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SECOND-ORDER APPROXIMATION IN THE CONDITIONAL
CENTRAL LIMIT THEOREM

BY DIETER LANDERS and LOTHAR ROGGE
University of Cologne and University of Duisburg

Let X,, n €N be iid. with mean 0 and variance 1. Let B € o(X,: ~
n € N) be a set such that its distances from the o-fields o(X|,..., X,,) are of
order O(1/n(lg n)%*¢) for some ¢ > 0. We prove that for those B the
conditional probabilities P((1/Vn i1 X; < t|B) can be approximated by a
modified Edgeworth expansion up to order O(1/n). An example shows that
this is not true any more if the distances of B from o(X,,..., X,,) are only of
order O(1/n(lg n)?).

1. Introduction and notation. Let X,, n € N be a sequence of i.i.d. real
valued random variables with mean 0 and variance 1. Put S, =X , X, and
S* = (1/Vn)L™ ,X,. The conditional central limit theorem of Renyi [5] states
that for all B € o(X,: n € N) with P(B) > 0 there holds

(1) P(Sy < #B) — ®(t) - ,n0,

where ® is the distribution function of the standard normal distribution. The
conditional central limit theorem plays an important role in the theory of
random summation, in random walk problems, in sequential estimation or in the
field of Monte Carlo methods. Therefore it seems desirable to have for the
conditional central limit theorem a comparable asymptotic theory as there is
available for the classical central limit theorem (i.e., B = Q) by the theorem of
Berry—Esseen or—a higher order of approximation—by asymptotic expansions.
In [2], Example 1, it was shown that by suitable sets B you can make the
convergence order in (1) as bad as you want. Hence “nice” convergence orders
and especially asymptotic expansions can only exist for “nice” sets B. In [4] it
was shown, that the distances of B from the o-fields &/, = o(X,,..., X,) play an
essential role for the convergence order in the conditional central limit theorem.
If e.g., B € o(X,: n € N) is such that

1
d(B, Jﬂn) = Algﬁ/,,P(A AB) = O(W)

with some & > 0, then |P(S* < t|B) — ®(¢)| = O(n~'/?); i.e., the Berry—Esseen
order appears (see Corollary 3 of [4]). If, however, d(B, «Z,) = O(1/n'/*(1g n)*/?)
one cannot obtain the Berry—Esseen order O(n~'/2) any more (see Example 5 in
[4D. .

In this paper we look for those sets B such that the conditional probabilities
P(S}¥ < t|B) admit an asymptotic expansion up to order O(1/n). If E(X}) <
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314 D. LANDERS AND L. ROGGE

and if Cramér’s condition is fulfilled, i.e., lim sup|s - «|E(eX1)| < 1, then

(2) d(B, #,) = O(———i—ﬂ—e) for some &£ > 0
n(lgn)
implies that
. _ 28 o () - 1
® P(S7 < 1B) = 0() + T2 (@) - a) + 0] £
where
1 E(X}
<P(t)=‘/—2——ﬂ—e_'2/2, Q\(t) = -%(ﬁ- 1)

and a = lim, .y E(S,|B) (see Corollary 2). Example 3 shows that this result is
not true any more if ¢ > 0 is weakened in (2) to ¢ = 0.

Observe that the asymptotic expansion given in (3) differs from the classical
Edgeworth expansion by the constant a = a(B); the Edgeworth polynomial
Q,(t) has to be modified—depending on the set B—to the polynomial @,(¢) —
a(B). For all B with a(B) = 0 we consequently get the classical Edgeworth
expansion.

2. The results. The following theorem is the main result of this paper. If g
is a bounded measurable function we use the notation

d,(g, #,) = inf{E(|g — h|): h o/,-measurable}

ie, d(g, &,) is the | |,-distance of g from the subspace of all &/, =
o(X,,..., X,) measurable integrable functions. It is well known that d,(g, «,)
— 0 for each o(X,: n € N)-measurable integrable function g.

We write in the following E(S;* < ¢, g) instead of E(g - 1(gx _4)-

THEOREM 1. Let X,, n € N be i.i.d. with mean 0, variance 1, and E(X}) <
0. Assume that Cramér’s condition is fulfilled. Let g be a bounded measurable
function such that

1
d(g, &)= O(W) for some ¢ > 0.
Then
1 1
sup | E(S; < t.8) = #(0)E(e) - 9(0) 7= [B(@)@,(0) = o] |- 0[ 5 ),
where 1
a = lim E(S,g), ¢(t)=ﬁe_'2/2
and
. E(X})
Q= - == (- ).

ProoF. In the proof we use the symbol ¢ for a general constant which may
depend on the function g and the distribution of X,. As d\(g", %,), d\(&~, %,)
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< d(g, #,), we assume w.L.g. g > 0. We shall prove that

sup_|E(S¢ < £.8) ~ 9(0)E(8) - () = [E(0)@,(1) - a]

(1) 1t <2/ign

-of}

Let us show first that this implies the assertion. Obviously,

1 1
2) wp_|o() = [E@en) -al|- 0| ;)
( |t|22‘/lg_n P ‘/; [ 1 ] n
Hence the assertion is shown, if we prove
1
3) wp_|E(S? < 1,8) - 2()E(&) |- O 7 .
1t122ylgn n

We consider the case t < —2y/Ign and ¢ > 2y/lgn. As ®(—2ylgn) = O(1/n) we
obtain by (1) and (2), using g = 0,

sup |E(S* <t g)- ®(t)E(g)]

t<—2y/lgn

1
sup |E(S¥<t g)|+ O(;)

t<—2lgn
=E(S* < —2‘/1g—n,g)+0(%)
=|E(SF < —2/Ign, g) - ®(-2/lgn)E(g)|+ o(%)

w2 ol 2] -of2)

As 1 — ®(2y/1gn) = O(1/n) we furthermore obtain by (1) and (2), using g > 0,
sup |E(S*<t,g)-®(t)E(g)l

t>2\/lgn

= sup |E(S¥>t,g)—(1—®(¢)E(g)]

t>2\/lgn
= E(S*>2/lgn,g) + 0(%)
=|E(Sy > 2/lgn, g) - (1 - @(2/lgn))E(g)| + 0(%)
=|E(Sr <2/lgn,g) — ®(2/lgn)E(g)| + o(%)

o2 of2]-of2)

Thus we have shown (3) and hence it suffices to prove (1).
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There exist .2/, -measurable g, (see [6]) such that

(4) E(g-gl) = di(g ) =,

Let N, :== {2*: k € N} and put

(5) h,=g, and h,=g, —g,, forp with2* <y < 2k+1

Then A, is 7,-measurable and we obtain by assumption

(6) E(h,)) < 2ep < ;ﬂ, 2k < p < 2k,
v(lgr)™*

Let j(n)=[n/lgn] and put N,={r eN;: » <j(n)} U {j(n)} Since g =
X,enh, + & — 8jnand since by assumption E(|g — &;(,)) = €;i») = O(1/n), we
obtain

1

(7) E(S*<tg)= )Y E(S*<t h,)+ O(;) uniformly in ¢ € R.
vEN,

If v<n then w - F,_(/n/(n—v) -t—(1/Vn—»)S(w)) is a version of

P(S} < t|«Z,), where F, is the distribution function S;}. Since 2, is &/,-measura-

ble we obtain that

©® Bt < th) = [M@F[ |75 - o) |Plae).

Let K, (t) = ®(t) + (¢(t)/ Vn)Q,(t). Since Cramér’s condition is fulfilled, we
have by the classical asymptotic expansion that

1
sup |F,,(7) = K, ()] = 0 7= | forn=r >

YER
and hence

1
©) |, ()~ Ky ()] = 0[ 2.

veN,, yER
From (7) and (8) we obtain with D, = F, — K,

E(S*<t,g) _,eZN [r(w)K,_ (‘/:TV ‘/_——_S(w))P(dw)
" "X Jr (@)D, y('mt-ﬁf__;s,(w))P(dw)+o(%)

uniformly in ¢ € R.
By (9) we have for all £ € R

=rtl L [nn, ( e ‘/,%é(w))l’(dw)

L E(h,).

VEN"

(11)

<

S
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By (6) we have
(12) L E(h,)) = 0Q1).

VEN"

Then (10), (11), and (12) imply

Bt s tn)= % [mek, |75 e e s)pe)

+o 7]

uniformly in ¢ € R. Consequently, it suffices to prove uniformly in |¢| < 2y/lgn

(1) T [ha)K, (0P(de) = 8(0E() + L E@)@(0) +0[ ).

veN,
i - e~ K |Pla)
a

—ﬁq)(t)+0(%).

PROOF OF (14). We have

(13)

T f hv(w)[Kn_y

(15) veN,

o(t)
\/T———TQl(t)

= i)(t) + E‘/(;L)Ql(t)(l - %)_1/2

o0+ Mquis £ (12)-2]

k=1 n

K, (t)=®(¢t) +

Let r(x)=(1—x)""2—-1=X2_,( "V*)(—x)* for |x| < 1. Then |r(x)| < clx|
k

for |x| < 1. We obtain uniformly in £ € R

' t v
¥ Ko (0B(h) = 6(0E g + T S0 00(1+ ()|

veEN, veEN,

- 0(0E(8) + “ QU0 Ee)

p(¢) v 1
+—=Q\(t — .
= )ngnr(n)E(hmo(n)
Therefore (14) is shown—even uniformly in ¢ € R—if we prove
1 v 1
1 — — =0|=|.
(16) = T r{=)Bh,) O(n)

vEN,
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As |r(v/n)| < c(v/n) if (v/n) < §, (16) follows from formula (F1) (see end of the
proof).

PROOF OF (15). Let

w=0) = | - 80,

By the Taylor expansion

K, (u)—K, (t)=(u—-t)K,; (t)+ 3(u—t)’K} (¢)
with § = £, , () € [u, t]. We prove that uniformly in |¢| < 2Ylgn

IO
(19 Ki0) [h@) e, o) = OP(d0) = ~a2 < 0] ]
and
() E [o)n o) = K Ae()P0) = 0 1)
Obviously, (15), and (15), imply (15).
ProOF OF (15),. We have
Ki(0) = o(t) + ——(9@) (1
and
st == o[22 1) - =g
v 1
-] - s
To prove (15), it suffices to prove uniformly in || < 2@ that
v 1
(17) w(o) (e =0 7))
! _ 20 L oL
(19) o(2) EN —E(hS) = ~a2 + o[ -],
1
(19)  deQ)(0) ¥ - ek - 0|2
vEN,
1
(20) - (9Q)(0) & 5 E(h,3) = 0 -],
vEN,
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As |r(v/n)| < e(v/n) if (v/n) < 3, (17) and (19) follow from (F1) (uniformly in
t € R).

PROOF OF (18). As (1/Vn — u) =Q1/Vn)(Q + r(v/n)) we have

vezN FE(h S,) = GZN E(hS, GZN ( )E(h,,Sy).
Hence (18) is shown if we prove
(21) %ezN E(h,S,) = % + 0(%),
(22) GZN ( )E(h,,S,,) - o(%).

As h, is «/,-measurable and E(X,) = 0 we have

Y E(hS)= X E(h,Sin)=E(&jtn " Sim)-
vGNn VGN

By Lemma 4 we have

1 1
Blown 50 2= | gy - o )

Hence we obtain (21). Since A, are uniformly bounded we have

X r(%)E(hys;) sc% L vE(h,S))

S Ve,
<c ‘/— VGZN\/-E(Ih S,l)
<ec T EZ (VE(Ihul)_‘/;E(Ihl's"ll(lsv|>\ﬁ’_)))
<e f Gz (»E(h,)) + E(1R,S21))
_ (%) according to (F1) and (F2).

This implies (22) and hence (18) is shown.

ProoF oF (20). We have

Z;V E(h,S)) < ZN E(h,)) + ZN E(/2,S?) = O(1) by F(1) and (F2).

This proves (20). Consequently, (15); is shown.
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PRrROOF OF (15),. Since sup{|K," (¢)|: £€ER, n €N, v < n} < o is suffices
to show

1
(23) Z ,/lh”(w)”ut,n,v(w) - t|2P(dw) = O(_)
veNn n
uniformly in |¢| < 2/lg n. We have
2 v 2 2 sz("")
(24) (g, n, (@) — t) sz(n_v) £+ 2——-.

According to (F1) there holds for |f| < 2\/1gn

L () eBin) s e—zlgn - T E(R)

vEN, veN,
(25) 1 n 1
< c?(lg n)E VEZNnVE(Ih,,I) = O(;)
Furthermore by (F2)
(26) X ——E(hs?) - 0(1)
n—v ey n)

veN,

Now (24)—(26) imply (23), i.e., (15),.
It remains to prove the following two formulas which we have used in the
preceding proof.

(F1) ZN »(lg»)' "?E(lh,|) = 0(1),
(F2) ZN E(|R,|S?) = O(1).

Proor oF (F1). Using (6) we obtain

Y v(lgr) " PE(R,) < gc L v(lgr) T

vEN, vEN, V(lgl’)2+e

1
=¢c Y ——— =0(1).
rt) (lgv)lf /2

Proor oF F2. We have

(27) E(lh,,s,,zl) s CE(SV21{|SvI>ﬁW(]g V)l/2+e/4)) + 3V(lg V)1+E/2E(Ih”|)

= cA, + 3B,.
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Furthermore—using E(|Y|) < £¥_,P{|Y| > k}—
1+e/2 S2

+¢g v

A,=3(lgv) "°E 3 (lgr) Lisz > 3uiigwyt+e2y

<er(igy)'*? Y P{S,,2 > k3v(lg v)lﬂ/z}

keN
= cv(ig»)'"* ¥ P{IS¥| > V3VE (1g»)"* ")
keN

and hence by Remark 5

1 1
<er(lgr) TP Y ———
( ) v ng kg(lgp)2+e

Therefore

(28) Y A<cy PR = 0(1).

vEN, vEN, (

Since L, c v B, = O(1) by (F1), we obtain (F2) by (27) and (28).

REMARK. By similar methods one obtains an o(n~!/?) approximation order
in Theorem 1 for nonlattice distributions with finite third moment under the
weaker condition

d(g, «,)=0 for some & > 0.

1
(n1/2(lg n)m”)

COROLLARY 2. Let X,, n €N, be iid. with mean 0, variance 1, and
E(X}) < . Assume that Cramér’s condition is fulfilled. Let B be a measurable
set with P(B) > 0 such that

d(B, #,) =0 for some ¢ > 0.

P
n(lgn)®
Then

sup | P (57 < 4B) - @(1) - o(t) = [@,(1) - ]| = 0

teR

where & = lim , .y E(S,|B).

ProOF. Apply Theorem 1 with g =1, and observe that d,(1, &,) <
d(B, ,).

The following example shows that the assertion of the preceding corollary is
not true if the assumptions is weakened to d(B, .%,) = O(1/n(lgn)?). The
random variables in this example are even standard normally distributed.
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ExampLE 3. Let X,, n € N be standard normally distributed. Since P{S* >
vigr}=c(/yrlgr), v > 2, it is easy to see that there exist Borel sets C, c R”

with C, = — C, such that for some suitable », € N
(1) B =(X,...,X,) '(c), v > »,, aredisjoint,
2) B,c {IS¥ > igr}, rv=u,
3 P(B) = R v >,
( ) ( v) Vz(lgv)z 0
We shall prove that for some »; > »,
1 1
4 ®(1)P(B,) — P(S}<1,B,) >c—
0 (P(B) = P(S? < 1,B) > e

if », <v <n/(gn)% Let us show first that (1)-(4) lead to an example of the
desired kind. Put B = ¥, ., B,. Then according to (3) for n > »,

1
n(lgn)®)
Hence the assumption of Corollary 2 is fulfilled with ¢ = 0. As C, = —C, and
PoX, = Peo(—X,)wehave E(X1;)=0 for all j, » € N. Hence E(S,15) =10
for all n, » € N whence & = lim, . E(S,|B) = 0. Using (1), (3), and (4) we
obtain

d(B, ) < P(BA 5 B,,) - Y P(B)-0

v=u, v=n+1

n(®(1)P(B) — P(S¥ <1, B)) - ,cn-
Since @,(1) = 0 this contradicts the assertion of Corollary 2 (with ¢ = 1). There-
fore it remains to prove (4).

PrOOF OF (4). Since ® is the distribution function of S}*, we have that
®(/n/(n—v)t— (1/Vn—»)S(w)) is a version of P(S¥ < t|«,). Hence for

v<n
A, ,=®1)P(B) - P(Sy<1,B,)

- /&[m)—@(\/;’ﬁvv - Jnl_vsxw))]P(dw).

Put
o) = | 2 - =)
then .
1— ¢, (0)=1= (1 - %)_w ; ‘/’%S,,(w)
) e
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Hence we have by the Taylor expansion

2(1) = (4, () = | ~r( 2] + =50 o)

1 v 1 2
_E[_r(;) " msy(w)] (1)
N %[_r(%) + ‘/—7;_—1——_78"(‘0)]34) " (£, (@)

with §, () €[1,¢, (w)]. As (1) = —®’(1) and [z S(w)P(dw) =0, we ob-
tain for » < n/2

A,, —r(%)d)’(l)P(B,,) + %d)’(l)j;v[—r(i) - %S,,(w)rP(dw)

5| r5) 4 s e (e)pan)

Y

—r(%)d)’(l)P(B,,) + %‘D’(l)% fB S2(w)P(dw)

- ng[; + \/glsy*(w)er(dw)-

Since S* is standard normally distributed, we obtain using (2) by a rather direct
computation

[,182(«)P(dw) < c(ig»)**P(B,).
Hence by (2)

n,v

v 1 vigy v \3/2 32
A 2—c;p(By)+5«1»(1)710(3,)—‘:(;) (1g»)"*P(B,)

if », < » < n/(Ign)? According to (3) this implies (4).

LEMMA 4. Let X,, n € N be i.i.d. with mean 0, variance 1, and E(X}) < oo.
Let g be a bounded measurable function and g, be </,-measurable with E(|g —
&g,.) = d\(g, #,). Assume that

dy(g, ,) = o(nlgn).

Then \/nlg n(E(S,g,) — a) = OQ) where a = lim, . E(S,8).
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ProOF. We show firs_ that

(1) supynlgn |E(Skgk) - E(Sngn)| = 0(1).

k>n

Let a,, = E(S,&8;) — E(S,&,)- As g, is %,-measurable and hence independent
of S, — S, for k > n we have E(S,g,) = E(S,g,)- Therefore

(2) ap, = E(Si(gx — 8,)), k=n.

For k > n there exist j € N, and 0 < » < n2/ such that k = n2/ + ». Hence
by (2)

() arn = E(Sppr4(8rosr — 81))

J
= E(Sn2j+v(gn21+v - gn2j)) + Z E(SnZ“(gnW‘ - gn2“"))’
. p=1

Let m < r < 2m. Then
(4)  |E(S(& - &,)|<E(S]|lg — &nl)
< CE(ISr|1(|s;*|>,/31gr)) +3rigrE(g, — g,l)-

We have using our assumption

(5) VrigrE(g, — g,) < 2yrlgrd(g, #,) < c‘/_;__

gm

Furthermore—using Remark 5—

(6) E(1S. 111> ‘/m}) <c/rigr Z P{|S*| > V3kylgr }
o ! -
<c/rlgr <c .
8 keN k*(lgr)’ mlgm
Together with (4) and (5) this implies for all m € N

(7) max Jmlgm|E(S(g, - &.))| <c.

m<r<2m

From (7) and (3) we obtain for all 2, n with £ > n

J
yrlgnlag,| <@ ac+ Z Vnlg n|E(S,2:(&nzr — 8nze-1))|

<apet Z \/n Ign -

[n2#- 11g(n2" D)

IA

-j 1
4 <c
L

By (2) this implies (1).
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From (1) we obtain /nlgn(E(S,g,) — a) = O(1) with a = lim, .\ E(S,8,)
[this limit exists by (1)]. Therefore it remains to show that

We have by (6)

|E(Sngn) - E(Sng)|5 E(Ign - &l |Sn|1(|s,,|s,/3n1gn}) + CE(|Sn|1(|s;|>,/31;n})

1
<y3nlgnkE - + c——.
<3nlgnE(g, - gl) c‘/m

Consequently, (8) follows from our assumption.
The last inequality of the preceding proof shows that also

ynlg n‘(E(S,,g) —a)=0(1).

For the sake of completeness we cite the following result (see e.g., [1], Theorem
17.11).

REMARK 5. Let X,, n € N be i.i.d. with mean 0, variance 1, and E(X}) <
co. Then for all £ > {/3lgn

1
P{|Sk >t} <c—.
(151> 8} < e—
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