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CONVERGENCE OF QUADRATIC FORMS IN p-STABLE
RANDOM VARIABLES AND 6,-RADONIFYING OPERATORS

By STAMATIS CAMBANIS!, JAN ROSINSKI? AND WOJBOR A. WOYCZYNSKI'

University of North Carolina, Case Western Reserve University and
Case Western Reserve University

Necessary and sufficient conditions are given for the almost sure conver-
gence of the quadratic form ¥ ¥ f»M;M, where (M;) is a sequence of i.i.d.
p-stable random variables. A connection is established between the conver-
gence of the quadratic form and a radonifying property of the infinite matrix
operator (fi).

1. Introduction. The aim of this paper is to study the convergence of the
random quadratic forms of the form

(1.1) 2k 2j fieM;Me

where (fx), j, k =1, 2, -, is a real infinite matrix and (M;),j =12, ---,is a
sequence of ii.d. p-stable random variables with characteristic function
exp(—| t]?), 0 < p < 2. Our results have obvious implications in the theory of
double Wiener-type integrals of the form

f f f(x, y)M(dx)M (dy)

where M (x) is a p-stable motion (cf. Corollary 3.2 and also Szulga and Woyczyn-
ski, 1983). We shall study them elsewhere.

We begin with a characterization of nonanticipating sequences (V;) such that
the “martingale” transform ¥, V,M,, converges almost surely (Theorem 2.1). The
necessary and sufficient condition turns out to be Y, | V;|? < a.s., and moreover
the “martingale” transform converges a.s. exactly on the set (¥ | Vi|? < ). The
sufficiency of the above condition could also be obtained from Kallenberg’s (1975)
results on stochastic integrals with respect to differential processes, but our proof
of sufficiency is much more straightforward. This result applied to the sequence
Vi = Y424 f»M; shows that the convergence of the off-diagonal part of the iterated
sum

(1.2) 2k (Zj<k fiM;) M),

is equivalent to the almost sure convergence in /? of the random vector series
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Y x;M; where xj = Y5+, fer € #P and (ez) is the standard basis in the dual of
/P (Theorem 2.2). Theorem 2.3 shows, in turn, that the series Y, x;M; converges
a.s. if and only if

+ | fiel? Xj 2 |l§k|”> <
2o fnl? 20 | fuel® ’

where F = (fi) = ({%j, ex)). The most important ingredient in the proof of this
characterization was shown to us by Gilles Pisier and is included here with his
permission. Thus (1.3) provides a necessary and sufficient condition for the a.s.
convergence of the off-diagonal part (1.2), and an analysis of the interplay
between the diagonal and off-diagonal parts of (1.1) permits a full characteriza-
tion of matrices (fz) for which the quadratic form (1.1) converges a.s. (Theorem
3.2).

Our results should be compared with the case where the M;’s are i.i.d. Gaussian
random variables, i.e., when p = 2, in which case the convergence of the series
Sk fur and Yji f% is necessary and sufficient for the almost sure and quadratic
mean convergence of (1.1) (see Sjorgen, 1982, and Varberg, 1966). We would also
like to mention here that the infinite quadratic forms satisfy a fairly general 0-1
law (cf. de Acosta, 1976).

In Section 5 we include some auxiliary results, and we conclude the introduc-
tion by sketching how our results on convergence of random vector series can be
interpreted in the theory of 6,-radonifying operators.

(1.3) Np(F) = Xk X Ifjkl"<1 + log

A connection with 6p-radonifying operators. Let 1 <p < 2, and let 6, be the
canonical p-stable measure on /9, 1/p + 1/q = 1, generated by M = {M;: i = 1,
2, - -+}. The characteristic functional of 6, is given by [,« exp(i (x, y))6,(dy) =
exp(—|l x||5), x € #P. For a Banach space E, a linear operator F: /9 — E is
said to be 6,-radonifying if 6, © F~! extends to a Radon measure. We denote by
Zp(79, E) the class of all such operators.

In the Gaussian case, i.e.,, p = 2, the class #,(/% E) has been extensively
studied and compared with the classes II, of p-absolutely summing operators.
The main result is that II,(/2 E) = %,(/2, E) if and only if E is of cotype 2
(cf. Chobanjan and Tarieladze, 1977). For 1 < p < 2 it has been proved that
I,(/% E) = #,(7% E) if and only if E is of stable type p and is isomorphic to a
subspace of a quotient of some L? (cf. Linde, Mandrekar, Weron, 1980, and also
Thang and Tien, 1982, for other characterizations).

A straightforward application of Ito and Nisio’s Theorem (1968) gives the
equivalence of the following three properties of the operator F: /¢ — E:

(a) F € #p(/9 E).

(b) There exists an E valued strongly measurable random vector (FA) such

that
(F*y*, M) = (y*, FM) a.s., y* € E*.
(c) The series Y, F(e;)M; converges a.s. in E, where (¢;) is the standard basis
in /79,
The above equivalences are heuristically better understood if one keeps in
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mind the following “identities”:
E exp(i (F*y*, M)) = E exp(i Yx My (F*y*, e;))
= exp(—X¢ | (F*y*, ex) |?) = exp(—|| F*y*||}).

An explicit characterization of operators in %,(/9, /7) was one of the most
interesting open problems in the theory of 6,-radonifying operators. Theorem
2.3, in conjunction with the equivalence of (a) and (c), solves this problem and
shows that F € %,(/9, /P) if and only if N,(F*) < .

Finally, let us remark that since /?, 0 < p < 1, is a quasi-normed space with
separating dual, the above discussion need not be restricted to the case p > 1
(one only has to replace #? by (/?)*, cf. Marcus and Woyczynski, 1979).

2. Convergence of stable triangular quadratic forms and of p-stable
random series in /7.

THEOREM 2.1. Let V= V,(My, - -+, My—1), k=2, 3, - - -, be a nonanticipating
sequence of random variables. Then almost surely .
{¥ VM, converges} = {¥ | Vi|? < oo}.

PrROOF. Let % =o(M,, ---, M}), and
G(x) = P{| M| > x} ~ cx™P,

as x — o, ¢ > 0. Also let us set

A = {Y V.M, converges}, B={3|V.|? < o}
and ,
C.={|V.M,| >1}, n=23, ---.
Then we have that

A C {C, 1.0} = {Y P(Cy| Fu-1) < 0} as.

where the equality is implied by a conditional form of a Borel-Cantelli lemma
(cf. Breiman, 1968, page 96). Since

P(Cu| Fam1) = G(| V|,

we get that G(| V,|™") — 0 a.s. on A as n — . Therefore, for sufficiently large
N = N(w),

Tr-n | Val? = 2/¢ 3a-n G(| Va| ™) < 0

a.s. on A. This shows that P(A\B) = 0.
Now we shall prove that P(B\A) = 0. Let 7, = m,(-, w) be a regular conditional
distribution of V,M,, given #,—;. We have that

7n(E, w) = P(V,M, EE|M,, ---, My1) = (V' (w)E)
where g, is the distribution of M;. By a theorem of Hill (1982), ¥ V,(w)M,(w)



888 CAMBANIS, ROSINSKI AND WOYCZYNSKI

converges for almost all w’s for which the series Y, X converges in probability
P’, where {X'”(w’)} is a sequence of independent r.v.’s (defined on another
probability space (2’, P’)) with distributions {r,(-, w)}. In our case the X“s
have characteristic functions exp(—| V,(w) |Pt?). Thus P(B\A) = 0 which com-
pletes the proof of the theorem. O

Theorem 2.1 enables us to translate the problem of a.s. convergence of
quadratic forms into a more tractable problem of the a.s. convergence of series
of independent random vectors with values in #?, whose standard basis is denoted
by (ek)’ k = 1’ 2’ tt .

THEOREM 2.2. Let (fy: 1 <j <k — 1, k = 2) be a triangular matrix of real
numbersy and Xj =def(0’ ] 07 fj,j+19 f;‘,j+2, . ’) = 2:=j+l fjkek’j = 1’ 2’ Y Then

T2 (T fM;)M,,

converges a.s. if and only if for each j = 1, 2, - .., xj € /? and the vector random
series Y, x;M; converges a.s. in /”.

PROOF. Setting V, = Y fuM;, k=2, 3, ---, V; = 0, by Theorem 2.1 we
have that the series Y, V.M, converges a.s. if and only if 3 | V,|? < « a.s., which
is equivalent to the a.s. convergence in #” of the series Y e, V.

Now assume that S = Y, e, V,, converges a.s. in #”. Since

T eV = 31 SRtk fren)M;,

Proposition 4.1 applied to x;, = Yi*4,; fier, and Y; = M;, gives that x;, — x; =
Yk=j+1 firer € /P as n — », and that the series ¥, x;M; converges a.s. in /7.

Conversely, assume that x; = ¥3_;;, fxex € /P and ¥, x;M; converges a.s. in /7.
The operator

/P D x— Ru(x) = Yicn+2 (%, er)er € P, p>0,
is continuous and linear and R, (x) — 0 in /? for every x as n — . Thus a.s.
0 — R.(Xj1 iM)) = Tt Ro()M; = Ty (Thenez fner) Mj + X 2ni1 %M.

Hence,
21 (TR=n+e firer) Mj — 0

a.sin /? as n — o, and thus
Yi Vier = B M — Tt (Thenss frer)M;

converges a.s. in /7. []

The next step is to characterize the almost surely convergent p-stable series
in /7, 0 < p < 2. For p = 1, Theorem 2.3 can also be deduced from (and is
essentially equivalent to) a result sketched in the appendix of Giné and Zinn
(1983), and attributed by the authors to Gilles Pisier. However, our proof is more
direct.
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THEOREM 2.3. Let 0 <p <2 and let F = (fp: j, k = 1) be a matrix of real
numbers such that for every j = 1, x; = Y5-1 frer € /. Then the series Y, x;M,
converges almost surely in /” if and only if N,(F) < o (cf. (1.3)).

PROOF. Let

IFIZ = 2 2 1 fiel® = Zj I %15

Observe that if N,(F) < « then || F||, < « and, on the other hand, if Y, x;M;
converges a.s. then also || F||, < c. The latter fact is an immediate corollary to
the Borel-Cantelli lemma since o > 2, Pl xM;ll,>1) =3; P(| M1| > | %[l 7")
and the convergence of the last series is equivalent to the convergence of
¥ 1 %[5 in view of the tail behavior of stable distribution.

By the representation for stable processes obtained in Proposition 1.5 of
Marcus and Pisier (1984) and used here in the discrete parameter case (in the
case of 1 = p < 2, Corollary 3 of LePage, Woodroofe and Zinn, 1981, would
suffice, and it was Gilles Pisier’s idea that we use it here), Y, x;M; converges in
/P as. if and only if e,Y I';7 converges a.s. in /7, where (¢;) are 1ndependent
Bernoulli r.v.’s, (Y;) are i.i.d. random elements in /? with law

Z(Y;) = 1 FlI° Ze N %l dsimns J=1,2, ---,

andT;=X; + --- + X;where X;, X; - - - arei.id. with P(X; > u) = e™. Moreover
the sequences (¢;), (Y;), (T;) are independent of each other. By the law of large
numbers, I';/j — 1 a.s. Applying twice Fubini’s theorem and the comparison
principle in quasi-normed spaces obtained in Theorem 4.4 of Marcus and Woy-
czynski (1979), we get that the series ), x;M; converges in /7 a.s. if and only
if ¥ ¢Y;j P does. Since sup;|| ¢ Y;j *?|l, < 1, by Theorem 4.2 of Marcus and
Woyczynski (1979), the series Y, ¢ Y;j 7 converges a.s. in /7 if and only if it
converges in /” in the pth mean.
We show first that if N, (F) < o then

(2.1) iy, me B || X J 7 Y115 = 0

Let Y; = Y %=1 Yjzer. Notice that for each k, (Y, j =1, 2, ---) is a sequence of
i.i.d random variables and

| Yir|?
P + _
E| Y| <1+log B Yol

(2.2)

YAKPA )=“ak<w
2%e1 1 fiel” T2 | fl?) ’

so that, by Proposition 4.2, for each k, the series of real r.v.’s ¥ j 7% &Y
converges a.s. and in the pth mean, i.e.,

(2.3) lim SUpnmowk | Xiem J P Y|P = 0

Since Y ar = N,(F) || F|5, by our assumption, for each ¢ > 0 there exists an
integer ko such that Y3_. ar < e. Now, by (2.3), symmetry of Yj’s, Proposition

= Flz" Xi= Ifjkl"(l + log*
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4.2 and (2.2),
lim sup,mwE || Xm 776 Y; |18
= lim SUPnm—o Dim1 E | Xfem 7P Yir|?
= lim SUPnm—seo Dheky E | Xfem 77 Pe; Yir|P
= 2 Tiek E| Zj21 7P Yjr|® < 2¢ Tk, ax < 2ce

which proves (2.1).
Now, assume that the series Y, j7/P¢; Y; converges in #” in the pth mean. Then,
by (2.2) and Proposition 4.2,

| Yie|?
- p o P +—
Np(F) = | FII3 5= E| Yul (1 o8 BTV

Sc | FI8 2k E| 252 J 7P Y|P
=c|FI; EIXE Y15 < oo
which completes the proof of the theorem. O

COROLLARY 2.1. Y | Xk fxMi|P < o ass. if and only if N,(F) < o.

REMARK 2.1. The condition

(2.4) 2k 2 | fielP(Q + |log 3y | fiel?]) < o0

is clearly slightly stronger than N,(F) < o, but it may sometimes be easier to
check, and it is very easy to establish. Indeed by applying Proposition 4.3 with
Wi = | X fM;] it follows immediately that (2.4) implies that ¥, x;M; converges
a.s. in /P, when x; = Y, frer € /7.

3. Convergence of general quadratic forms in p-stable random vari-
ables. Let
Qn = Zg=1 2.;;1 f}kMM’h n= 19 2’ Tty

where (M;),j=1,2, - .., are as above, i.e., i.i.d. with E exp(itM;) = exp(—| t|?),
0 < p < 2. Denote the diagonal and off-diagonal parts of @, respectively by

D" = ZZ=1 fkle% and Rn = Zz,j=1;k¢j fl‘kMMk.
The diagonal part, being a series of independent random variables, is easy to
handle.
THEOREM 3.1. The sequence (D,) converges a.s. as n —  if and only if
D1 | fual 2 < oo,

PROOF. Let us observe that ¥ P(|fu| Mi > 1) < » if and only if ¥ | fur|”?
< . Kolmogorov’s three series theorem gives now the “only if” part of the claim.
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The proof of the “if” part follows directly from Proposition 4.3 because for
p<2and fu, #0,

E | fuel MEI(| frx| M% < 1)

1 1
= f P(M32 > t|fit]) dt < c|ful|™? f t™P2 dt = Const | fu|?”% O
o 0

The above result and the results of previous section give the following.

THEOREM 3.2. The sequence of quadratic forms (Q,) converges a.s. as n — ®
if and only if
Shet | frn P2 < o0
and
s | P
© sl f}kl k=1 S > <®
X | fl? Zisy | fiel®

hee X1 | e I"(l + log*
where f, = (fir. + fr)/2.

PrROOF. The above result is a straightforward corollary to Theorems 3.1,
2.2, and 2.3 (the second condition of the theorem is clearly equivalent to the
condition N, (F*) < o where F° = (f§; j < k) since if either condition is satisfied
necessarily || F*||, < «) and to the fact that the sequence (Q,) converges a.s. if
and only if both sequences (D,) and (R.) converge a.s. We prove the only if part
of this latter assertion.

Let a, b be reals with a # 0, and set ¢ = sgn(b/a). Then for M = M,, we have

P{|aM? + bM| > 1} = P{| a(cM)? + b(eM) | > 1}
= P{||a|M*+ |b| M| > 1}
(3.1) > P{||a| M2+ |b|M|>1, M> 0}
=P{la|M?+ |b|M>1,M>0}
> P{M > |a|™3 = % P{| M| > |a| V3.

Assume that (Q.) converges a.s. We have @, = Yi-1 (Vi + fuMir)M, where
Vi = Y53 (fr + f)M;, k = 2, V, = 0. By the conditional Borel-Cantelli lemma
(cf. Breiman, 1968, page 96), the a.s. convergence of (§),) implies that

2;:-1 P“ VkMk +fkkM§| > 1|M1, LN Mk—l} < ®© a.s.

It follows by (3.1) that ¥ P{|fuM3| > 1} < o, where the sum extends over all &
for which fu. # 0, which implies that ¥ 7-; | fix|”? < o, in view of the tail behavior
of the M,’s. Now, by Theorem 3.1, D, converges a.s. and by the assumption
R, = Q, — D, converges a.s. as well. 0

In view of Theorem 4.1 below and of Theorem 2.1 we have the following
corollary on the a.s. convergence of the off-diagonal part of the quadratic form.
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COROLLARY 3.1. If 0<r<pand
S (S5 | fe + fi|P)TONP < oo

then the sequence R, = Y k»; fixM;M, converges a.s.

The following result on the convergence in L”, 0 < r < p, of the off-diagonal
part of the quadratic form, which is equivalent to Corollary 3.1 when 1 < p <2,
and weaker when 0 < p < 1, has a simple direct proof.

THEOREM 3.3. If0<r<pand
Yimz (T | fin + fu|P)P < oo
then the sequence R, = Y i« fxM;M, converges in L" (and a.s. when 1 < r <
p<2).
PrOOF. We have, with V, = Y51 (f + fi)Mj, k= 2, V, = 0,
E|R, — Rpni1|"= E|Xi-mn VeMi|" < Const Yi-m E| ViMi|"
= Const Y i-n E| Vi|"E| Mi|"
= Const Yi-m (TS5 |fie + fui|?)7P

which proves the conclusion. When 1 < r <p < 2, R, is a martingale and as such
converges also a.s. 0

The following characterization of functions of two variables which take count-
ably many values on rectangles and for which the double stochastic integral with
respect to p-stable motion M exists is obtained immediately from Theorem 3.2:

COROLLARY 3.2. Let f(S, t) = 2j<k bjkIijAk(S, t) where Aj = [a,-, a,-+1),j = 1,
2,.--+,0=a;<ay< -« < 1. Then the iterated integral

1 t
(3.2) J; f f(s, t)YM(ds)M (dt)
exists if and only if
1 t
. 1£(s,) [ .
(3.3) J(: J(: (s, t) |P<1+log /G0 1Pdu b F@ D) |pdu>dsdt< .

PROOF. Put gj = bjx| A;|/P| Ax|P. Then the integral (3.2) becomes the
quadratic form Y ;< gixM;M, where (M;) are i.i.d. standard stable, and, from
Theorem 3.2, one directly obtains (3.3). 0

REMARK 3.1. The natural conjecture here, which is currently being estab-
lished, is that (3.3) is a necessary and sufficient condition for the iterated integral
(3.2) to exist for general f.
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4. Auxiliary results. The proof of Theorem 2.2 relies on the following
technical property which, roughly speaking, justifies the change of the order of
summation in the series Y,; (3> firer)M;.

PROPOSITION 4.1. Let E be a complete metric linear space, xj, € E, n, j = 1,
2, ---, and (Y;) a sequence of nonzero independent symmetric real random

variables. If
Sn =3k 5, Y; > S

in probability as n — o then there exists a sequence (x;) C E such that for each j,
Xjn — Xxj as n — o and the series Y, x; Y; converges a.s. to S.

PROOF. Let || - | be a monotonic F-norm on E, i.e., [ax|| < || x| for |a| <1
(which always exists by Rolewicz, 1972, page 16, Theorem 1.2.2). Fix j = 1 and
let @, b > 0 be such that P{|Y;| > a} > b. Let ¢ > 0. For r = n = j we set
c(r,n) = 11if | a(xj, — %) | > ¢ and c¢(r, n) = 0 otherwise. By the monotonicity
of || - || we have

b c(r, n) = P{| Yi(xjr — xn) | > &, | Y;| > a}

= P{|l Yi(xjr — xn) [| > ¢}
< 2P{|| % i1 Ye(xer — xea) | > ¢/2}
= 4P{" Ya (Sr - Sn) " > 6/4}

where the last two inequalities are justified by the fact that for independent
symmetric random vectors X, Y, P{|| X || > ¢} = 2P{|| (X + Y)/2 || > ¢/2}. It then
follows from the assumption that c(r, n) — 0 as r, n — o, i.e., {x;} is a Cauchy
sequence for every j, and by the completeness of E there exists x; € E such that
Xjn — Xj as n — ©,

Let now ¢ > 0 and let N be such that
P %(S, — Sp) | > ¢/2} < ¢/2
for every r = n = N. By the symmetry argument used above
Pl Z=1 Yi(xjr — xin) | Z &} = e.
Keeping n fixed and letting r — o we get
Pl 21 Y = Sull = ¢} < e

Thus Y%, x;Y; — S in probability and, since the Y’s are independent, also a.s. [
The next proposition was used in the crucial step in the proof of Theorem 2.3.

PROPOSITION 4.2. Let0<p<2.If X, X,, X, - - - are i.i.d. symmetric random
variables, then there exists a constant ¢ = c¢(p) such that

| X1?
E|X|?

© =1/pY.|P p + |X|p
< B35 j7PX|P < cE| X |P{1 + log* o~ —].

TEIX|AL + logt
¢ 'E| |< og E|X]



894 CAMBANIS, ROSINSKI AND WOYCZYNSKI
PROOF. To obtain the upper estimate we proceed as follows: Let m, =
(E| X |P)"e.
E|%,;j7X|P < 2PE| 3, X1 X < mpj*P) |P
+ 2PE| 3 JTPXGI(1 X1 > mpj ') |P = 27(1 + D).
The first term, in view of orthogonality of truncations, is estimated as follows:
L = (E| 3 J7PXI(| X;| < mpj'P) | 3P
= (T, JPEIX1’I(| X | < mpj*P))P*
= [ Tl E1 X | I(my(i — 1)YP < | X| < m,i'P)]P2
= [2% G JPE| X 1L(my (i — DYP < | X | < mpi PP
< Const mJ[¥2, iP(i — 1 < | X/m,|P < i)]/*
< Const m3[E | X/m,|? + 1]’? < Const E | X |
For the second term we obtain by Khinchine’s inequality,
I, = Const 3; j'E | X |PI(| X | > m,j'P)
= Const Y72, j 7' 3% E| X |PI(my,i"? < | X| < m,(i + 1)P)
< Const m ¥, (Ti=1 JHE + VPGP < | X/m,| < (i + 1)¥P)
= Const m§ ¥iZ; (1 + log i) + )P < | X/m,|P < i+ 1)
=< Const m{E | X/m,|?(1 + log*| X/m,|?)

| X[”
= P + 14
Const E| X| (1 + log ElXI")'

Now the upper estimate follows.
To obtain the lower estimate notice that by Khinchine’s inequality

E|Y j7YPX;|? = Const E(Y j~*?X?)P/* = Const E sup;j~| X;|®.
Since for any positive a;, 1 — [[(1 — &) =1 —exp(-Y a;)) = ¥ a/(1+ Y a;), we
have for independent Z;’s and 6 = inf{t > 0: 3; P(| Z;| > t) < 1} that

8 w
EsuplZ,-|=<J; +J;)(I—Hj‘;l(l—P(le|>t)))dt

= 2‘1[5 + Y j; P(1Z;| > t) dt].

This is part of Lemma 3.2 of Giné and Zinn (1983) with their proof. Since
1= 35, P(1Z] > b),

E sup|Z;j| = 27'max[s, ¥ E | Z;| I(]| Zj| > 6)].
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Now let Z; = j7'| X;|? so that E| X |?/2 < 6 < E| X |”. By the above estimate
E sup;j ' X;|P = 27 'max{27'E | X |7, ¥; JTE| X |PI(| X |P > JE| X |P)}

max{| X |P/E| X|P, 1} ‘l
> 2‘1max{2‘lE|X|p, E|X\|? f u™t duI
1

- | X1?
1 P +
=87 'E| X| <1 + log Elep)

which gives the desired lower estimate. 0

The following elemenfary proposition (cf. Szulga and Woyczynski, 1983) is
used in Remark 2.1.

PROPOSITION 4.3. If for a sequence (W) of random variables Y, P(| W,| >
1)<ow,and Y E| W I(| Wi| = 1) | < oo, then Y | Wy| < x a.s.

PROOF. Indeed, let Y,= W, I(| W,| <1),Z,= W, — Y.. Then | We| = | Yel
+ | Zx|. Y | Y| converges a.s. since E(Z| Y:|) < o by the second assumption,
and Y | Z,| converges a.s. by the Borel-Cantelli lemma. 0

We now establish a more precise criterion for summability of stable r.v.’s
which is used in Section 3. For a symmetric p-stable r.v. X the quantity cx is
defined by E exp(itX) = exp(—cx| t |?) and satisfies

I X1z = (E]1 X7 = Const(r, p)c¥*, 0<r<p,
and for independent symmetric p-stable r.v.’s (X3),

(41) CyuaXy — Zk |ak|pcxk.

DEFINITION 4.1. The r.v.’s (X.) are jointly symmetric p-stable if for every
sequence (ax) with a finite number of nonzero elements the r.v. ¥, a, X, is symmetric
p-stable.

THEOREM 4.1. Let (X,) be jointly symmetric p-stable r.v.’s with 0 < p <2 and
let r > 0. Then a necessary and sufficient condition for
Yi=1 | Xp|" < © as.
is that for some 0 < s <p,
E(z;:-l IXklr)s(lAl/r) < oo,
PrROOF. Assume X = (X,) € /" a.s. and define ®: Q@ — /" by ®(vw) = (Xi(w))
= X(w) if (Xi(w)) € /" and ®(w) = 0 otherwise. Then ® induces a symmetric

p-stable measure u = P © &7 on /". For x = (xx) € /" define q(x) = X | xx|"
when 0 < r <1 and q(x) = (3 | x.|")"" when r > 1. Then q is a measurable
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seminorm on /" (a norm when r = 1), and by Theorem 3.2 in de Acosta (1975)
we have for 0 < s <p,

E{g(X(w))}° = J;QS(X(w)) dP(w) = j; q°(x) du(x) < o,
The converse is clear. [0

When 1 < r < p < 2 we can take s = r and the necessary and sufficient
condition becomes

S E| X" <@ or Ti ¥ <o
When r = p, Theorem 4.1 gives

Si=1 | Xp|? < as. if and only if
(4.2)
E(Xie: | Xe|P)sOM/P < o0 for some 0 < s <p.
In the case when X,’s are independent, by Schwartz’ theorem (cf., e.g., Woyczyn-
ski (1978), page 277) this necessary and sufficient condition simplifies to the
condition

(4.3) Si ex (1 + [log cx,|) < oo,

When X,’s are of the form X, = Y; fiM;, where M;’s are independent, (4.3) is
replaced by the condition N, (F) <o (Corollary 2.1), and in this context Corollary
2.1 can be seen as an extension of Schwartz’ theorem.

Since every sequence of jointly symmetric p-stable r.v.’s (X},) is of the form
X.= [ofe(t) dM(t), k=1,2, ..., where M(t),0 <t < 1, is a stable motion (i.e.,
has independent stationary symmetric p-stable increments) and [§ | fx(¢) |? dt <
o, k=1,2, ..., (cf. Kuelbs, 1973), the methods of the present paper permit to
show that a necessary and sufficient condition for (4.2) is

Lo . L0) 17 i
zkfo 1£(®)1 (”‘°g 1@ |7 du Zzlfz(t)l"> a < e

This is an “integral analog” of Corollary 2.1.
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