---, J,) satisfies J - V8 = 3> 0o0n dA and J; €
CY0A),i=1,2, ---, n, then starting from any point x, there exists a unique
homogeneous Markov diffusion process x(t) corresponding to a measure P, for
which

(i) P(x(0)=x)=1
(ii) P.(x(t)EA)=1
(iii) f(x(t)) — [5 Lf(x(s)) ds is a P,-submartingale for f € C*(A) withJ -V f =
0 on dA.

By considering the functions f and —f, it is clear that if f € I = {f = C¥(A):
J-Vf=0ondA}, then f(x(t)) — [§ Lf(x(s))ds is a martingale.
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LEMMA 3.1. With the conditions stipulated above on a, b, J, and A, there is a
unique Markov diffusign process x(t) for which f(x(t)) — [§ Lf(x(s)) ds is a
martingale when f € Z .

PrROOF. By Stroock and Varadhan, it suffices to show that if f(x(t)) —
[& Lf(x(s)) ds is a martingale when f € C*(A) and J- Vf= 0 on A, then f(x(t))
— [ Lf(x(s)) ds is a submartingale when f € C%*(A) and J - Vf = 0 on dA.
By changing coordinates locally, it suffices to consider the case in which
6(x1, -+, x,) = x; so that dA is the x; = 0 hyperplane. Assume J - Vf = 0
on x; = 0. Consider h = f(x) + ¢(x). We want to pick ¥ € C? so that
J - Vh=0o0nx =0 and so that h = f on x; = 0. We need ©(0, x5, ---, %,)
= 0. This gives us ¥,,(0, x5, ---, x,) = 0 for i = 2, 3, ---, n. Thus, in order
that J - Vh = 0, we need ¢, (0, x2, -+, x,) = (=J - Vf/J1)(0, x2, -+, %) =
v(xg, - -, x,). Note that ¥ < 0 and v € C'. We will also need ¥ < 0 for x; > 0.
We now prove the lemma assuming such a ¥ exists and then we will come back
and exhibit such a ¥. _

Let A = f + (¢**/n). Note that Vh - J = 0 on x; = 0. Hence by assumption,
h(x(t)) — [t Lh(x(s)) ds is a martingale, that is,

E(ﬁ(x(t)) - J; Lh(x(w)) du| 5’) = h(x(s)).
Thus,

E(f(x(t)) - j; Lf (x(u)) ds| 5‘2;)

= _E(ﬂﬂ_‘%{f@ ‘ 9‘;) + E(f exp(n¥(x(u))) LP(x(u)) du

8
+ f(x(s)) +

> —E(M ‘ 37) + E( f exp(n®(x(w))) L (x(w)) du

exp(n®(x(s)))
—

®

+ E(f n exp(n®(x(u)))(VeaVe®)(x(u)) du

exp(n®(x(s)))
n

8

Since almost all paths spend zero time on x; = 0, [6], and since ¥ < 0 for x;, > 0,
letting n — o in (3.2) gives

+ f(x(s)) +

E(f(x(t))—l Lf (x(w)) du %)Zf(x(s»

for almost all paths. This proves the lemma.
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Now we go back and exhibit such a ¢. Let Y(x) = Y(x3, -+, x,) > 0 be a
Schwartz class function on R™™" satisfying [gn1 ¥(x) dx = 1. Let y = (%, - - -,
x,) and x = (x4, X3, - - -, %,,). Define for x, > 0,

P(x) = P(x1, y) = x1™*? f : #/(y — z) v(2) da.
Rn-1 X1

We may assume that + is not identically zero since otherwise there is nothing to
prove. Thus ¢ < 0 for x; > 0. Changing variables, one sees readily that ¢(0, y) =
lim,_,,?(x, y) = 0. Then

P(x1, X2, - -+, Xn)
X1

= lim,,_ox7"*! f ~ 'P(y — z) v(2) dz
Rn—1 xl

= lim,,o fR Wy - mw) du = () = vz -, %),

¢x1(07 Xg, * xn) = limxl—>0

Finally we must show that ¢ € C% We write

P(x) = x1 JI;H YWy (y — xu) du.
Thus,
P (x) = f YWy (y — ) du —x, f_ ¥(u) Sy (y — 21u) - udu.
RP-1 gn—1 ay

Changing variables in the second term on the right hand side above, we obtain

P (x) = J; o YWY (y — x1u) du

—n+ y—v)dy . -
—x 11;”_1,#( o >6y ) - (y — v) dv.

Thus

Poy (%) = — J;"_l ¥(u) (3—; (y = %) - u) du

+(n = D" J;H 'P(y—_E> 3—; @ - (y—v)dv

X1

e [ (20 (y=0) | (y=0)\(ex _
e L) C e o-o)e
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=— JI;H Vv(u) (3—; (y — xu) - u) du

F(n-1) fR W) (% (v — tw) - w) duw

i}
+ j;..-l ((—9% (w) - w)(f;_; (y — wxy) - w) dw.

Since y € C', it is clear that ¥, ,(x) is bounded and continuous for all x = 0 and
one can show similarly that the same is true of the other mixed partial derivatives.
Hence ¢ € C2 This completes the proof of Lemma 3.1.

As discussed in the Introduction, Corollary 1.6 follows from this lemma and
Theorem 1.4.

4. The noncompact case. We now indicate how to prove Theorem 1.4 in
the noncompact case. We assume A is a complete separable locally compact
metric space, and we consider~Cb,w(A ), the space of bounded continuous functions
on A with a limit at . Let & be a dense subset of C, »(A) and assume L: D —
Ch,(A). This is certainly no restriction for diffusion processes, since the set of
continuous functions which are constant off a compact set is dense and L maps
this set into Cs,»(A). With this setup, we can prove Theorem 1.4 for A as above.
We assume

f&duz—k forall ue 9
A U
and must show that
fL—uduz—k forall u€ 2.
AU

Define (I — \L): 9 — M, C Cowand I, = (I — A\L)™: M, —» D . As before,
m,1=1,0,f=0if f= 0 and

flog%gdpz—k)\ for all g € M7Y.
A

We want to extend II, to a positive operator I1, so that

f log ng_g du = —k)\, forall g€ Ci.(A).
A
To do this, consider the subspace V C C; (A X A) defined by
V={3L fi(x)gi(y): fi € Cb=(A), & € MT}.
We define a linear functional
AT fi(x)gi(y)) = X fi(x) M gi(y).
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As before, with a few minor changes, we can extend A to A defined on Ch(A X
A) an(lﬁ)gded from below by @,. But C; (A X A) is isomorphic tom
where A X A is the one point compactification of A X A. Hence we may consider
A to live onC (A X A), and, as AXAis compact, we may use the Riesz theorem
to conclude that A corresponds to a measure onA X A. It is not hard to show
that in fact § is supported on A X A. We obtain I1 from A as before. Then we
must show that II} — T, as A — 0, n — o, An | t. This comes down to showing
that {P}} is relatively compact as A — 0. This may be done using [7, Lemma
11.1.1]. See [4, Lemma 5, and proof of Theorem 2] for details. Hence we obtain

infgecg’m(,;) f log %‘ d[t > —kt.

Since T} is a bounded operator, we have in fact

T,
infyecya f log ?‘g du = —kt,

where C,(A) is the space of bounded continuous functions on A. In-the termi-
nology of Lemma 2.21, (1/¢)I;(u) < k. To conclude the proof, we need only apply
Lemma 2.21, whose proof in the noncompact case requires only a slight modifi-
cation of the proof in [2].
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